
Citation: Radonjić, M.; Vujnović, S.;
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Featured Application: The proposed system is designed for the estimation of a rotating machine’s
condition, based on the acoustic signal that the machine generates. According to the information
provided by this system, it is possible to plan preventive maintenance of a specific rotary machine
more reliably. This system can be applied in any industrial plant with rotating machines with
fixed rotational frequency.

Abstract: Modern predictive maintenance techniques have been significantly improved with the
development of Industrial Internet of Things solutions which have enabled easier collection and
analysis of various data. Artificial intelligence-based algorithms in combination with modular
interconnected architecture of sensors, devices and servers, have resulted in the development of
intelligent maintenance systems which outperform most traditional machine maintenance approaches.
In this paper, a novel acoustic-based IoT system for condition detection of rotating machines is
proposed. The IoT device designed for this purpose is mobile and inexpensive and the algorithm
developed for condition detection consists of a combination of discrete wavelet transform and neural
networks, while a genetic algorithm is used to tune the necessary hyperparameters. The performance
of this system has been tested in a real industrial setting, on different rotating machines, in an
environment with strong acoustic pollution. The results show high accuracy of the algorithm, with
an average F1 score of around 0.99 with tuned hyperparameters.

Keywords: acoustic signals; classification; condition detection; IoT; neural networks; rotary machines

1. Introduction

Predictive maintenance (PdM) is a well-known paradigm in machine maintenance
in which the machine is observed through the available measurements and its health is
estimated as well as a potential need for repair [1,2]. It is well known that the probability
of failure of all machines increases with time due to component wear [3]. In this situation,
it is crucial to perform timely maintenance because the replacement of worn components
can increase the lifetime of the machine significantly. One of the major areas of interest
of industrial predictive maintenance is the state estimation of rotary machines [4]. There-
fore, it is desirable to design a system that can assess the condition of different types of
such machinery.

PdM techniques for rotary machines can be generally divided into model-based and
data-driven methods [2]. Model-based approaches require a priori knowledge of a system
model that is often not easy to determine [2]. Nevertheless, such techniques can be very
powerful and their accuracy can be improved by online estimation of model parameters.
Guo et al. developed a mathematical model of the tube-ball mill and used the Genetic
algorithm (GA) for online model parameters’ update in order to enhance condition moni-
toring of such system [5]. On the other hand, in the data-driven approaches, the necessary
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process information is extracted directly from a large number of recorded signals [2]. These
methods usually use some statistical signal processing method to extract useful information
from measurements and a machine-learning algorithm to obtain prediction results [1]. For
instance, Goyal et al. developed a method with PCA analysis of vibration data and the
k-nearest neighbor (KNN) classifier for diagnosing the bearing defects [6]. Saha et al. used
Fourier transform (FFT) to extract the features and support vector machines (SVM) to
diagnose bearing faults [7]. Other techniques such as partial least squares (PLS) [8], extreme
learning machine (ELM) [9] and learning vector quantization (LVQ) [10] are also success-
fully used for predictive maintenance and fault detection purposes. With the rise of deep
learning research, this area gained even more attention. Multilayer neural networks (MNN)
were used by Iannace et al. to detect an imbalance in the quadrotor’s propeller [11], while
Kolar et al. in [12] utilizes a deep neural network (DNN) for AC motor state monitoring
and tests the influence of the number of kernels on classification result.

Due to their diversity, all these available solutions tend to be specialized for a specific
type of rotary machines such as rolling element bearings [13], mills [14], turbines [15], and
so forth. Solutions that can be adjusted to a wide range of problems are usually quite
expensive, require a number of sensor elements and processors, and are often tied to
specific industry manufacturers. Although vibration sensors are traditionally used in PdM
systems [16] for rotary machines, the use of acoustic sensors should be considered due to
their low cost and contactless acquisition. The acoustic signals are more susceptible to noise
than vibration signals, but they have also proven effective in the state estimation [17–19].
This potential is additionally explored throughout this paper.

On the other hand, with the development of Industry 4.0 and Industrial Internet
of Things (IoT) paradigm, predictive maintenance strategies have become more popular
than ever [3]. IoT architecture enables various devices with sensors to communicate
with each other and/or with a remote computer system through the Internet. Therefore,
data collection and analysis became much easier, which is crucial for proper predictive
maintenance and implementation of intelligent PdM methods [20]. Many IoT solutions are
available in the literature for monitoring parameters of specific machines [21,22], but, to the
best of the authors’ knowledge, there are no solutions that detect the condition of machines
with different rotary frequencies and characteristic spectral parameters based on acoustic
signals and using intelligent PdM methods.

In this paper, we propose an IoT device that (i) due to inexpensive hardware is
accessible to both large industrial plants and small businesses; (ii) contains an AI state
detection algorithm that can easily be adapted to a wide range of rotating machines; (iii) uses
acoustic signals and can therefore acquire measurements in a contactless manner; (iv) can be
connected to available cloud platforms; and (v) the signals are processed immediately after
acquisition on the device, so no external computer is required for decision-making process.
In addition, we have improved the existing state detection algorithm and designed the
appropriate software for end-users. Compared to the [14,19], the state detection algorithm
is upgraded using GA for optimization of neural network architecture, which makes it
easily applicable to a wide range of rotary machines with different rotating frequencies.
Compared to available PdM methods that are mainly focused on a specific type of rotary
machine, the approach in this paper is of particular interest to all types of rotary machines
with a fixed rotating frequency that experience structural changes over time. One type
of such machine is a grinding mill, in which the grinding plates are gradually degraded
during the grinding process. The proposed solution was tested on several coal grinding
mills with fixed rotational frequencies and different dominant spectral components, located
in the thermal plant. It showed very good performance in such a real industrial setting
with a strong stationary acoustic noise.

This paper is structured as follows. In Section 2 the condition detection algorithm
implemented on the proposed portable device is described, firstly by describing the two
main approaches used for this purpose, namely discrete wavelet transform (DWT) and
neural networks (NN). Then the entire algorithm is presented in detail, as well as the
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software developed for parameter training and hyperparameter tuning using genetic
algorithms. The proposed architecture of the system is described in Section 3 with special
attention given to the hardware configuration and communication paradigm. Experimental
results are presented in Section 4, while Section 5 concludes the paper.

2. Condition Detection Algorithm

In order to develop a portable device capable of detecting the state of various rotary
machines, it is necessary to develop an algorithm that considers the characteristic properties
of acoustic signals obtained from such machines. Because rotary machines have charac-
teristic acoustic and vibrational signatures, namely distinct peaks on typical frequencies
and their higher harmonics, the problem becomes how to extract useful information in
the frequency domain that can easily be adjusted to different characteristic frequencies of
different machines.

The algorithm for acoustic-based rotary machine state detection presented in this
paper is named FASTER (fault and state detection of rotary machineries) algorithm. It was
designed bearing in mind two main objectives: (i) it needed to be easily generalizable for a
wide range of rotary machines with a fixed rotational frequency; and (ii) it needed to be
computationally inexpensive so that it can be implemented in real-time at microprocessor
platform with modest performance. In order to provide both seemingly contradictory
requests, the algorithm needs to consider the characteristic rotary acoustic signatures, as
well as hardware feature performance. As was initially proposed in [19], a combination
of discrete wavelet transform and simple neural networks provides an ideal solution to
this problem.

2.1. Discrete Wavelet Transform

The most important step in many classification problems is the extraction of features,
which will be used later as a classifier input. Features are useful information in the
recorded signals that can be used to distinguish different states of machines. There are
several solutions offered in the literature for feature extraction with the purpose of state
detection. Most of them concentrate on detecting the frequencies of the highest peaks and
the amplitudes of those peaks [23]. In order to implement feature extraction procedures
such as these, it is necessary to have knowledge beforehand of what the expected spectrum
of the acoustic signal looks like. Therefore, generalization for different machines with
different signatures is not an easy task. Another approach is to implement some sort of
filter bank with adjustable boundaries that would be applied to the signals, and descriptors
such as signal power or a number of peaks can be extracted from filtered outputs. Discrete
wavelet transform offers a variation of such a method, and it has been demonstrated to yield
promising results for feature extraction for the purpose of machine state estimation [19].

Wavelet transform (WT) is similar to short-term Fourier transform, but instead of
using windowed sinusoidal functions as the basis, WT uses wavelets, which are oscillatory
signals limited in time with an average value of zero. Wavelet transform of a signal x(t),
t ∈ R is defined as

XWT(s, τ) =
1√
|s|

∫ ∞

−∞
x(t)ψ

(
t− τ

s

)
dt, (1)

where ψ(t) is a continuous basis function called a mother wavelet [24], τ ∈ R represents
a time shift and s ∈ R is a scaling factor used to scale mother wavelet. In this way, WT
provides adjustable time-frequency resolution by changing the position (with parameter τ)
and width (with parameter s) of the basis ψ(t). The most commonly used mother wavelet
is Daubechies 4-tap, which will also be used in this paper [24]. It is worth mentioning,
however, that depending on the type of wavelet ψ(t), the features of the transform may
differ. By adopting a discrete scaling factor s = 2j, j = 1, 2, . . . and discrete time shift



Appl. Sci. 2022, 12, 4385 4 of 23

τ = 2jm, m = 1, 2, . . . a Discrete Wavelet Transform of a discrete signal x(n), n ∈ Z is
obtained, and its analytical description is

XDWT(j, m) =
1√
2j

∞

∑
n=−∞

x(n)ψ
(

n− 2jm
2j

)
. (2)

It has been shown that multiresolution can be used to obtain DWT by applying a series
of low-pass (LP) and high-pass (HP) filters and downsampling the output of those filters
by 2 after each step, as shown in Figure 1. In this cascading filter scheme, the output of the
low-pass filter is used as an input to subsequent low-pass and high-pass filters, and this is
repeated M times. If N is the length of the original input signal x(n), then the maximum
number of decomposition steps is Mmax = log2 N. The outputs of each high pass filter are
named detailed coefficients of the appropriate level, and outputs of the last lowpass filter are
named the approximation coefficients. The total number of output samples is the same as the
length of the original signal, and the parameters of the filters themselves depend on the
choice of the wavelet function ψ(n).

The frequency band which corresponds to each level coefficient from Figure 1 is given
in Table 1 (FN denotes the Nyquist frequency of the signal). Every decomposition level in
DWT yields information about a specific frequency band. The frequencies of interest can be
analyzed by adjusting the parameter M.
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Table 1. Frequency band and number of samples of coefficients for M DWT decomposition levels.

Coefficients No. of Samples Frequency Band

d1
N
2

[
FN
2 , FN

]
d2

N
4

[
FN
4 , FN

2

]
. . . . . . . . .

dM
N

2M

[
FN
2M , FN

2M−1

]
aM

N
2M

[
0, FN

2M

]

This kind of multiresolution analysis is ideal for acoustic and vibrational signals of
rotary machines because frequency bands can be adjusted (by manipulating parameters
M and FN) so that each band consists of one or more characteristic frequencies. Therefore,
the information about the changes at these frequencies can be extracted by calculating
the power of each coefficient. This will be used later as the feature input to the classifier.
Having this in mind, the first objective of the algorithm is fulfilled, and feature extraction
can be conducted to be easily adjustable to different types of rotary machines. The second
objective of the algorithm is fast implementation, and DWT is ideal for this purpose as
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well. The filtering scheme from Figure 1 can be implemented using the algorithm called
fast wavelet transform, which is computationally inexpensive and can be used in real-time
applications [25].

2.2. Neural Networks

It is well known in the machine learning community that if the features are informative
enough, the classifier does not need to be complex in order to reach right decision. If the
features are power values of coefficients from Table 1, the main requirement the classifier
needs to fulfill is to be computationally simple and easily support various levels of problem
complexity. Therefore, NN are the ideal choice because they have been shown to work both
on state estimation problems [26] and when implementation on inexpensive processors is
required [27].

In this paper, we used the multilayer neural network, whose structure is shown in
Figure 2. The MNN consists of K − 1 hidden layers and one output layer. The DWT
power coefficients are used as input into the MNN, while the MNN output represents the
estimated state of the machine. The kth layer consists of Nk neurons and the output of each
neuron is:

ak
i = σk

(
Nk−1

∑
i=j

wk
j,ia

k−1
j + bk

i

)
, i = 1, . . . , Nk, (3)

where wk
j,i, j = 1, . . . , Nk−1 and bk

i are the weighting coefficients and bias of ith neuron,

whereas Nk−1 is the number of neurons in (k− 1)th layer. The activation function is denoted
by σk, which is nonlinear if the neuron belongs to the hidden layer and linear if the neuron
belongs to the output layer.
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The weighting coefficients and the biases of the neural network are “trained” in such
a way as to minimize the following cost function:

J = ∑(xi − yi)
2, (4)

where xi is the targeted output, and yi is the output predicted by MNN. In this paper, the
Levenberg-Marquardt based backpropagation algorithm is used for training, in which the
information is propagated to the network in a backward manner in order to adjust the
weights and minimize the cost function [28].

In addition to the neural network coefficients (parameters) optimization, it is important
to adequately choose the number of neural network layers K and the number of neurons in
each layer Nk, k = 0, . . . , K− 1 (hyperparameters).
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2.3. FASTER Algorithm

The algorithm for state detection of rotary machines using acoustical signals (FASTER
algorithm) is designed to run on an IoT device which consists of commercially available
CPU, such as Raspberry Pi. It is based on combination of DWT for feature extraction and
NN for classification, as suggested in [19]. However, since it needs to operate in real time
on acoustic signals, which are at least a couple of minutes long and usually quite noisy,
some additional steps need to be conducted. The entire algorithm is given in Figure 3
and parameters/hyperparameters used to adjust the algorithm for specific rotary machine
are indicated.
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The steps in the procedure are given as follows.
(1) Acoustic signal acquisition: The recording of the acoustic signal is obtained using

an inexpensive commercially available microphone attached to the platform described in
the next section. The length of the recording should be significantly longer than the length
of an analyzed audio signal (L). Experimental results indicate that it should not be shorter
than 5 min.

(2) Preprocessing: In this step, the recorded signal is divided into segments that have
a uniform design. Therefore, the extracted features will be comparable between several
recordings of different lengths. The recorded signal is windowed into smaller segments of
L seconds, and the shift between two consecutive windows is d seconds. In this way, one
long recording is divided into several shorter ones, which are separately analyzed. In this
step, the amplitude normalization is performed as well as decimation in which the original
sampling frequency is reduced to the new sampling frequency Fs.

(3) Feature extraction: DWT is performed on each segment from the previous step.
The number of levels of DWT transform is adjusted with hyperparameter dwt_lvl, and
it should be chosen to the obtained frequency bands corresponding to the machine’s
rotational frequencies characteristics. After performing DWT in this way, dwt_lvl+1 different
coefficients are obtained. The features are powers of these coefficients, so each segment of
the length L has a total of dwt_lvl+1 features, which depend on the frequency characteristics
of the signals.

(4) Classification: Neural networks are used for classification. There are dwt_lvl+1
inputs (features from the previous step) and 1 output. The output of the classifier is the
decision on the state of the rotary machine, and it is a number between 1 and 4. If the
output is equal to 1, it means that machine parts are healthy. The output of 2 indicates
that the machine begins to wear, without a significant effect on the performance. The
output equal to 3 means that the machine parts are starting to wear noticeably, but the
machine still operates properly. Output equal to 4 signifies that the performance of the
machine is starting to suffer, and it is necessary to perform maintenance and replace worn
parts of the machine. The complexity of the neural network is described with the vector
hyperparameter nn_layers. The number of vector elements determines the number of
hidden layers of the network, and each element represents the number of nodes in the
appropriate layer. Since it is assumed that the NN is already trained, for the classifier to be
able to function properly, the information about network coefficients is provided with the
parameter nn_coefficients.

The performance of the proposed condition detection algorithm depicted in Figure 3
is dependent on the described hyperparameters (L, d, Fs, dwt_lvl, nn_layers) as well as the
parameters of an already trained NN (nn_coefficients). The training procedure as well as the
choice of hyperparameters is conducted separately when a sufficient number of recordings
is acquired.

2.4. Hyperparameter Tuning

The number of hyperparameters needed for the algorithm in Figure 3 is significant
(4 different scalar values and one vector), and it is not feasible to expect the user to be
able to determine the appropriate values for each machine. Therefore, some form of
hyperparameter tuning algorithm needs to be developed.

Hyperparameter tuning consists of several steps: selection of the initial hyperparam-
eters, training NN for selected values, evaluating the performance of that NN and then
repeating the procedure with slightly changed values of hyperparameters. This procedure
repeats several times until satisfactory results are obtained. Generally, this procedure is
conducted either by trial-and-error approach or by using the grid search optimization
technique. However, due to a sheer number of hyperparameters that need to be adjusted in
FASTER algorithm, these approaches are too computationally expensive and calculations
can last for several hours.
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In this paper, the combination of heuristic rules and genetic algorithms is used for
hyperparameter optimization. There is some flexibility in choosing hyperparameters used
in the preprocessing step of the algorithm, so their value can be approximately determined
without the need for mathematical optimization. For example, acoustic signatures for
most rotary machines have significant frequencies somewhere between 1 Hz and 1000 Hz.
Consequently, by choosing an audio signal whose length (L) is between 45 s and 60 s, the
main oscillatory dynamic of the signal will be captured. The shift between two consecutive
windows (d) should be small enough to create as many-windowed signals as possible, but
large enough to keep the diversity of the recording and prevent overfitting. The choice
between L/10 and L/3 is shown to be valid for all machines experimentally tested. Finally,
the new sampling frequency should be several times larger than the highest significant
frequency of the signal. Since most rotary machines tested within our research have
the largest significant frequency of 500 Hz, the initial choice for this parameter for most
industrial applications can be around Fs = 4800 Hz.

Feature extraction and classification steps of the algorithm have hyperparameters
that must be adjusted more rigorously because the slightest shift in these parameters
can significantly affect the overall performance. For this purpose, a genetic algorithm is
used [29]. This is an optimization technique that models evolutionary theory by generating
a population where individuals compete for survival. Each individual in the generation
is a possible solution to a given problem (a point in the search space) and is represented
by a chromosome (which is usually a set of bits). The fittest individuals (ones that are
most successful by the given criteria) survive longer and reproduce, thus preserving their
genetic material in the following generations. This approach is shown to work well for
NN hyperparameter tuning [30] and is chosen as a promising solution for the optimization
of these parameters for several reasons. First, both dwt_lvl and elements of nn_layers
are integers with narrow lower and upper bounds. Therefore, this can be described as
a nonlinear constrained integer optimization problem, which is challenging for many
classical optimization techniques. Furthermore, an analytic solution for this problem is
not possible and there are likely many local minima, so the GA approach where the entire
parameter space is searched in parallel has a larger probability of finding the global solution.
Finally, the performance of the trained neural network is used as an optimization criteria
function, so it is stochastic in nature. GA is shown to be superior to standard optimization
techniques in all these cases. A detailed description of these steps is given in

2.5. Configuration Software

The main feature of the IoT system proposed in this paper is ability to operate on
a wide range of rotary machines. Therefore, the hyperparameters from Figure 3 need
to be adjusted for each machine separately. In addition, NN must be trained for each
machine as well. In order to help the end user with configuration for a specific machine, we
developed a separate software application using Matlab 2018a Application Designer, and
whose execution flow is given in Figure 4. The main window of this configuration software
application is shown in Figure 5. Hyperparameter configuration can be manually entered
in the upper left side of the window while audio signals for NN training can be loaded on
the upper right side. There is an option for users to activate the hyperparameter tuning
algorithm, or to select manually entered hyperparameters. Then, the neural network can be
trained, and the configuration file can be generated by pressing appropriate buttons. This
configuration file should be loaded into the proposed IoT system.

Before the configuration file is loaded, the portable device (described in detail in the
next section) serves only for recording audio signals. These recordings are used for training
the NN. When enough signals have been acquired, they are loaded into configuration
software, and the corresponding real state of the machine is entered next to each signal, as
shown in Figure 6 (left). When hyperparameters are adjusted and NN training completes,
the performance graph is generated, as shown in Figure 6 (right). If the user is not satisfied
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with the performance, another NN training can be performed or can load a different set of
recordings.

When the user is satisfied with the NN performance, the configuration file should be
generated. This file (FASTER_config.mat) contains all the parameters and hyperparameters
that must be transferred to the portable device, in order to be configured for that specific
type of the machine. Figure 4.
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3. Architecture of the Proposed System

The system we present in this paper is designed to autonomously perform an estima-
tion of the state of the rotary machine and provide the result in a convenient way to the
various stakeholders. The schematic diagram of this system is shown in Figure 7. A micro-
phone, connected to a microprocessor platform for acquisition and processing, captures the
acoustic signal produced by a rotary machine. After the recording of the acoustic signal
sample is completed, its processing is performed (as explained in the previous section) in
order to estimate the condition of the observed machine. The obtained result is delivered
to the users.
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There are several interested parties for information on the current state of the rotary
machine. First, it is the staff in charge of maintaining the machines. However, the manage-
ment of the organization may also be interested in order to better organize and plan further
activities and costs of the company. That is why we decided to send the data on the state of
the machine to the cloud platform immediately after obtaining the results. In this way, we
ensure the immediate availability of information to all stakeholders, regardless of where
they are currently located. It is enough for them to have an Internet access and a suitable
device (computer, tablet, mobile phone...) to access the cloud platform and stored data.

For the needs of this prototype, we used a cloud platform developed at the University
of Montenegro, which is located on its hosts [31]. In addition to enabling data storage, this
platform also enables the visualization of stored data, so that it is easier to follow the trends
in the behavior of the observed machine. Usage of this platform is currently completely
free. It is just necessary to register with a valid email address.

However, the data transfer between the estimating device located on the observed
machine and the cloud platform is not always completely reliable. Namely, it is possible
that the Internet access service provider does not work during some period. In addition,
interruption of the mobile operator signal through which we establish a GPRS connection
is possible. Finally, there may be a problem with the GPRS modem or the SIM card. For this
reason, information about the results of signal processing and estimation of the machine
state is displayed on the LCD screen, so that the operator instantly has information about
the result. Moreover, the recording is stored on the SD memory card of the device, so it is
possible to repeat the process of audio signal processing later and get an estimation of the
machine state at the time of recording.

3.1. Hardware Implementation

The device we present in this paper is intended to work in an industrial environment
and therefore must meet a number of conditions. First, it must be as small as possible,
resistant to adverse working conditions in the environment, autonomous, portable, easy to
install and use, and a modest consumer of electricity.

A small and light device would take up little space and interfere less with the usual
working environment around a rotating machine whose condition it needs to estimate.
Since this is mostly an estimation of the industrial machines, working and ambient condi-
tions are often unsuitable for the operation of electronic devices. The presence of abrasive
substances and dust, exposure to low and high temperatures, as well as their rapid changes,
the danger of mechanical influences caused by force majeure or insufficient attention of
the operator, cause the designed device must have a high dose of resistance and protection
from these influences.

A device of this type and purpose is usually designed to be used on different machines,
so it must be easily portable and autonomous in its work. This means that it must also
have an autonomous power supply that will ensure long enough operation between two
battery charges. Finally, since the device is portable, it is necessary that its installation and
commissioning be simple so that it can be performed by a less skilled user.
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After the initial consideration of the most suitable platform for the realization of the
device for acoustic signal acquisition and processing, we decided to use the Raspberry Pi
(RPi) platform [32]. First, it provides sufficient processing power to perform the required
tasks. In addition, unlike many microcontroller platforms, it works like a regular computer
with an operating system, which significantly facilitates software development, integration
of hardware components and shortens the time required for implementation. Last, but not
least, for our specific application, it allows easy utilization of large storage space.

Namely, acoustic signal recording produces relatively large files that need to be
recorded somewhere for possibly later processing. If we also want to keep earlier record-
ings for comparisons and later additional analyzes, the requirements for storage space are
growing rapidly. Managing such files is an additional challenge if we do not have operating
system support.

RPi uses an SD memory card as a storage device. It provides space for an operating
system with all the available software applications. It also uses the same memory card to
store files that are the result of the user’s work. There are several supported operating sys-
tems, but in our implementation, we used Raspberry Pi OS (formerly called Raspbian) [33],
which is a scaled-down version of the Linux operating system, adapted to run on RPi. The
Raspberry Pi OS with desktop and recommended software takes up just under 4 GB on
the memory card, but the need for space grows with the installation of additional software
applications and tools. That is why we used a 32 GB memory card in our implementation.
It turned out that this memory capacity is enough to install all the necessary programs and
tools, as well as to store recordings from a number of acquisitions.

Acquisition of the acoustic signal is performed using a small and affordable commer-
cial microphone, model AK5371, which connects to the microprocessor platform via a USB
port. The quality of the microphone certainly affects the quality of the recording, and thus
the quality of the obtained information about the condition of the machine. However,
in the initial phase of the research, we found that with the help of a small, portable and
affordable microphone, as we use in our system, we could get quite relevant results [34].
An additional advantage of the used microphone is a built-in A/D converter, which further
facilitates its integration into the system.

During the development of the device and its initial commissioning for testing pur-
poses, it was necessary to achieve a simple and efficient interaction between the device
and the user. In order to make sure that the device works properly in certain phases of
operation, the simplest way was to display certain messages to the user. An LCD screen
commonly used in industrial applications has been used for this purpose. This LCD is easy
to manage through the I2C communication interface, it is a small energy consumer and it is
possible to display enough information.

On the other hand, the control of the device in order to issue the appropriate commands
is performed by means of two buttons, also intended for industrial applications. This means
that they are resistant to dust, moisture, abrasives and similar potential hazards that can
be encountered in an industrial plant. With these buttons, the user navigates through the
application menu, and starts or stops certain tasks.

Components of the device for acoustic signal acquisition and processing and their
layout in practical implementation are shown in Figure 8. Only the power bank and SD
card are not visible. SD card is inserted at the bottom of the Raspberry Pi, and the power
bank is accommodated at the bottom of the box, under the plastic divider that separates the
power supply and electronics. The list of components used for the implementation of this
device, together with the most important characteristics and approximate price, is shown
in Table 2.
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Table 2. Specification of components used for the design of the portable device from Figure 8.

Component Specification Price (Approx.)

Raspberry Pi 3 Model B+

Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @
1.4 GHz; 1 GB LPDDR2 SDRAM; 2.4 GHz and 5 GHz IEEE

802.11.b/g/n/ac wireless LAN; extended 40-pin GPIO
header; 4 USB 2.0 ports

40 €

SD card 32 GB, micro SD card Class 10 6 €

Xiaomi 10000 18 W Fast Charge Power Bank 3 10,000 mAh, 18 W, output: 5 V-2.4 A, Max. dim.
(L ×W × H): 15 × 7.5 × 1.9 cm; weight 225 g 15 €

Microphone AK5371 USB 2

SNR 84 dB; frequency response: 20 Hz–16 KHz; sampling
rate supported: 8 KH, 11 KHz, 11 KHz, 44 KHz, 11 KHz,
48 KHz, 16-bit stereo; sensitivity: −30 dB ± 3 dB; 16-bit

A/D converter; USB interface, cable length 1.5 m

30 €

GSM-GPRS modem Waveshare
GSM/GPRS/GNSS HAT

Standard Raspberry Pi 40PIN GPIO extension header,
supports Raspberry Pi series boards; supports SMS, phone
call, GPRS, DTMF, HTTP, FTP, MMS, email, etc. Control via

AT commands; USB connection

40 €

LCD 16 character × 2 lines; 5 × 8 dots; single power supply
(5 V ± 10%); I2C interface 5 €

Pushbutton Momentary Switches MCS1901, 48 V/125 mA, vandal-proof, Ø19 mm 2 × 10 €

Circular Rocker Switch Rating 10 A 250 V AC, insulation resistance DC 500 V
100 MΩ Min, IP65, Ø20, 2 mm 3 €

The device (the mentioned components) is packed in a plastic box, 3D printed of
high-quality plastic, resistant to the high temperatures. Initially, it was planned to mount
the device on the rotary machine using strong magnets. However, after the experience in
the initial design phase, we gave up on such a solution because it turned out that we would
have huge problems with the temperature and vibrations that produce rotary machines in
an industrial surrounding. Therefore, we decided to mount the device on the machine using
the bracket made of metal construction (Figure 9, left), which is fixed to the construction of
the machine by the screws (Figure 9, right). Using a rod of appropriate length, which is
mounted on the body of the bracket, the microphone approaches very close to the surface
of the machine, while the device itself is far enough to avoid the heat impact to the body of
the box and electronic components inside.
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The application that runs on the Raspberry Pi is written in the Python programming
language including some of the publicly available libraries. Some of them are: RPi.GPIO
(for operations with general purpose input/output ports), PyAudio (for operations with
audio signals and files), NumPy (for working with arrays and numerical calculations). This
application starts when the operating system is booted, that is when the device is turned
on. In the development and testing phase of the device, the application works by offering
the user a choice between acquiring a new acoustic signal and processing already recorded
acoustic signals in the form of audio files.

If the user selects the acquisition of a new audio signal, the recording of the signal
captured by the connected microphone begins. The PyAudio library [35] is used for recording,
which can be used to easily record and play audio signals on various platforms, including
the Raspbian operating system. Recording is performed with a frequency of 48 kHz and
a resolution of 16 bits. The duration of the recording is limited to five minutes, and in the
processing phase it is software-wise divided into smaller pieces, more suitable for processing.

Since the device for acquisition and signal processing should work in industrial
conditions, where it is not always easy to bring the power from the public grid to this
device, a power bank is used as the power supply. Most of the device’s components are
small consumers of electricity. However, one of the components is the GSM/GPRS module,
which sends the data to the cloud. During the activation of this module, it is necessary to
provide a current of close to 2 A, which is a limiting condition for choosing an adequate
power source. In our prototype, we use a Xiaomi Power Bank 3 [36], which contains a
Li-polymer battery with a capacity of 10,000 mAh. Our device is powered via a USB-A port
of a power bank that delivers 5.1 V and provides 2.4 A.

3.2. Communication between Device for Acquisition and Cloud Platform

As mentioned earlier, the communication between the acquisition device and the
cloud platform is an important segment of the proposed system. In the initial phase
of development, there was a dilemma whether to transfer recorded files and perform
processing on the cloud (or at the user’s server) or should perform all processing on the
acquisition device and send only the obtained estimation of the machine state. Based on
the experience regarding the size of the recorded files and considering the characteristics of
the GPRS connection, we decided to apply this second approach [37]. Thus, the amount
of data transmitted over the GPRS connection is very small, which reduces the possibility
of communication problems, as well as its costs. On the other hand, reliability increases
because information about the state of the machine can be obtained immediately, on the
spot, even if the communication with the cloud platform does not work properly.

In the implementation of the proposed system prototype, we used the GSM/GPRS
communication module Waveshare GSM/GPRS/GNSS HAT [38]. This module is adapted
for use with RPi microcomputers, which greatly facilitates system development. It can be
connected to RPi in several ways, and in the current implementation, a USB connection is
used. RPi 3B has four USB ports available, and our device requires two: one for microphone
connection and the other for a GPRS module (see Figure 8).
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Using the USB port makes it much easier to establish communication with the GPRS
module. The programmer just needs to include the serial library in the Python code (line 2
in Figure 10). After that, the communication with the corresponding device has to be
opened and the communication speed is set. Then, the corresponding AT commands in the
form of strings are sent to the module via a set of “write” commands.
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Figure 10. Part of the program code for GPRS communication.

Figure 10 shows a part of the program code for sending data about the state of the
observed machine to the mentioned cloud portal. The parameters shown (apn, username,
and password) refer to the local mobile Internet provider. Instead of the asterisks in line 16,
the proper key for writing to the particular node of the cloud platform must be entered.
Information on the estimated machine state is in the variable state_estimation. We send this
information to the cloud using the GET method. This process begins with the command in
line 14 by the initialization of the HTTP request and is finalized with the command in line 19.

Figure 11 illustrates a diagram from a cloud platform that depicts information about
the state of a rotating machine. As one can see from the figure, this diagram, and thus the
information about the condition of the machine, can be downloaded and viewed by any
device with Internet access, even on a mobile phone.
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4. Experimental Results

The performance of the algorithm is tested in real industrial conditions, on the coal
grinding mills in thermal power plants. The ability of the device to detect the rotary machine
state is verified using several performance metrics. In order to demonstrate this, let us
analyze in detail how the algorithm behaves on a specific coal grinding mill in a thermal
power plant, previously described in [14]. The following results are obtained using Matlab
2018a on a PC with Intel Core i5-9400 CPU and 8 GB of RAM, with Windows 10 operating
system. The signals are recorded with the device described in the previous section.

4.1. Coal Grinding Mill

The reason why the coal mills are chosen for verification of this IoT device is based
on several factors. Firstly, the environment in which they operate is filled with significant
ambient noise [18] and demonstrating that the state detection algorithm is functional in such
conditions is crucial for the applicability of the proposed device. Furthermore, depending
on the size of the industrial coal grinding system and construction parameters of the mill
itself, the dominant frequencies in the acoustic specter of the mill can vary, simulating the
diversity of acoustic signatures of different rotary machines.

Coal grinding mills are widely used in thermal power plants for the purpose of
pulverizing chunks of coal into small powder, which can then be easily transferred to the
burner system. Fan mills, on which we mostly concentrate in this paper, have several
impact plates within the housing of the mill. The impact plates rotate around the center,
and the friction between the plates and the coal causes pulverization. This effect is most
efficient when the mill has been serviced and the impeller with the plates is new. With
time, however, the impact plates get worn and their efficiency decreases. Generally, new
grinding plates last around 60 working days in the mill, but that time can vary significantly
depending on the load of the mill and the quality of coal. Therefore, a condition detection
algorithm will be applied to this machine for the purpose of detecting the amount of wear
on the impact plates of the mill.

Figure 12 depicts the coal grinding mill itself (left), with the motor that rotates impact
plates in front of it. The schematic of its cross-section is shown in Figure 12 (right). This
particular mill has a rotary frequency of 12.5 Hz, it has 10 impact plates rotating around the
center, and the microphone is located on the side of the machine, close to the movement
of the plates. Therefore, the frequency of the plate’s movement next to the microphone is
125 Hz. These are dominant frequencies in the specter and considering the appearance of
their higher harmonics and the possibility of a slight variation of the base rotary frequency,
the informative frequency bandwidth is between 10 Hz and 500 Hz. The recording sampling
frequency is 48 kHz with a 16-bit resolution. Taking this into account, the preprocessing
parameters are defined as L = 45 s, d = 15 s, Fs = 4800 Hz.
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4.2. Preliminary Results without Hyperparameter Tuning

For initial analysis, the hyperparameter tuning step will be omitted and feature extrac-
tion and classification parameters will be set bearing in mind the complexity of the problem
and the nature of acoustic signals. By adopting dwt_lwl = 6, 7 different DWT coefficients
are generated, and the frequency bandwidth of each coefficient can be determined from Ta-
ble 1. Figure 13 illustrates how the recorded signal looks in the frequency domain, on lower
frequencies (up to 500 Hz) with corresponding DWT coefficients. One important thing that
is worth mentioning is that the main rotary frequency of the mill (which is 12.5 Hz) is lower
than the passband frequency of the microphone as stated in Table 2. For that reason, the
spectral component which corresponds to this frequency is significantly weakened and the
amplitude of its first harmonic (at the frequency of 25 Hz) is actually more pronounced,
as can be seen in Figure 13. This means that although one of the dominant frequencies of
the rotary mill is lower than the passband of the microphone, the information that this
component yield is not lost since it can be captured in its higher harmonics.

By analyzing the frequency characteristics of the signal, it is clear that the most
informative dynamic of the signal is captured with coefficients a6 and d5. Here, level 5 detail
coefficients (d5) contain frequencies between 75 and 150 Hz, while approximate coefficients
(a6) contain frequencies from 0 to 37.5 Hz, thus yielding the information about the basic
rotary frequency of the mill and one higher harmonic. The power of each coefficient is
used as a feature, so there are seven inputs to the NN classification algorithm. This means
that the structure of the network does not need to be complex (furthermore, the complex
structure can result in overfitting). Therefore, a neural network with two hidden layers and
five neurons in each layer is selected (nn_layers = [5, 5]).
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With these hyperparameters, the neural network is trained using recordings several
minutes long for each of the appointed classification outputs, resulting in over 30 min
worth of audio signals recorded in the period of two months. These recordings reflected all
the appointed states of the particular rotary machine. Choosing the so-called ground truth
(i.e., which of the four classes corresponds to each of the recorded signals) was challenging
and was conducted with the help of the site operators. Namely, recordings that are obtained
less than a week before the maintenance was conducted are denoted as class four recordings
(i.e., they reflect extremely worn impact plates of the mill), whereas the recordings obtained
in the first two weeks after the maintenance are denoted as class 1 recordings (reflecting
completely healthy machine components). Class 2 roughly corresponds to recordings
obtained between 2 and 4 weeks after the maintenance, while class 3 corresponds to
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recordings obtained around five weeks after the maintenance. It is important to mention
that ground truth information about classes is always best when obtained with the input of
the domain expert, and it should be carefully chosen for each rotary machine for which the
algorithm is used.

When initial segmentation of recordings is conducted using the proposed hyperpa-
rameters, the training set consisted of a total of 638 samples in a 7-dimensional feature
space. Out of these, 134 correspond to class 1, 190 to class 2, 188 to class 3, and 126 to class 4.
The training set is divided into training segments (80%) and validation segments (20%).
After the training of the neural network is conducted, the testing is performed on new
recordings which were previously not seen by the network. The total number of testing
samples is 295 (64 from class 1, 82 from class 2, 74 from class 3, and 75 from class 4), and
the resulting confusion matrix is shown in Table 3. Since the diagonal entries correspond to
the correct classification, the accuracy of the algorithm (the number of correctly classified
samples divided by a total number of samples) is acc = 0.96.

It is important to verify that the classification procedure is able to correctly generalize
the results and that the high accuracy achieved in this example is not accidental. For that
reason, the training and testing of the neural network was repeated in order to validate the
behavior of the algorithm. All the data from the previous example (the total of 933 samples)
was again randomly divided into training (70%) and testing (30%) sets and this partitioning
was conducted four times, simulating a form of cross-validation verification. The results
are presented using boxplot visualization in Figure 14, where each train-test partitioning is
shown in different color. For each class, classification results are presented with median
value (denoted with circles) and 25th and 75th percentile (denoted with horizontal lines). It
is evident that high classification accuracy is achieved with all data partitions which shows
that overfitting has not occurred and the algorithm performs properly.

Table 3. Confusion matrix for fixed hyperparameter classification.

PREDICTED

1 2 3 4

ACTUAL

1 64 0 0 0

2 0 82 0 0

3 0 3 64 7

4 0 0 2 73

The nature of state detection problem and the requirements of the experts from main-
tenance teams indicates that the classification errors are not equally significant. Classes 1,
2, and 3 correspond to the proper functioning of the machine, indicating how soon the
machine maintenance will be required. This helps about planning regular maintenance, but
does not signal the need for immediate response and replacement of worn parts. Class 4, on
the other hand, alarms that the maintenance needs to be performed. For that reason, it is of
crucial importance to determine reliably if machine operates in class 4 regime, while misclas-
sification between classes 1, 2, and 3 does not substantially affect maintenance performing.

This means that it is worth to examine the algorithm behavior with respect to class 4,
apart from accuracy which is a metric that describes overall functioning of the algorithm. If
class 4 is denoted as positive, and classes 1, 2, and 3 as negative, then the new confusion
matrix is shown in Table 4, where TP means true positive estimation, TN—true negative,
FP—false positive and FN—false negative estimation. Like all unbalanced classification
problems, accuracy is not enough to assess the performance of the algorithm. Metrics such
as precision (out of all predicted positives, how many of them are actually positive), recall
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(out of all actual positives, how many are predicted as a positive), and F1 score (harmonic
mean of precision and recall) are far more informative:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1 score =
2

1
Recall +

1
Precission

. (7)

In the experiment given in Table 4 these values are: precision = 0.91, recall = 0.97, and
F1 score = 0.94.
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Table 4. Confusion matrix when class 4 is denoted as positive.

PREDICTED

NEGATIVE POSITIVE

ACTUAL
NEGATIVE TN = 213 FP = 7

POSITIVE FN = 2 TP = 73

4.3. Comparative Analysis with Hyperparameter Tuning

The preliminary analysis is performed on only one mill with a fixed set of hyperparam-
eters. In order to verify the ability of this algorithm to maintain its performance on different
machines, further experiments are performed. The mill from a previous example (Mill A)
is observed again, but with the microphone located in different positions (Position 1—to
the side of the mill in Figure 12; Position 2—near the back of the mill; and Position 3—at
the front of the mill), to test whether the different type and level of ambient noise affect
classification. The algorithm is tested on different industrial coal mills with different rotary
frequencies (denoted as Mill B and Mill C). Seeing how both the rotary frequency and the
number of impact plates of the mills differ, characteristic frequencies in the specter are
different as well, so this test is used to demonstrate that the algorithm should be applicable
for different cyclostationary rotary machines. The number of testing and training samples
used in all of these cases is given in Table 5.
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Table 5. Number of testing and training samples for different machines.

Training Samples per Class Testing Samples per Class

1 2 3 4 1 2 3 4

MILL A, POSITION 1 134 190 188 126 64 82 74 75

MILL A, POSITION 2 116 180 162 124 67 85 83 76

MILL A, POSITION 3 142 203 201 151 65 89 73 76

MILL B 162 214 204 145 64 84 83 71

MILL C 147 192 168 150 72 81 92 85

The approaches mentioned here are double tested: with default values of hyperpa-
rameters (used in the initial example—Section 4.2) and tuned hyperparameters. The tuning
is conducted using GA, as described in Section 2. In this experiment, the number of DWT
levels is limited between 4 and 10, bearing in mind that the frequency band of the approxi-
mation coefficients should not be too large because dominant frequency components will
be averaged out, and it should not be too small because this increases dimensionality of
feature space without adding any useful information. The number of NN hidden layers is
fixed to 2, and the number of neurons in each layer is bonded to an integer number between
3 and 15. It is not advisable to increase the complexity of NN further because, in order to
avoid overfitting, the number of training samples would need to exponentially increase as
well. The performance of the trained neural network is used as an optimization function.
Because the search grid is not very large, the population size is lowered to 10 individuals
and the maximum number of generations is 10. This ensures that the optimization time
is manageably low. The hyperparameters obtained in all these cases are given in Table 6,
while the performance results using described metrics are given in Table 7. It should be
noted that the accuracy of the algorithm is calculated considering all the classes, while
precision, recall, and F1 score are calculated with respect to class 4.

Table 6. Hyperparameter values after optimization.

DWT_LVL NN_LAYERS

DEFAULT 6 [5, 5]

MILL A, POSITION 1 8 [8, 7]

MILL A, POSITION 2 6 [9, 3]

MILL A, POSITION 3 6 [8, 5]

MILL B 5 [5, 9]

MILL C 6 [8, 4]

Table 7. Comparative results of algorithm performance.

Mill A, P1 Mill A, P2 Mill A, P3 Mill B Mill C

DEFAULT
HYPERPARAMETERS

ACCURACY 0.96 0.96 0.86 0.96 0.93

PRECISION 0.91 0.99 0.93 0.97 1

RECALL 0.97 0.97 0.72 1 0.97

F1 SCORE 0.94 0.98 0.81 0.98 0.98

Tuned hyperparameters

ACCURACY 0.99 0.99 0.97 0.97 0.96

PRECISION 1 0.99 1 1 1

RECALL 0.97 1 0.93 0.98 1

F1 SCORE 0.98 0.99 0.96 0.99 1
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The results are interesting for several reasons. First, the algorithm with tuned hy-
perparameters always has a better performance on all metrics than the algorithm with
default parameters, which is expected. The tuning itself lasts between several minutes
and an hour, depending on the size of the training dataset. Since it should be done only
once for each machine, it is recommended to always perform it. Next, even with default
hyperparameters the algorithm shows solid performance. F1 score is taken as a reference
parameter because it considers both recall and precision, and in all but one case default
parameters show satisfactory results.

Another phenomenon that requires further discussion is the significant difference in
algorithm performance on the same machine (Mill A) when recordings are taken from
different positions. This is especially noticeable with default hyperparameters. An algo-
rithm trained on signals from Position 2 gives almost perfect classification results, while
signals from Position 3 have significantly worse performance. This is due to the nature of
acoustic signals and their susceptibility to ambient noise. Position 2, near the back of the
mill, is furthest from the motor (which is the loudest component of this machine), while
Position 3, at the front, is nearest to the motor. This difference in the amount of surrounding
noise directly affects classification and indicates that the user should carefully choose the
recording position so that the amount of noise is minimized. On the other hand, even
when it is impossible to avoid the noise, these results show that algorithms with tuned
hyperparameters will be able to obtain satisfactory performance. In the example in Table 7,
F1 score has increased from 0.81 for default hyperparameters to 0.96 when hyperparameters
are tuned.

5. Conclusions

In this paper, an Industrial IoT solution for state detection of rotary machines based
on acoustic signals is presented. The proposed system consists of an inexpensive portable
device that is used for the recording of acoustic signals, as well as on-site state detection
of the observed machine. The device itself can be used on a variety of different machines
with fixed rotation frequencies. Furthermore, due to internal power supply and wireless
communication, it can communicate with a remote server and various stakeholders. The AI
algorithm for state detection, implemented on this device, consists of a combination of DWT
(for feature extraction), NN (for state classification), and GA (for hyperparameter tuning).

The main application of the proposed system is early state estimation and machine
fault prevention in industrial surroundings. With that in mind, the device and the algorithm
are tested on real acoustic signals recorded in thermal power plants for the purpose
of state detection of 3 different rotary coal mills. The algorithm was first tested with
default hyperparameter values, and the results seemed promising. There was only one
instance in which the value of the F1 score was lower than 0.9, and that was because the
microphone was placed near the source of ambient noise, and thus the signal-to-noise
ratio was unnecessarily reduced. The second test was conducted using hyperparameters
obtained with GA optimization, and in this case, the results are significantly improved even
in the case where the noise is dominant in the recorded signal. The obtained results are
comparable to or better than the result achieved in other relevant works. Since the research
on the condition of fan mill impact plates is scarce in the literature, the aforementioned
comparison group consists of techniques for state detection of similar rotary machines.

The algorithm was tested on different mills with different rotating frequencies and
spectral components and showed very good performance. Such results indicate the ap-
plicability of the proposed solution to other types of rotary machines with fixed rotating
frequencies. Bearing in mind the wide range of rotary machines which are used in the
industry (pumps, motors, fans...) this device could contribute to a number of different
systems that need predictive maintenance.

The Industrial IoT device for acoustic-based machine state detection successfully
passed the tests on rotary machines with fixed rotating frequency in real industrial sur-
roundings in which stationary noise is present. The inexpensive and mobile nature of
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this device coupled with the ability to communicate with remote stakeholders makes it
ideal for Industry 4.0 paradigm. Future research will include further tests on different
machines with fixed rotating frequencies, as well as exploring the possibility of the use of
the algorithm on rotary machines with variable rotating frequencies. Special attention will
be paid to the adjustment of the structure and parameters of the algorithm for each specific
machine. Finally, the possible direction of improvement of the proposed solution will be
reflected in developing filtering methods for elimination of the potential non-stationary
ambient noise.
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Nomenclature

aM Approximation coefficient
d Time shift between two consecutives windows
di Detailed coefficient at level i
Fs Sampling frequency
FN Nyquist frequency of signal
L Audio signal length
M Number of decomposition levels
N Length of the signal
T Sampling time
XWT(s, τ) Continuous Wavelet transform
XDWT(j, m) Discrete Wavelet transform
ψ(t) Continuous wavelet function
ψ(n) Discrete wavelet function
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