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Abstract: Determining the tolerance solution (TS) of interval linear systems (ILSs) has been a task
under consideration for many years. It seems, however, that this task has not been fully and
unequivocally solved. This is evidenced by the multiplicity of proposed methods (which sometimes
provide different results), the existence of many questions, and the emergence of strange solutions
provided by, for example, Lodwick’s interval equation anomaly (LIEA). The problem of solving ILEs
is probably more difficult than we think. The article presents a new method of ILSs solving, but it
is limited to the simplest, basic equation [a, a]X = [b, b], which is an element of all more complex
forms of ILSs. The method finds the optimal TS for this equation by using multidimensional interval
arithmetic (MIA). According to the authors’ knowledge, this is a new method and it will allow
researchers to solve more complex forms of ILSs and various types of nonlinear interval equations.
It can also be used to solve fuzzy linear systems (FLSs). The paper presents several examples of the
method applications (including one real-life case).

Keywords: interval linear equations; tolerance solution of interval equation; Lodwick anomaly of the
interval equation; multidimensional interval arithmetic

1. Introduction

The problem presented in this paper fits into a more general class of problems referred
to in the research literature as interval-valued optimization problems (IVO-problems) [1,2].
Although the optimization problems have been solved reasonably well for the crisp data
case, the quality of their solutions for uncertain data is often not satisfactory. This is
evidenced by the large number of studies conducted worldwide. Uncertain data is encoun-
tered in all types of systems: in static and dynamic systems, in technical systems (control of
moving vehicles, flying or floating objects), and in medical, biological, ecological, economic,
and other systems. To be able to satisfactorily solve IVO-problems in these diverse fields,
new interval versions of many well-known methods in crisp data optimization, or methods
that are completely new and previously unknown, must be developed. The authors of [1,2]
give examples of many new scientific tasks, e.g., concepts of convexity, invexity, generaliza-
tion of convexity, Kuhn–Tucker-pseudoinvexity, control problems with multiple integrals,
interval-valued nondifferentiable multi-objective fractional programming problems, vector
interval-valued optimization problems with infinite interval constraints and others. All
this indicates the enormity of the tasks waiting to be solved by using interval arithmetic.

One such optimization task is the task mentioned in the title of this paper, aimed at
finding the tolerance solution of the interval linear equation, which was formulated in
the previous century and for which solution methods based on one-dimensional types
of interval arithmetic have already been provided [3–7]. As will be shown further on,
by applying the new multidimensional interval arithmetic (MIA), it will be possible to solve
such tasks, which so far could not be solved. The method presented further also allows us
to determine the optimal values of the control variable.
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The systems we want to control are characterized by various dependencies deter-
mining their operation. One of the simplest systems is a static system realizing the linear
relationship ax = b, where a is a gain coefficient, x is an input control (decision) variable,
and b is an output variable that should have a certain value that we want. In practical tasks,
the exact value of the coefficient a is often not known. We only know the interval range of
its possible values [a, a]. If we do not know the exact a value, then we cannot guarantee
that the output b will be kept at the desired value. The only thing we can do is keep the
output b in a certain interval called the tolerance corridor [b, b]. This gives rise to the task of
determining one x value or perhaps a set [x, x] of x values that will “target” the output b in
the tolerance corridor. The problem of tolerance control is formulated by the Equation (1).

[a, a]X = [b, b] (1)

The task of solving interval equations (IEs) and determining of the tolerance control
(TC) has been dealt with by interval arithmetic for many years [6–10]. A big problem with
solving IEs results from the fact that not one but many types of interval arithmetic (IA) exist.
The following types of IA are given in [11]: standard IA (SIA), extended (generalized) IA of
Kaucher, non-standard (inner) IA of Markov, generalized Hukuhara IA of Dimitrova and
Stefanini, optimistic IA of Boukezzoula and Galichet, instantiated IA of Dubois, constrained
IA of Lodwick, single-level constrained IA of Chalco-Cano, requisite constrained IA of Klir,
gradual IA of Dubois, Prade, Fortin, Boukezzoula, affine IA of Stolfi and Figueredo, and
multidimensional IA of Piegat, Pluciński, Landowski.

In general, different IAs can give different results for one and the same problem, which
is a paradox. However, new ways of performing interval calculations are still proposed.
For example, in [12] there is a proposed IA based on new inverse operations of addition
and multiplication and a new concept of the general closed interval. The large number
of existing types of IA shows that they are not perfect and that some interval problems
cannot yet be solved in a satisfactory and convincing manner. It also proves that the scale of
difficulties associated with interval calculations, which at first glance seem very simple, is
very large. A number of authors have already written about these difficulties. For example,
Kreinovich in [13] draws attention to the need for a deep understanding of the interval
problem to be solved and to develop equations that accurately reflect the essence of this
problem. Inaccuracies in this task lead to erroneous or partially erroneous calculation
results. Dymova in [14] draws attention to the fact that some IAs give different solutions to
the problem under consideration, depending on its mathematical form that will be used.
This is an unacceptable phenomenon that Mazandarani called “unnatural behavior in
modeling” [15]. In the authors’ opinion, there are still a number of not fully resolved issues
in IA, which should be answered in order to improve this arithmetic. This is all the more
important as IA is the basic arithmetic for the fuzzy arithmetic (FA). As Zadeh showed
in [16], fuzzy sets (FSs) can be decomposed into α-cuts which are intervals. This enables
operations of FA to be carried out with the aid of IA.

In order to indicate the theoretical difficulties in contemporary IA, W. Lodwick pre-
sented in several of his publications a certain anomaly, which will be hereinafter referred
to as Lodwick’s interval equation anomaly (LIE-anomaly or LIEA). For the first time, the
LIE-anomaly was presented by Lodwick in his keynote-lecture at Congresso Brasileiro de
Sistemas Fuzzy, in Sorocaba, Brazil, in 2010. Then it was also described in other publications,
e.g., recently in 2017 [17].

Lodwick’s Interval Equation Anomaly

A system is defined by the relationship ax = b in which we only have an approximate
(interval) knowledge of the values a and b: a ∈ [2, 3], b ∈ [3, 6]. If we want to get knowledge
about the value of the variable x, we have to solve the interval Equation (2).

[2, 3]x = [3, 6] (2)
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This equation can be solved with 2 methods: M1 and M2. The M1 method consists in
presenting the Equation (2) in the form of 2 inequalities (3) and (4).

[2, 3]x ≤ [3, 6] → x ∈ (−∞, 1] (3)

[2, 3]x ≥ [3, 6] → x ∈ [3, ∞) (4)

Both of these inequalities yield an empty set of solution (5).

x ∈ (−∞, 1] ∩ [3, ∞) = ∅ (5)

This solution is shown in Figure 1.

Figure 1. Illustration of the solution to the equation [2, 3]x = [3, 6] with the M1 method which
transforms it into two inequalities [2, 3]x ≤ [3, 6] and [2, 3]x ≥ [3, 6].

The solution (5) obtained with the M1 method shows that the analyzed equation has
no solution at all. But let’s try to solve this equation by using standard interval arithmetic
SIA (M2 method). Let’s consider, whether there is a proper set X = [x, x] being a solution
to the equation. If it exists, then it must satisfy Equation (6).

[2, 3][x, x] = [3, 6] (6)

The solution of (6) obtained with the use of SIA has the form [x, x] = [1.5, 2]. The
correctness of this solution seems to be proved by the fact that it gives equality of the left
and right side of Equation (7).

[2, 3][1.5, 2] = [3, 6] (7)

Thus, solving Equation (2) with two methods M1 and M2, each of which seems to be
completely logical, we obtained two different results (8) and (9), Figure 2.

X1 = [x1, x1] = ∅ (8)

X2 = [x2, x2] = [1.5, 2] (9)

Figure 2. Visualization of Lodwick’s interval equation anomaly.

The following questions can be asked about LIE-anomalies.

1. Why are the solutions of the equation [2, 3]x = [3, 6] obtained with the presented
methods different?

2. Which of these two methods gives the correct solution? Perhaps, both solutions are
correct or both are incorrect?

3. What is the meaning of the mysterious empty intervals [1, 1.5] and [2, 3] shown in
Figure 2?
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As the LIE anomaly shows, solving interval equations is much more difficult than
precise equations. The explanation of this anomaly will be presented in next sections.
However, the motivation of this paper is not only to explain the LIE anomaly, but above all
to present a new method of determining the tolerance solution (TS) of the basic equation
[a, a]x = [b, b]. Due to the limitation of the volume of the paper, the method of solving the
system of many interval equations (IES) will not be presented here. We will cover this in
our next article.

The equation [a, a]X = [b, b] is the basic element of the IESs studied in the literature
since at least 1964 [8–10]. A special case of IESs are the interval linear systems (ILSs).
A significant contribution to the development of ILSs was made by S.P. Shary [3–6] in the
1990’s. Since then, the terminology used in solving ILSs has been almost unchanged, which
can be checked in the latest publications [7,12,17–21].

The mathematical model for the deterministic linear static system is the linear algebraic
Equation (10).

ax = b (10)

In real problems, we can assume that we only know that the coefficients of (10) may
independently vary within the intervals [a, a] = a and [b, b] = b respectively. Thus, we
formally have the interval linear algebraic equation.

ax = b (11)

The solution set of (11) can be defined in a variety of ways [6]. We can find the united
solution set (12)

∑∃∃(a, b) = {x ∈ R | (∃A ∈ a)(∃b ∈ b)(ax = b)}, (12)

or the tolerable solution set formed by all values x such that the product ax falls into b for
any a ∈ a, i.e., the set (13).

∑∀∃(a, b) = {x ∈ R | (∀A ∈ a)(∃b ∈ b)(ax = b)} (13)

The definitions of different types of ILSs solutions provided by Shary are still valid and
are used in subsequent research papers, the authors of which are looking for ILSs solutions
based on new ideas, new types of IA [19], and for special cases of ILSs, e.g., two-sided
ILS [20,21]. One of the most important articles on ILSs is [7], in which Lodwick and Dubois
emphasize the importance of IA for fuzzy linear systems. They present various problems
related to IA, and most of all, the problem with some methods providing results that are
improper intervals. In [7], they present their own “unified” computation method that will
provide solutions in the form of proper or empty intervals but “never” improper ones.
The authors of [7], taking into account the existence of various forms of ILSs solutions,
propose a model of this system in the form (14):

[A]x̃ ≈ [b], (14)

“where [A] is a matrix whose entries are intervals . . . and ≈ is a relation between intervals
. . . ”. They define the case of the multidimensional tolerance solution set as Shary (15),
but they call this set “robust”.

[A]x ∈ [b] (15)

The authors of [7] analyze in detail one-variable interval linear equation, where
[A] = [a] = [a, a], b = [b] = [b, b], and they define the tolerance solution in the form (16).

Ω∀∃ = {x | [a, a]x ⊆ [b, b]} (16)
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The definition (16) is supplemented with the statement that we require

b ≤ ax ≤ b, ∀a ∈ [a, a]. (17)

Lodwick and Dubois analyze in [7] all possible variants of 1V-ILSs with different
combinations of signs for a, a, b, b and give ready-made solutions for these variants.
For example, for 1V-ILS (18):

[1, 2]x ≈ [4, 6], (18)

with positive values of a, a, b, b the tolerance solution set is calculated from Formula (19).

Ω∀∃ =
[
Ω∀∃, Ω∀∃

]
=

[
max

a∈[1,2]
min

b∈[4,6]

b
a

, min
a∈[1,2]

max
b∈[4,6]

b
a

]
=

[
max

a∈[1,2]

4
a

, min
a∈[1,2]

6
a

]
= [4, 3] = ∅. (19)

Because the calculation method proposed by the authors of [7] gave in this case the
result in the form of the improper interval [4, 3], it should be assumed that the problem
has no solution (the solution set is empty). A similar result is obtained in many tasks of
tolerance control where the width of the output state corridor (b− b) is not large enough
for the width (a, a). It should also be noted that in all previously cited references, for the
1V-ILS it is assumed that the solution is one-dimensional and that there is an absolute
necessity to meet the condition (17): b ≤ ax ≤ b, ∀a ∈ [a, a]. In the opinion of authors of
this article, the fulfillment of the condition (17) for a ∈ [a, a] for 1V-ILS, is not very realistic.
The reasons for this will be presented in Section 2.

The main motivations of this paper are listed below.

• Presentation of the completely new method based on MIA for solving the basic linear
interval equation, which is able to solve such equations that cannot be solved with
one-dimensional IA.

• Presentation of the method which from the set of all possible solutions of the tolerance
control type can indicate the solution that is optimal in terms of control robustness for
the uncertainty of system parameters.

• Presentation of the new method of determining tolerance control for [a, a]X = [b, b]
systems, on the basis of which more advanced versions can be developed for linear
interval systems of the second and higher order and for non-linear interval systems.

• Explanation of the meaning of the proposed method of determining tolerance control
with the use of problem visualization. One-dimensional IA is not able to solve the
problem at hand, as evidenced by Lodwick’s anomaly and the examples presented in
the paper.

• Presentation of how to determine the optimal tolerance control in the case which is
particularly difficult for one-dimensional arithmetic, that is, for the equation
[a, 0, a]X = [b, b] in which the interval uncertainty on the left side of the equation
contains zero.

The rest of the paper is as follows. Section 2 presents uncertainty generators and their
influence on solving ILSs. Section 3 presents a method of determining realistic solutions of
the basic equation [a, a]x = [b, b] for the case of positive values of a, a, b, b. Section 4 will
consider the cases of intervals containing zeros, that is [a, 0, a], [b, 0, b]. Section 5 contains
conclusions. To the authors’ knowledge, the proposed method of a realistic solution of
interval equations is new.

2. Uncertainty Generators and Their Influence on Solving ILSs

In the system determined by the equation [a]x = [b], the uncertainty of the coeffi-
cient a ∈ [a, a] adversely affects the quality of control and the possibility of “hits” in the
tolerance corridor [b, b]. It should be added here that the uncertainty [b, b] determining the
control tolerance is not a control disturbance (difficulty), but facilitates the control objective.
If, with one tolerance [b, b], it is not possible to find a tolerance solution, then maybe it will
be found after increasing the tolerance. However, in practice, such an enlargement is often
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not possible due to precision requirements. As shown by the authors of [6,7], as well as
other publications, with just one disturbance uncertainty generator (DUG), it is quite often
impossible to implement TC due to obtaining empty sets of solutions. Note, however, that
in the 2V-ILS system there are as many as 4 DUGs and only 2 tolerance uncertainties (TUs)
[b1, b1], [b2, b2], (20).

[a11, a11]x1 + [a12, a12]x2 = [b1, b1] (20)

[a21, a21]x1 + [a22, a22]x2 = [b2, b2]

It is understandable that in a 2V-ILS system, it will be much more difficult to implement
TC. Let us now consider the uncertain quadratic system (21).

[a2, a2]x2 + [a1, a1]x + [a0, a0] = [b, b] (21)

In this system, there is only one TC [b, b] per 3 DUGs. This is a worse situation than
in the system (20). Additionally, complex solutions may appear in the quadratic system,
which will make it even more difficult to obtain TC. If we want to implement TC in the
3V-ILS system, the number of DUGs is then 9 and the number of TUs is 3. It can be seen
that in nV-ILS systems the number of DUGs grows much faster (n2) than the number of
TUs, which is n. Therefore, in more complex systems, the implementation of TC becomes
practically impossible. An example here is the task of hitting a plane with a missile fired
from an anti-aircraft gun. The following DUGs appear here: uncertainty in measuring the
x, y, z position, uncertainty in measuring the vertical and horizontal angle of the plane’s
movement direction, uncertainty in measuring the plane’s speed, uncertainty of the initial
velocity of the fired projectile, error in setting the horizontal and vertical angle of the cannon
barrel, uncertainty of wind speed and direction, and other. Is it possible to guarantee a
hit in the silhouette of the plane with such a number of DUGs? This is a rather unrealistic
task. Therefore, the authors believe that the realistic goal of TC is not to look for the value
of the control (decision) variable, which guarantees reliable implementation of TC, but to
look for its value that will give the maximum probability of TC implementation—and if
possible, full probability, i.e., certainty. In the next section, we will briefly introduce the
multidimensional interval arithmetic (MIA) that will be used to realize realistic TC.

3. A Brief Introduction to Multidimensional Interval Arithmetic

The MIA concept was developed in 2010–2011, and the first publication [22] on this
subject appeared in 2012. Then other publications appeared, e.g., [23,24]. The authors of
MIA used this arithmetic to create multidimensional fuzzy arithmetic (MFA Type 1) by
using the α-cuts principle [25]. In turn, the MFA Type 1 was used to develop the MFA Type 2,
e.g., [26–28]. The research team of A. Piegat, M. Pluciński, M. Landowski and others by
the beginning of 2022 published 47 articles on MIA, MFA Type 1 and 2. MFA has met with
great interest from many scientists who have applied it to solve various problems. By the
beginning of 2022, more than 40 application publications had been published, e.g., [29,30].

The main feature that distinguishes MIA from all other types of IA is the form of
the computed result. In MIA, the result of an arithmetic operation on intervals is not an
interval, i.e., a one-dimensional mathematical object, but is a multidimensional result (set)
depending on the number of intervals involved in the operation. This is important in case
of complex problems and prevents the loss of information during the computation. In MIA,
the interval [a, a] is transformed into the form of relative-distance-measure (RDM), (22).

[a, a]→ a + γa(a− a), γa ∈ [0, 1] (22)

The model (22) is epistemic [7], i.e., it is a model of a single, true value of a-variable,
which, however, we do not know.
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The method of performing the interval addition operation is presented in (23).

a(γa) + b(γb) = c(γa, γb), γa, γb ∈ [0, 1] (23)

[a + γa(a− a)] + [b + γb(b− b)] = (a + b) + γa(a− a) + γb(b− b)

The interpretation of the addition operation is as follows: we know the real value
of neither the variable a nor b, therefore it is impossible to determine the exact value of
the result c = a + b. What can we do in this situation? We can only, on the basis of our
knowledge, define a set of possible conditional hypotheses. For example, if (a = 2) and
(b = 3) then (c = 5). Each of the hypotheses can be presented generally in the form of
triple (24).

(a(γa), b(γb), c(γa, γb)) = a(γa) + b(γb)) (24)

If [a, a] = [1, 2] and [b, b] = [3, 5] then examples of possible hypotheses are as follows:

(1.00, 3.00, 4.00), (1.01, 3.01, 4.02), . . . . (25)

The set SA+B of all possible solutions {(a(γa), b(γb), c(γa, γb))} is a 3-dimensional set
and the result c(γa, γb) depends on a(γa) and b(γb). Figure 3 illustrates the operation of
adding 2 interval sets [a] and [b] containing all possible values of these variables and shows
the set of possible results of adding c(γa, γb) in 2D-space A× B.

Figure 3. Illustration of the operation of adding 2 interval sets [a] and [b] and the 3D result of this
operation S{(a, b, c)} presented as a projection on 2D-space A× B.

The 3D-result of adding SA+B = {(a, b, c)} is the set of all hypothetical states of the
addition system. In this set, we can distinguish many states (a, b, c) containing the same
result c with different values of a and b, e.g., (1, 4, 5), (1.5, 3.5, 5), (2, 3, 5), etc. This means
that all the c values in the set SA+B form a bag (they contain repeating values). The bag
BGc can be defined by Formula (26).

BGC = {c(γa, γb) = a(γa) + b(γb) | ∀γa ∈ [0, 1], ∀γb ∈ [0, 1]} (26)

However, for practical calculations the span of the bag SPBGC will be used (27). The
span does not contain the same repeated values of c.

SPBGC =

[
min
γa ,γb

c(γa, γb), max
γa ,γb

c(γa, γb)

]
, γa, γb ∈ [0, 1] (27)

In the case of intervals [a, a] = [1, 2] and [b, b] = [3, 5], their RDM form is given by (28).
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[1, 2]→ a(γa) = 1 + γa, γa ∈ [0, 1] (28)

[3, 5]→ b(γb) = 3 + 2γb, γb ∈ [0, 1]

a(γa) + b(γb) = c(γa, γb) = 4 + γa + 2γb

Based on (27), we calculate the span SPBGC given by (29).

SPBGC = [4, 7] (29)

The meaning of the span can be seen in Figure 3. This is the span of the set SA+B in
the direction of c. The second simplified information about the set of possible states SA+B
is the normalized distribution of the cardinality measure CardM(c) that informs about the
number of possibilities in which a particular result c can occur (see Figure 4). CardM(c) can
be derived from the length of isoclines c = a + b = const, as shown in Figure 3.

Figure 4. Normalized distribution of the cardinality measure CardM(c) of the set of possible result
values c = a + b in the interval addition operation [1, 2] + [3, 5].

From the distribution CardM(c), it is possible to calculate the center of gravity CofGC
of the bag BG being another simplified information about the result variable c.

CofGC =

∫ c
c c · CardM(c)dc∫ c

c CardM(c)dc
= 5.5 (30)

The above description shows that the result of adding the intervals [a] + [b] is not
unequivocal. There is a multivariate result set SA+B = {(a(γa), b(γb), c(γa, γb) = a(γa) +
b(γb))} and secondary simplified results: span SPBGC , 2D-distribution CardM(c) and center
of gravity CofGc. It is similar to other arithmetic operations. For each of them, the main
result set and secondary results from this set can be determined.

3.1. Subtraction of Proper Intervals [a] − [b]

Result variable c(γa, γb):

c(γa, γb) = a(γa)− b(γb), γa, γb ∈ [0, 1], (31)

[a + γa(a− a)]− [b + γb(b− b)] = (a− b) + γa(a− a)− γb(b− b).

The resulting set SA−B of states of the subtraction system is given by (32).

SA−B = {(a(γa), b(γb), c(γa, γb) = a(γa)− b(γb)) | ∀γa ∈ [0, 1], ∀γb ∈ [0, 1]} (32)

3.2. Multiplication of Proper Intervals [a][b]

Result variable c(γa, γb):

c(γa, γb) = a(γa)b(γb), γa, γb ∈ [0, 1]. (33)

Resulting set SAB of states:

SAB = {(a(γa), b(γb), c(γa, γb) = a(γa)b(γb)) | ∀γa ∈ [0, 1], ∀γb ∈ [0, 1]}. (34)
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3.3. Dividing of Proper Intervals [a] / [b]

Result variable c(γa, γb):

c(γa, γb) = a(γa)/b(γb), 0 /∈ b(γb), γa, γb ∈ [0, 1]. (35)

Resulting set SA/B of states:

SA/B = {(a(γa), b(γb), c(γa, γb) = a(γa)/b(γb)) | ∀γa ∈ [0, 1], ∀γb ∈ [0, 1]}. (36)

If 0 ∈ [b], which can be represented as [b, 0, b] where b < 0, b > 0, then in order to
perform a division by [b] the operation can be transformed into an approximate form (37)
containing a very small positive number ∆, e.g., ∆ = 0.001.

[b, 0, b] = [b,−∆] ∪ [∆, b] (37)

The entire division operation can be decomposed into a union of two-component
division operations, as shown in (38).

[a, a]/[b, 0, b] = [a, a]/[b,−∆] ∪ [a, a]/[∆, b] (38)

4. Method of Determining Realistic Tolerance Solutions

A static multiplicative system is given with inputs a and x and with output b realizing
the operation ax = b. We have an approximate knowledge about the true value a: a ∈ [a, a],
a ≤ a, and about b: b ∈ [b, b], b ≤ b. We have no knowledge about the value of x and we
want to gain this knowledge. In this situation, the variables a and b become information
inputs and x information output. The knowledge we can get about x depends on the
knowledge about a and b. We can present the whole problem in the form (39).

ax = b, a ∈ [a, a], b ∈ [b, b], x =? (39)

a→ a(γa) = a + γa(a− a), γa ∈ [0, 1]

b→ b(γb) = b + γb(b− b), γb ∈ [0, 1]

ax = b→ a(γa)x(γa, γb) = b(γb)

With the use of MIA, it is possible to determine the knowledge about the output x, (40).

x(γa, γb) =
b(γb)

a(γa)
=

b + γb(b− b)
a + γa(a− a)

, γa, γb ∈ [0, 1] (40)

For one selected numerical γa and γb value, Formula (40) determines one value of
a(γa) and b(γb) and one value x(γa, γb) associated with them. In this sense, Formula (40) is
a mathematical model of the true values of a, b and x. However, for all values of γa ∈ [0, 1]
and γb ∈ [0, 1], this formula determines BGX, that is the bag of all possible values of x
corresponding to all combinations of values γa and γb, Formula (41).

BGX = {x(γa, γb) = b(γb)/a(γa) | ∀γa ∈ [0, 1], ∀γb ∈ [0, 1]} (41)

Given the formula of BGX , we can determine the set X = [x, x] of all possible values
of x, which does not contain the repetitions of identical values, (42).

SPBGX = X = [x, x] =
[

min
γa ,γb

x(γa, γb), max
γa ,γb

x(γa, γb)

]
, γa, γb ∈ [0, 1] (42)

Because the set X is a set in 1D-space, it can be represented in RDM terms as (43).

X = Xposs = {x(γx) = x + γx(x− x) | ∀γx ∈ [0, 1]} (43)
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In general, the set Xposs consists of 2 subsets: XFR – set of fully robust (adjusted)
x-values) and XPR – set of x-values that are only partly robust, partly adjusted to the
disturbance a ∈ [a, a]. Both subsets are expressed by (44).

Xposs = XFR ∪ XPR (44)

XFR = {x | ∀a ∈ [a, a] : ax = b ∈ [b, b]}
XPR = {x | (∃a ∈ [a, a] : ax = b ∈ [b, b]) and (∃a ∈ [a, a] : ax = b /∈ [b, b])}

The authors’ research shows that XFR sets are rather rare in real problems and often
only XPR sets occur. Now, the algorithm of solving the tolerance control problem will
be given.

Step 1: Formulate the interval sets [a, a] and [b, b] in terms of MIA.
Step 2: Determine the bag model BGX = {x(γa, γb) | ∀γa ∈ [0, 1], ∀γb ∈ [0, 1]}.
Step 3: Specify bag span SPBGX = Xposs = [x, x].
Step 4: Determine the degrees of robustness r(x) for the individual x-values of the Xposs

set to the disturbance A = [a, a].
Step 5: Determine the optimal tolerance control xopt value based on the selected decision

evaluation criterion.

The degree of robustness r(x∗) of the chosen control value x∗ for the range [a, a] of
possible values of the uncertain disturbance a is a fraction (r(x∗) ∈ [0, 1]) informing how
large part of the range [a, a] for the value x∗ will give the product ax∗ value in the required
tolerance corridor [b, b]. The robustness r(x∗) is simply the ratio of lengths of two segments
marked in Figure 5.

To determine the robustness degree, follow the steps.

Step A: For the x∗ value, calculate the upper aU(x∗) = b/x∗ and the lower aL(x∗) = b/x∗

coordinates of the points on the upper ax = b and lower ax = b border of the
tolerance corridor [b, b].

Step B: Determine the common part of the intervals [aL(x∗), aU(x∗)] and [a, a]:

[ac(x∗)] = [aL(x∗), aU(x∗)] ∩ [a, a] = [aL
c (x∗), aU

c (x∗)]. (45)

Step C: Calculate the robustness degree for the considered value of x∗:

r(x∗) =
aU

c (x∗)− aL
c (x∗)

a− a
. (46)

Figure 5. Illustration of the computation method of r(x∗).
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In the following, the above algorithm will be applied to the solution of the example
of Lodwick and Jenkins in the invited talk “Uncertainties in mathematical analysis and
their use in optimization” presented at Congresso Brasileiro de Sistemas Fuzzy in Sorocaba,
Brasil, 2010.

Example 1. Let’s consider a system with inputs a and x and the output b realizing the relationship
ax = b. We have the following knowledge about the real values of the input a : a ∈ [a, a] = [2, 3].
The input a is a generator of uncertainty (disturbance of the control process), which we have
no influence on. The output b is the control target for which a realistic, tolerant requirement
b ∈ [b, b] = [3, 6] was made. Tolerance [b, b] is not a disturbance, but a facilitation of the control
process. The task here is to determine one, or perhaps a set of control values x, which will allow the
control objective to be achieved in the best possible way. In summary, our knowledge of the system is
given by (47).

ax = b, a ∈ [a, a] = [2, 3], b ∈ [b, b] = [3, 6], x =? (47)

Step 1.

[a, a] = [2, 3]→ a(γa) = a + γa(a− a) = 2 + γa, γa ∈ [0, 1] (48)

[b, b] = [3, 6]→ b(γb) = b + γb(b− b) = 3 + 3γb, γb ∈ [0, 1]

Step 2.

ax = b→ x(γa, γb) =
b(γb)

a(γa)
=

3 + 3γb
2 + γa

, γa, γb ∈ [0, 1] (49)

BGX =

{
x(γa, γb) =

3 + 3γb
2 + γa

| ∀γa ∈ [0, 1], ∀γb ∈ [0, 1]
}

Step 3.

SPBGX =

[
min
γa ,γb

3 + 3γb
2 + γa

, max
γa ,γb

3 + 3γb
2 + γa

]
= [1, 3] = [x, x] = Xposs (50)

A minimum of x(γa, γb) is obtained for γa = 1, γb = 0 and a maximum of x(γa, γb) for
γa = 0, γb = 1. Figure 6 illustrates the meaning of the bag BGX of possible system states (a, x =
b/a, b) satisfying the control objective, and the meaning of the span SPBGX = Xposs = [x, x].

Figure 6. Illustration of solution zones (tolerant control zones) in the Lodwick anomaly problem (47).
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As shown in Figure 6, the selection of the control value x ∈ XFR = [1.5, 2] provides
fully robust tolerance control, because regardless of what value the disturbance a from
the range [a, a] = [2, 3] takes, the output b will always be included in the desired range
[b, b] = [3, 6]. If we select the control value x in the partly robust zone 1, XPR1 = [1, 1.5],
there is no certainty that b will be included in the tolerance zone [3, 6]. For example, if we
choose x = 1.2, then the output b will be included in [3, 6] only when the disturbance a is
included in the range [2.5, 3]. If a is in the range [2, 2.5] then the output b < b = 3. Hence
the value x = 1.2 has the robustness r(1.2) = 0.5. It means that for this x-value one half of
the disturbance range a ∈ [2.5, 3] results in hitting the value ax in the tolerance corridor
[b, b] = [3, 6]. On the other hand, the second half [2, 2.5] excludes such a hit. If the true
disturbance value is in the range [2.5, 3], the hit will occur, if it is in the range [2, 2.5], there
will be no hit and the control objective will not be met.

The robustness degree r(x) of the selected x-value in zone 1 can be determined from
Formula (51).

r(x) =
a− a(x)

a− a
=

a− (b/x)
a− a

(51)

It is easy to see that for zone 1, r(x) ∈ [0, 1], has a fractional value denoting incomplete
robustness for the disturbance a. In the XFR = [1.5, 2] zone, every control value x is
completely robust (r(x) = 1)for all possible disturbance values a ∈ [2, 3] providing b ∈
[3, 6]. In the partly robust zone 2, XPR2 = [2, 3] we have a partial robustness r(x) for the
individual values of x, as seen in Formula (52).

r(x) =
a(x)− a

a− a
=

(b/x)− a
a− a

(52)

As shown by the MIA solution of the interval equation [a, a]x = [b, b] considered by
Lodwick, there are no anomalies in this equation if it is solved by using the algorithm
presented in this section. The middle zone x ∈ [1, 3] shown in Figure 7 does not contain
any empty and mysterious sub-zones. It comprises 2 zones of partial robustness and
1 zone of full robustness to disturbance (uncertainty) a. The left outer zone x ≤ 1 is the
zone of completely no tolerance control, as is the right zone x ≥ 3. Figure 6 showing the
distribution of the robustness degree r(x) explains Lodwick’s interval anomaly.

Figure 7. Distribution of the robustness degree r(x) of control x as illustration explaining Lodwick’s
interval equation anomaly.

The discovery of Lodwick’s anomaly was caused by the fact that the studied equation
[2, 3]X = [3, 6] was solved with the commonly used assumption that the solution X of
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this equation is the interval [x, x]. In other words, the equation [2, 3][x, x] = [3, 6] was
solved, which gave the result [x, x] = [1.5, 2]. Such an assumption is incorrect and for many
interval equations it does not provide generally feasible solutions in the form of proper
intervals. For example, in the case of the equation [1, 3][x, x] = [4, 6] we obtain the “solution”
[x, x] = [4, 2], which according to Lodwick and Dubois [7] is “empty” solution set.

Example 2. This example concerns the equation [3, 5]X = [7, 9], in which, assuming that X is
the interval [x, x], tolerance control cannot be realized at all, because the obtained solution is an
improper interval [x, x] = [2.3, 1.8]. Next, it will be shown what solution can be obtained with the
use of MIA and the previously presented algorithm. The knowledge about the system is given by
Equations (53).

ax = b, a ∈ [a, a] = [3, 5], b ∈ [b, b] = [7, 9], x =? (53)

Step 1.

[a, a] = [3, 5]→ a(γa) = 3 + 2γa, γa ∈ [0, 1] (54)

[b, b] = [3, 6]→ b(γb) = 7 + 2γb, γb ∈ [0, 1]

Step 2.

ax = b→ x(γa, γb) =
b(γb)

a(γa)
=

7 + 2γb
3 + 2γa

, γa, γb ∈ [0, 1] (55)

BGX =

{
x(γa, γb) =

7 + 2γb
3 + 2γa

| ∀γa ∈ [0, 1], ∀γb ∈ [0, 1]
}

Step 3.

SPBGX =

[
min
γa ,γb

7 + 2γb
3 + 2γa

, max
γa ,γb

7 + 2γb
3 + 2γa

]
= [1.4, 3] = [x, x] = Xposs (56)

Note that SPBGX = [1.4, 3] is a normal, proper (not improper) interval. Figure 8 shows the
set of possible states of the system (a, b, x = b/a) in the projection into the space A× X with the
values of the third variable b = ax plotted.

Figure 8. The set S of possible states (a, b, x) of the system ax = b, a ∈ [3, 5], b ∈ [7, 9], x ∈ [1.4, 3] =
Xposs, in 2D-space A× X.
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In order to determine the x-value for which the robustness r(x) to the disturbance a
is the greatest, it is enough to examine r(x) at 4 characteristic points (L-lower, U-upper)
xLL = b/a = 2.33, xLU = b/a = 1.4, xUL = b/a = 3, xUU = b/a = 1.8. Then we rank these
values, as shown in (57).

xLU = 1.4, xUU = 1.8, xLL = 2.33, xUL = 3 (57)

Figure 8 shows that for the outer values xLU = 1.4, xUL = 3 robustness r(x) = 0.
Hence the greatest robustness can have the inner characteristic values xUU = 1.8, xLL = 2.33.
The robustness for these x-values can be calculated from the Formula (58), which applies to
the inner, second x-control zone.

r(x) =
(b/x)− (b/x)

a− a
(58)

The calculation gives the results r(x = 1.8) = 0.556, r(x = 2.33) = 0.429. The distribu-
tion of the robustness for individual possible controls x is shown in Figure 9.

As the distribution of the robustness r(x) on Figure 9 shows, it is impossible to obtain
full robustness for the disturbance change. This situation occurs in the case of many
problems described by the interval equation [a, a]x = [b, b]. This is a frequent situation and
hence realistic. Uncertainty problems where r(x) = 1 can be obtained are rare in practice
because real problems usually have more than just 1 uncertainty generator. However, even
when full robustness cannot be obtained, we should not wring our hands, because the
incomplete robustness can be maximized by appropriate selection of x-control. As shown
in Example 2, the optimal value of x can be detected.

Figure 9. Distribution of the achievable robustness r(x) for the individual possible control values x:
optimal value xopt = 1.8, r(x = 1.8) = 0.556.

In Examples 1 and 2, there are intervals [a, a] and [b, b] that do not contain zero. Exam-
ples with one unknown x with intervals containing zero will be shown in the following.
In contrast, these intervals will be represented as [a, 0, a] and [b, 0, b].

Example 3. In this example, an equation of the form [a, a]x = [b, 0, b] in which the tolerance
corridor contains zero will be solved. The equation in the classic interval version (59) and in the
RDM version (60):

[3, 5]x = [−1, 0, 2], (59)

(3 + 2γa)x = (−1 + 3γb). (60)

After solving the equation with the previously described method, the bag span SPBGX is
obtained in the form:

SPBGX = [−1/3, 0, 2/3] = [x, x] = Xposs. (61)
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Figure 10 shows the set S = {(a, b, x)} of possible states (a, b, x) of the system as a
projection into the space A× X.

Figure 10. Set of possible states S = {(a, b, x)} of the system [3, 5]x = [−1, 0, 2] in projection on the
2D-space A× X with range Xposs of possible control values x.

Based on Figure 10, robustness functions can be determined for 3 ranges: x ∈
[−1/3,−0.2], x ∈ [−0.2, 0.4], and x ∈ [0.4, 2/3], Formula (62).

for x ∈ [−1/3,−0.2] r(x) = −1/x− 3 (62)

for x ∈ [−0.2, 0.4] r(x) = 1

for x ∈ [0.4, 2/3] r(x) = 2/x− 3

The robustness distribution of the control variable x is shown in Figure 11.

Figure 11. Robustness distribution r(x) of the tolerance control of the system [3, 5]x = [−1, 0, 2].

As shown in Formula (62) and Figure 11, each control value x ∈ [−0.2, 0, 0.4] allows a
fully robust tolerance control to be obtained. Example 3 shows that the presence of zero
in the tolerance interval [b, 0, b] does not make it difficult to determine the set of optimal
control values x.

Example 4. System with zero in the disturbance interval [a, 0, a]. In this example, we will look for
a tolerance control x for a system with inputs a and x and output b that is ruled by the multiplicative
relationship ax = b. The knowledge about this system is given by the Formula (63).

ax = b, a ∈ [−1, 0, 2], b ∈ [7, 9] (63)
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Formula (64) describes the system using the classical interval equation.

[a, 0, a]x = [b, b] : [−1, 0, 2]x = [7.9] (64)

As it follows from the knowledge about the input a, the state a = 0 is possible. This would
mean the need to find the value of x that would be able to accomplish the task (65).

0x = [7, 9] (65)

However, the state a = 0 means that the system operation is turned off and the task ax ∈ [7, 9]
cannot be performed. Because at a = 0 any control is impossible, this state should be excluded from
the analysis, treating it as a special and very unlikely state. This results in the necessity to divide
the set [a, 0, a] = [−1, 0, 2] into 2 disjoint sets a1 ∈ [−a,−∆] and a2 ∈ [∆, a] that is into sets
[−1,−∆] and [∆, 2] where ∆ is a very small positive number ∆ ≈ 0, e.g., ∆ = 0.001. Then the
original control task (64) is decomposed into 2 tasks (66).

[a, 0, a]x = [b, b]→ ([a,−∆]x = [b, b]) ∪ ([∆, a]x = [b, b]) (66)

[−1, 0, 2]x = [7, 9]→ ([−1,−∆]x = [7, 9]) ∪ ([∆, 2]x = [7, 9]) (67)

First, the first component problem will be solved, which in terms of MIA has the form (68).

[−1,−∆]x = [7, 9]→ (−1 + γa1(−∆ + 1))x = 7 + 2γb, γa1, γb ∈ [0, 1] (68)

The solution to this problem is given by Formula (69).

BGX = x(γa1, γb) =
7 + 2γb

−1 + γa1(−∆ + 1)
, ∀γa1, ∀γb ∈ [0, 1] (69)

The span of the bag BGX is determined by Formula (70).

SPBGX = Xposs = [(−9/∆),−7], ∆ ≈ 0 (70)

The number (−9/∆) in the interval (70) is a very large negative number. Figure 12 shows the
set S1 = {(a, x, b)} of the possible states of the system for x < 0.

Figure 12. Illustrative visualization of the left set S1 = {(a, x, b)} of possible states (a, x, b) of the
system [−1,−∆]x = [7, 9], ∆ ≈ 0.

Figure 12 and Formula (70) show that the implementation of tolerant control in the
problem under consideration for negative values of x is possible only for x ≤ −7. However,
it is not possible to obtain here fully robust control but only partly robust one. Robustness
function of possible controls x is given by the Formula (71).
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for x ∈ [−9/∆,−7/∆] r(x) = −9/(3x), ∆ ≈ 0, x < 0 (71)

for x ∈ [−7/∆,−9] r(x) = −2/(3x)

for x ∈ [−9,−7] r(x) = 1/3 + 7/(3x)

for x ∈ [−7, 0] r(x) = 0

The robustness distribution for possible negative control values x is shown in Figure 13.
The equation describing the system for x > 0 has the form (72).

[∆, 2]x = [7, 9]→ (∆ + γa2(2− ∆))x = 7 + 2γb, γa2, γb ∈ [0, 1] (72)

Solving Equation (72) we obtain Formula (73) for a bag of possible values x.

BGX = x(γa2, γb) =
7 + 2γb

∆ + γa2(2− ∆)
, ∀γa2, ∀γb ∈ [0, 1] (73)

The span SPBGX of the bag BGX is determined by Formula (74).

SPBGX = Xposs = [min
γa2,γb

x(γa2, γb), max
γa2,γb

x(γa2, γb)] = [7/3, 9/∆], ∆ ≈ 0 (74)

Figure 14 shows the set S2 = {(a, x, b)} of states (a, x, b) of the system allowing
tolerance control for x > 0.

Figure 13. Robustness distribution r(x) of possible control values x < 0 of the system [−1, 0, 2]x =

[7, 9].

Figure 14. The set S2 = {(a, b, x)} of states (a, b, x) of the system [∆, 2]x = [7, 9] enabling tolerance
control for x > 0.
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The robustness distribution r(x) of possible controls x, for x > 0, is given by For-
mula (75) and is shown in Figure 15.

for x ∈ [0, 3.5] r(x) = 0 (75)

for x ∈ [3.5, 4.5] r(x) = 2/3− 7/(3x)

for x ∈ [4.5, ∞] r(x) = 2/(3x)

Figure 15. Robustness distribution r(x) of the tolerance control x for x > 0.

As shown by Formula (75) and Figure 15, the realization of the fully robust tolerance
control for x > 0 is not possible. In this area, at most robustness r(x) = 0.148 can be
obtained on condition that the disturbance a is contained only in its upper range a ∈ [∆, 2].
However, the full interval of this disturbance is [−1, 0, 2]. In order to decide on the choice of
the optimal control value x, it is necessary to consider the total distribution r(x) presented
in Figure 16.

Figure 16. Robustness distribution r(x) of control x for possible changes of the disturbance
a ∈ [−1, 0, 2] of the system [−1, 0, 2]x = [7, 9], together with the optimal control value xopt = 4.5.

The interpretation of the results shown in Figure 16 is as follows. In the system
under consideration, it is not possible to implement fully robust tolerance control. Only
partly robust TC can be realized. PR-TC can be obtained by either negative or positive
x controls excluding the range x ∈ [−7, 0, 3.5]. The most preferable control is x = 4.5,
giving the robustness of 0.148 to find b in the range of tolerance corridor b ∈= [7, 9].
If disturbance a were a = 0, then any influence on output b would become impossible.
However, the probability of such an event is infinitely small.

Example 5. Real-life case. A doctor recommended to a 70-year old patient that his daily diet should
contain [25, 40] µg of vitamin D (tolerance corridor [b, b]). To supply him with this vitamin, he
recommended eating sea fish (such as: mackerel, herring) containing healthy fats. The content of
vitamin D in such fish is not constant and varies in the range of [5, 10] µg for every 100 g of fish
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(uncertainty [a, a]). Neither too little nor too much vitamin D is recommended for the patient for
health reasons. How much fish x [100 g] should the patient eat per day?

We want to solve the equation:
[a, a]x = [b, b],

where: a ∈ [5, 10] µg/100 g, and b ∈ [25, 40] µg.

a(γa) = 5 + 5γa, b(γb) = 25 + 15γb, γa, γb ∈ [0, 1]

x(γa, γb) =
b(γb)

a(γa)
=

25 + 15γb
5 + 5γa

This task cannot be solved using the one-dimensional interval arithmetic. The set of possible
states of the system [5, 10]x = [25, 40] is presented in Figure 17. Solving the problem with the use
of MIA we can determine the general range of possible solutions:

Xposs = [x, x] =
[

min
γa ,γb

25 + 15γb
5 + 5γa

, max
γa ,γb

25 + 15γb
5 + 5γa

]
= [2.5, 8]

and the robustness function r(x) which is presented in Figure 18.

Figure 17. Set of possible states of the system [5, 10]x = [25, 40] in projection on the 2D-space A× X.

Figure 18. Robustness distribution r(x) of the solution x.
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Figure 18 shows that the optimal amount is xopt = 4× (100 g) = 400 g of fish per day.
The robustness of this value to the uncertainty of vitamin D content in fish is the highest
and equal to 0.75.

5. Conclusions

The article shows that determining the tolerant control (TC), even for uncertain static
systems described by the simplest form of the interval equation [a, a]X = [b, b], is not an
easy task, because in many cases it is impossible to find such a value of control (decision) x,
which will ensure a reliable hit of the ax value in tolerance corridor [b, b]. However, even
in the most difficult tasks it is possible to define partly robust control and it is possible
to find its optimal value xopt, which with the maximum possible robustness will give a
chance to achieve TC. The reason for the inability to obtain fully robust TC is the presence
of disturbance uncertainty generators (DUGs), i.e., various types of uncertain data. As their
number increases, the possibility of implementing of fully robust TC decreases quickly. It is
rather consistent with the intuition of engineers and scientists. In practice, the conditions
for perfect implementation of the control objectives are rare. The paper explains the new
approach to determining TC and indicates that it is a starting point for solving more
complicated forms of static control, which are described by systems of uncertain, interval
and fuzzy linear, quadratic, etc. equations. This opens the way for interesting research.
The article also explains the hitherto unexplained Lodwick’s anomaly concerning the
interval equations.

In conclusion, the key issues presented in the paper are as follows:

• the new method based on MIA for solving the basic linear interval equation;
• the method of determination of the solution robustness;
• the method of determination of the solution that is optimal in terms of control robust-

ness for the uncertainty of system parameters; and
• the method of determination of the optimal tolerance control for the equation

[a, 0, a]X = [b, b] in which the interval uncertainty on the left side of the equation
contains zero.
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Abbreviations
The following abbreviations are used in this manuscript:

IA interval arithmetic
SIA standard interval arithmetic
UBM unnatural behavior in modeling
LIEA Lodwick’s interval equation anomaly
MIA multidimensional interval arithmetic
TSS tolerance solution set
LTP linear tolerance problem
ILS interval linear system
nV-ILS n-variable interval linear system
PTS probability of tolerance satisfaction
DUG disturbance uncertainty generator
TO tolerance output
TC tolerance control
PrTC probabilistic tolerance control
IE interval equation
FA fuzzy arithmetic
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TU tolerance uncertainty
BG bag
SP span
CofG center of gravity
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