iricicl applied
o sciences

Review

RESTful API Testing Methodologies: Rationale, Challenges,
and Solution Directions

Adeel Ehsan 1, Mohammed Ahmad M. E. Abuhaliqa !, Cagatay Catal

check for
updates

Citation: Ehsan, A.; Abuhaliqa,
M.AM.E,; Catal, C.; Mishra, D.
RESTful API Testing Methodologies:
Rationale, Challenges, and Solution
Directions. Appl. Sci. 2022, 12, 4369.
https://doi.org/10.3390/
app12094369

Academic Editors: Zhenyu Chen,
Chunrong Fang and Song Huang

Received: 20 February 2022
Accepted: 22 April 2022
Published: 26 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Deepti Mishra 2*

Department of Computer Science & Engineering, Qatar University, Doha 2713, Qatar;
ae2100558@student.qu.edu.qa (A.E.); ma2000142@student.qu.edu.qa (M.A.M.E.A.); ccatal@qu.edu.qa (C.C.)
Software, Data and Digital Ecosystem Group, Educational Technology Laboratory, Department of Computer
Science, Norwegian University of Science and Technology, 2815 Gjevik, Norway

* Correspondence: deepti.mishra@ntnu.no

Abstract: Service-oriented architecture has evolved to be the backbone for large-scale integration
between different applications and platforms. This concept has led to today’s reality of cloud services.
Many of the major business platforms are providing their services to end-users and other companies
as well. Companies are crafting ways to allow other businesses fast service integration and to get
on board quickly in the market. REST (representational state transfer) has emerged as the standard
protocol for implementing and consuming these services, which are called RESTful application
programming interfaces (APIs). As the internal details of the RESTful APIs are not completely
available during consumption, thorough testing has been a major challenge. Any unprecedented
change in the APIs can cause the major failure of service operations, which can cause an organization
to face both financial and trust losses. Research efforts have been made to alleviate testing challenges
by introducing different frameworks and auto-generating unit test approaches. However, there is
still a lack of an overview of the state-of-the-art in RESTful API testing. As such, the objective of this
article is to identify, analyze, and synthesize the studies that have been performed related to RESTful
APIs’ testing methodologies and unit test generation. With this perspective, a systematic literature
review (SLR) study was conducted. In total, 16 papers were retrieved and included based on study
selection criteria for in-depth analysis. This SLR discusses and categorizes different problems and
solutions related to RESTful APIs’ testing and unit test generation.

Keywords: auto-test case generation; cloud services; JSON base services; micro services; RESTful
APIs; testing frameworks

1. Introduction

REST (representational state transfer) is the architecture used for designing services
consumed across different platforms and environments to support interoperability and
WWW (World Wide Web) [1]. Statelessness and cross-platform consumption readiness are
two major attributes of this architecture. It has become a widely followed standardized
way of publishing services over the Internet [2]. REST application programming interfaces
(APIs) are widely part of the design of micro-services [3]. Research efforts were made to
extend the REST architecture to support distributed systems [4].

RESTful APIs, widely known as web APIs, consist of endpoints. Every endpoint
is a concrete implemented functionality of a business process. These APIs are generally
accessible over HTTP (hypertext transfer protocol) by including defined standard verbs
like GET, POST, PUT, and DELETE. RESTful APIs are invoked with the help of an address
that is known as a URI (uniform resource identifier).

One of the challenges was to define a standard format of messaging (i.e., request and
response). Initially, informal text was used to describe REST APIs [5]. JSON (JavaScript
Object Notation) documents evolved later as a standard. The format is pure text and easily
identifiable and processable by machines across networks and platforms. The challenge

Appl. Sci. 2022, 12, 4369. https:/ /doi.org/10.3390/app12094369

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094369
https://doi.org/10.3390/app12094369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0959-2930
https://orcid.org/0000-0001-5144-3811
https://doi.org/10.3390/app12094369
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094369?type=check_update&version=1

Appl. Sci. 2022,12, 4369

20f16

of coming up with a standardized way for the description of REST services, however, still
remains. OpenAPI specification [6] is emerging as one of the solutions to that challenge.

The loosely coupled and adaptable access to RESTful services opens a wide possibility
for wrong input to be sent with the request. This could potentially invoke service faults that
might not have been caught during static analysis and unit testing. The additional layer
of third-party libraries provided by other vendors used in RESTful APIs’ development
adds more complexity to testing. In this scenario, it becomes even more important to
detect and resolve possible bugs in the service for stability. This is particularly severe when
mission-critical activities or businesses are the end clients of these services. No matter
what is sent from the client as a request, the service should be able to respond in a graceful
manner by taking care of any possible runtime fault.

Different research efforts have been made to alleviate RESTful API testing challenges
by introducing different frameworks and auto-generating unit test approaches. However,
there is still a lack of an overview of the state-of-the-art in RESTful API testing. Therefore,
the objective of this article is to identify, analyze, and synthesize the studies that have been
performed related to RESTful APIs’ testing methodologies and unit test generation.

The objective of this SLR study is to research existing work done related to RESTful
API testing. In the light of comprehensive analysis, we aimed to look at the challenges
involved in testing, especially the impact on the code coverage. Additionally, this study
aims to enlist and discuss available solutions for RESTful API testing and their ability to
test authentication-based APIs. The study fulfills the final part of the objective, which is to
classify the primary studies appropriately based on the technique used.

A well-known SLR protocol has been adopted to answer the research questions defined
in this research and different databases have been searched for finding relevant papers.
Study selection criteria were defined for the inclusion and exclusion of retrieved papers,
and a quality assessment was performed on the selected papers. Papers that did not satisfy
the quality criteria were removed from the analysis and the extraction was performed on
high-quality papers. The contributions of this study are three-fold:

1. To the best of our knowledge, this is the first SLR paper on RESTful API testing
techniques. An up-to-date overview of the testing methodologies for RESTful APIs
is presented.

2. Available methodologies are categorized based on tools, approaches, and frameworks.

3. The main obstacle in achieving a high level of code coverage is identified and discussed.

The remainder of the paper is organized as follows. Background and related work
are presented in Section 2. This section is followed by the research methodology. The
first sub-section of Section 3 (Research Methodology) is the review protocol (Section 3.1).
Afterward, the next sub-section (Section 3.2) outlines the research questions laid out for
this article. The next sub-section (Section 3.3) is dedicated to the search strategy followed
to retrieve related articles from the electronic databases. Section 3.4 explains the exclusion
criteria, Section 3.5 discusses quality assessment, and Section 3.6 presents data synthesis
that describes the data extraction and result formulation strategy. Based on synthesized
data, the results are presented in the next section (Section 4). Section 5 presents the
comprehensive discussion related to research questions and answers. Validity threats are
also discussed in the Discussion section, which is followed by the Conclusion section.

2. Background and Related Work
2.1. Background

HTTP has its own methods, which are also known as verbs, that facilitate client—
server communication. Originally only GET, HEAD, and POST verbs were defined in the
HTTP/1.0. By HTTP/1.1, however, the verbs were expanded to include PUT, DELETE,
CONNECT, OPTIONS, and TRACE and, as recent as 2010, PATCH was proposed in
RFC 5789.

Representational state transfer (REST) was proposed by Roy Fielding in 2000 in his
Ph.D. dissertation [7]. The aim of this style was to improve performance, scalability,

Appl. Sci. 2022,12, 4369

30f16

simplicity, modifiability, visibility of the communication, portability, and reliability. To
achieve such properties, Fielding defined six controls as follows: architecture artifacts
related to client and server, statelessness, the ability to cache data, multi-tier system,
standard interface, and optionally on-demand code. As such, out of the HTTP verbs, only
the following ones are used for RESTful API: DELETE, GET, POST, and PUT [8].

Whenever a REST API endpoint is invoked, it can be done using one of the verbs
described above. For example, if there is an endpoint that returns a list of products from an
online shopping website, it can be invoked using the GET verb, which means that there are
some data that we want to get as a list of instances or a single instance. The request is called
a GET request, and it may have some parameters. Similarly, data can be inserted using a
POST request, deleted using a DELETE request, and edited using a PUT request. Accessing
any REST API endpoint involves preparing a URL with address, parameters if any, and
marking it appropriately with one of the verbs. POST verb is used for sending data with
the request as part of the request body instead of embedding it in the URL. This makes it
invisible, which is better for sensitive data like credentials. For example, when a user logs
in, the username and password are sent to a REST API endpoint as a POST request.

2.2. Related Work

During our research, we did not come across any SLR study that covers RESTful APIs
testing methodologies as a whole and discusses the challenges and solutions available.
Therefore, to the best of our knowledge, this is considered to be the first SLR paper
that addresses these issues. Since the topic is crucial and relevant for modern software
development methodologies, we believe that similar studies will be performed soon and our
study will be extended with more published papers published until that date. This paper is
beneficial not only for researchers, but also for practitioners in the software industry.

During our search, we came across an SLR study that focuses on web service testing
techniques [9]. Ghani et al. [9] stated that they included both SOAP and RESTful web
service testing papers in their review study and evaluated 20 papers published between
2010 and 2019. They reported that only eight papers in their study focused on RESTful
web services testing; however, we noticed that these papers do not focus on RESTful
web services. For example, one of these eight papers belongs to Nabil [10], who focused
on specifications that are used to generate test cases for web services testing. Nabil [10]
stated that WSDL is the most used specification according to his systematic review and
specified that only a few papers had an empirical evaluation to check the effectiveness of
the proposed approach. In this paper by Nabil [10], we did not encounter any reference to
the RESTful web service testing, though Ghani et al. [9] marked this paper as an example
of the RESTful web service testing. Another paper specified by Ghani et al. [9] is the paper
of Tosi and Morasca [11]; however, their actual focus is not the testing of web services.
Instead, they systematically reviewed the studies that semantically annotate web services.
Another paper specified as a RESTful web service testing paper by Ghani et al. [9] is
the paper of Rusli et al. [12]; however, there is no specific information on RESTful web
services in this paper. Rusli et al. [12] performed a systematic mapping study on web
services’ composition testing studies such as mutation testing and regression testing. The
remaining five papers [13-17] mentioned as RESTful web service testing papers in the
paper of Ghani et al. [9] were not related to the testing of RESTful web services; as such,
we do not present them in this section. For example, Eliya et al. [15] presented a tool for
interoperability testing of web services; however, there was no information on RESTful
web services in their paper.

Barbir et al. [18] presented challenges of testing web services in SOA implementations
and mainly focused on security aspects. They have listed the following web services’
common threats: message alteration, confidentiality, falsified messages, a man in the
middle, principal spoofing, forged claims, a replay of message parts, replay, and denial of
service. They also listed the following requirements for end-to-end security for web services:
mutual authentication, authorization to access resources, data integrity and confidentiality,

7

Appl. Sci. 2022,12, 4369

40f16

end-to-end integrity and confidentiality of messages, the integrity of transactions and
communications, audit records and mechanisms, and distributed enforcement of security
policy. However, their focus was not the testing of RESTful web services.

3. Research Methodology

The following subsections explain the research methodology used in this research.
Figure 1 shows the main steps of the research methodology.

Define Research Questions

¥
Construct Search String and _
Perform the Search j(—b Define Search Protocol

b 4
Specify Publication _
Selection Criteria b

v

Define Quality Assessment |,

Select Databazes

4

4

Perform Study Selection

-+ » Perform Quality Assessment
Approach
Develop Data k3 » Extract Data from Papers

Extraction Form

!

|dentify Data .
Synthesis Method

.

Visualize Results

Y

Synthesize Extracted Data

Figure 1. Flowchart of the methodology.

3.1. Review Protocol

Review protocol definition is the first and foremost important step before conducting
the SLR research. This was carried out by incorporating the suggestions and guidelines
defined by Kitchenham et al. [19]. The first step is to define the research questions. Once the
research questions are ready, scientific databases are searched to get the relevant research
papers. In our study, we used the following databases:

IEEE Xplore;

Science Direct;

Scopus;

Web of Science;

Springer Link;

Wiley;

Google Scholar (for the purpose of forward snowballing).

A unique aspect related to our research is that it is a thriving topic. Hence, not many
studies have been performed up to now. Databases that were used returned similar research
papers. We included studies that address the scope of this research in our review. Later,
required data addressing the relevant research questions were extracted together with
bibliometric data. In brief, our approach has three main phases: review planning, review
execution, and review reporting.

The first phase begins with identifying and laying out the research questions, followed
by protocol development. This leads to the database selection, whose input would be
search criteria (a.k.a., search strings). Next comes defining the selection criteria for the

Appl. Sci. 2022,12, 4369

50f16

publications. In the end, the protocol is refined one last time to check the suitability of the
review protocol.

The second phase is the actual review conduction. Conducting the review involved the
selection of publications from the relevant scientific databases. Once the publications were
selected, data were extracted that resulted in information related to authors, publication
year, and type (a.k.a., bibliometric data), and especially information related to the research
questions. This was followed by a synthesis process to discuss the relevancy of the papers
according to the context and create different categories to answer the research questions.
The final phase included the documentation of results and responses to research questions.

3.2. Research Questions

In this SLR, in-depth details are inferred from the studies that have been published
related to the field of RESTful APIs’ testing methodologies and unit test generation. We
laid out the following four research questions (RQs):

RQ-1: What are the main challenges in generating unit tests for RESTful APIs?

RQ-2: What are the code coverage concerns when it comes to testing RESTful APIs?
RQ-3: What solutions are currently available to meet testing and unit test generation challenges?
RQ-4: What support do solutions provide for authentication-enabled RESTful APIs’
testing and unit test generation?

3.3. Search Strategy

Searching for relevant studies was focused on testing methodologies and unit test
generation for RESTful APIs. There are several studies published related to RESTful APIs
in general. Those papers describe other aspects like efficient development of RESTful
APIs, integration between applications and RESTful APIs, and so on. However, a limited
number of studies have been published on the testing part of RESTful APISs, as this is one
of the thriving topics these days. Based on this, several studies were out of the scope of
this research, and thus were left out. The search started using the keyword “RESTful API
Testing”. The resulting articles were gathered. The abstract and conclusion were read to
assess the relevance of the studies. This was achieved by applying study selection criteria.
Later, more detailed and complex search keywords were used to make sure that no related
study was missed. Ultimately, the used search keyword combination was as follows:

(("RESTful APIs Testing” OR “RESTful APIs Unit Testing”) AND “RESTful APIs” AND

(“Web API Testing”) AND (“RESTful Web Services” OR “REST APIs Blackbox Testing”)).

The search resulted in 16 papers, as shown in Table 1. Most of the papers were
retrieved from IEEE and Scopus databases. As Scopus is a meta-database that indexes
several databases, different papers from several publishers were covered.

Table 1. Number of papers retrieved per database.

Database Numberof Papers
IEEE Xplore 7
Scopus 6
Google Scholar 3

3.4. Exclusion Criteria

The exclusion criteria were applied to the identified studies to exclude the irrelevant
papers that are not required for this SLR. These criteria are presented as follows:

Publications that are not directly related to the RESTful API testing;
Non-English publications;

Duplicate publications;

Publications with only abstract;

Review or survey paper (i.e., secondary studies);

G LN

Appl. Sci. 2022,12, 4369

6 of 16

6. Publication published earlier than 2011.

As this is an emerging topic, we found a limited number of studies that focused on
RESTful API testing. As shown in Figure 2, the number of papers has been increasing
recently, thus research in this field is considered timely.

Paper distribution per year

2014 2015 2017 2018 2019 2020 2021

w

N

=

o

Figure 2. Distribution of the selected publications per year.

To respond to the four research questions, required data were extracted from papers
and synthesized in a way that the questions are addressed adequately. While the data were
being extracted from each article, a two-part focus was in place. First, we made sure that
the selected studies are aligned with the criteria defined, and second, that data should be
able to respond to research questions. The extracted and synthesized data were used to
formulate answers to the research questions, and the results are laid out and discussed in
the forthcoming sections.

3.5. Quality Score

Once the papers were retrieved, they were passed through a quality assessment
process to make sure that only high-quality papers were included in this review. The
quality assessment is based on the quality assessment questions inferred from a study by
Kitchenham et al. [19].

A publication was scored based on the answer to each question as per the following rules:
1: if the answer is yes

0: if the answer is no

0.5: if the answer is somewhat

The following questions were included in the assessment:

Have the aims been clearly stated in the study?

Has the study scope been clearly defined?

Are the study variables dependable?

Does the study documentation cover the process of research sufficiently?
Have the defined questions been answered effectively?

Does the study present negative findings as well?

Are the major outcomes related to soundness and dependability listed?
Does the conclusion coincide with the study aims?

PN G

Appl. Sci. 2022,12, 4369

7 of 16

Figure 3 shows the paper distribution based on quality score. All the papers had a
score more than or equal to 4, which is the threshold value to include the papers. As such,
all the papers were considered high-quality and none of them were excluded in this review.

Quality score distribution for papers

o o~

(W]

Number of papers
8} w =S

[

. 11
4 45

1 15 2 25 3 35 5 55 6 65

Quality Score
Figure 3. Paper distribution based on quality score.

3.6. Data Synthesis

Data synthesis performs aggregation on the gathered data to effectively come up with
the answers to the research questions. Some research questions in this article require us
to produce categorical outputs by following a quantitative data analysis such as available
solutions. However, some questions such as the main challenges being faced while testing
RESTful APIs require using qualitative data synthesis. For identification of the main
challenges, textual descriptions and content analysis was required. As such, we performed
qualitative data synthesis in this case. We also studied the methodologies, tools, and
frameworks being used to solve the issues being faced. Later, we used the extracted data to
categorize these solutions into different categories using quantitative data synthesis. All
supportive facts were gathered from the selected studies and used to craft the answers to
research questions.

4. Results

This section presents the responses to the research questions in each sub-section.
Table 2 shows the selected publications along with the title, year, and approach used for
testing RESTful APIs.

Table 2. Selected papers.

Ref. Title Testing Approach Year

[po] Property-based Testing of JSON'based g1 - i a1 testing of RESTFul APIs 2014
Web Services

[21] Model-driven Testing of RESTful APIs Abstract model-based testing 2015

[pp)] RESTful API Automated Test White box testing using EVOMASTER 2017
Case Generation

23] Study on REST API Test Model Expressive description 2017

Supporting Web Service Integration

language-based testing

Appl. Sci. 2022,12, 4369

8 of 16

Table 2. Cont.

Ref. Title Testing Approach Year
Automatic Generation of Test Cases for Automated testing usin
[24] REST APls: a S ecification—base:g:l enegrated test 2018
Specification-Based Approach P &
Metamorphic Testing of RESTful . . .
[25] Web APIs Metamorphic relations-based testing 2018
. Testing based on parallel API execution
[26] Automated API Testing and sequenced API calls 2018
Producer-consumer dependencies and
[27] RESTler: Stateful REST API Fuzzing dynamic response 2019
feedback-based testing
QuickREST: Property-based Test . .
[28] Generation of OpenAPI-Described ?ﬁg%ﬁiﬁﬁﬁiﬁ;ﬁ?d testing based 2020
RESTful APIs P
[29] AI-Driven Web API Testing Al-based testing for RESTful APIs 2020
. . . Communication
[30] isii?pﬁﬁlsl%?meeli}iefzaﬁfﬁv ,?;18\053 technology-independent testing using 2020
& test specification language (TTCN-3)
[31] Differential Regression Testing for Regression testing targeting contract 2020
REST APIs and service changes
. Blackbox testing using a generated unit
[32] ?if;TEszl%%ﬁkﬁfgﬁated Black-Box test based on RESTful API’s standard 2020
8 document (OpenAPI)
Deep learning-based testing approach
[33] Deep Learning-Based Prediction of Test by predicting inter-parameter 2021
- Input Validity for RESTful APIs dependencies and validity of
input request
[34] RESTest: Automated Black-Box Testing Testing using constraint-based and 2021
of RESTfulWeb APIs fuzzing oriented generated input
. Robustness testing based on minimal
[35] A Black Box Tool for Robustness Testing information exposed for RESTful APIs 2021

of REST Services

using bBOXRT

RESTful API testing has been regarded as a thriving topic. There have not been many

studies published and this means that there is a lot of room for research. The main reason
is that it is the flexibility of the methodology being used for developing, deploying, and
consuming RESTful APIs. The lack of following one standard for describing the RESTful
APIs is one of the hurdles. Hence, many studies are based on a few assumptions to
start with.

To fulfill the objective of answering the inferred research questions, the primary

studies were analyzed deeply and relevant data were extracted. The main focus was on the
methodology, tools, and approach used for testing RESTful APIs.

research questions.

The following were the parameters in line with the data of the study:

The top-down approach is followed by each study.

The methodology is followed for RESTful testing.

Tools or frameworks are developed for RESTful APIs’ testing.

Any supportive facts are required to answer the research questions.

Based on the studied facts and analysis, the following sections discuss responses to

Appl. Sci. 2022,12, 4369

9o0f 16

4.1. RQ1—What Are the Main Challenges in Generating Unit Tests for RESTful APIs?

Going through all primary studies and analyses yielded the fact that there are several
challenges in generating unit tests for RESTful APIs. In both [25] and [27], the authors
argue that effective and concise testing is the most challenging, whereas in [25], the authors
argue that the lack of a test oracle is the biggest hamper to generating an effective unit
test, as they are not always available. As for [26], the authors argue that the time taken is a
major issue, and the authors of [33] argue that learning whether the input is valid or not
before executing the REST call is crucial. The authors of [34] report that the lack of source
code is the biggest issue. Looking at the challenges in a more consolidated approach for the
sake of categorization, the following issues emerged as the most common ones:

a. Security plays a vital role in keeping the APIs safe and stable. However, at the
same time, this poses a big challenge in generating unit tests and testing in general.
The usual approach of unit test generation depends on an API description that is
usually done using OpenAP], or by using any other compatible descriptive language.
This methodology is used by black-box testing because access to the source code is
not available. The descriptive document does not contain any security information.
Because of such a scenario, the unit test generation process is either limited to fewer
unit tests or ends up with invalid unit tests because the required security information
was not incorporated into the generation process.

b. Non-compliance to description document standards is another challenge in unit test
generation. The most important catalyst for auto-generating unit tests for RESTful
APIs is the description document. Different organizations are maintaining this docu-
ment in different ways. XML, plain JSON, and OpenAPI are some of the document
standards. RESTful APIs are quite flexible in this regard, which is another cause of
the emergence of this challenge. Because there is no compulsion for maintaining a
standard descriptive document for RESTful APIs to work, not much importance is
given to this aspect. As a result, the standard tools and frameworks are sometimes
unable to even proceed or end up with faulted unit tests.

c. An inconsistent descriptive document contributes to the list of challenges as well.
Studies showed that, many times, organizations are not keeping the descriptive
document for RESTful APIs up to date. As a result, the APIs that are in production
are different than the descriptive document. Rapid changes and pressure to make
modified APIs available as early as possible in production pave the way to the
descriptive document being inconsistent. Hence, the unit test generation produces
incomplete or inconsistent tests.

d. Complex input types are yet another challenge with which to deal. Modern-day
RESTful APIs enable communication between hybrid networks, backends, and all
possible kinds of devices. Data sent over could be of possibly any time, and ranging
from simple integers and strings to a whole file or group of files. One of the core
parts of any unit test generation framework is to infer test input values, which is very
hard when complex types are involved. For this reason, several studies, such as [32],
exclude the scope of complex types when generating unit tests.

4.2. RQ2—What Are the Code Coverage Concerns When It Comes to Testing RESTful APIs?

Code coverage is one of the main objectives of unit testing. It is an important metric to
measure the effectiveness of unit tests. The maximum amount of code executed by the unit
tests is always desirable. For achieving high code coverage, there should be a sufficient
number of unit tests with a wider scale to reach all possible parts of the code. Failing to
reach the recommended level of code coverage is a sign of either the fewer number of unit
tests or the limited scale of the unit tests in terms of code execution. In RESTful APIs’ case,
achieving high code coverage could be a difficult task to achieve. One of the major reasons
is reaching out to protected APIs. As explained in RQ1, owing to the nature of the RESTful
APIs’ document description, it becomes very difficult to generate unit tests for the protected
endpoint. Therefore, the major part of the RESTful APIs goes without having unit tests

Appl. Sci. 2022,12, 4369

10 of 16

generated for them automatically. Manual testing and unit test generation are required
for that, which always introduces the chance to miss some code, hence resulting in lower
code coverage. In [25,27,28], the authors argued that code coverage is a good metric to
measure the effectiveness of test cases and, as such, integrated it as a metric against which
to measure their tools. Moreover, the authors of [11,12] mentioned the same issue. The
authors of [25] noted in their testing, however, that the code coverage was relatively low
compared with manual tests owing to the high string constraints. As for [27], the authors
faced the challenge of a unique checksum and ID to archive high code coverage. The same
challenge was faced by the authors of [28] when attempting to improve the code coverage
with UUID as input. The authors of [32] completely exclude authenticated APIs’ testing
and unit test generation owing to the complexity explained earlier, hence they possibly
ended up with lower code coverage.

4.3. RQ3—What Are the Existing Solutions Available to Meet Testing and Unit Test
Generation Challenges?

Different categorical solutions have been proposed and used in the selected primary
studies. Those fall in the following categories:

e Tools;
e Technique/method;
e Framework/model.

Figure 4 shows the contribution classification of the primary studies. According to
Figure 4, most of the papers are proposing a methodology/approach and the least number
of contributions is related to the framework/model. This indicates that researchers mostly
prefer proposing a methodology /approach instead of a model/framework in this field. How-
ever, the development of frameworks/models is as important as approaches/methodologies,
and more research is needed to develop novel models/frameworks.

CONTRIBUTION CLASSIFICATION

B Tool M Approach/Methodology M Framework/Model

Figure 4. Contribution classification.

Table 3 describes where each primary study falls in terms of the proposed solution.

Appl. Sci. 2022,12, 4369

11 of 16

Table 3. Primary studies in terms of the proposed solution.

Approach/ Framework/

Ref. Title Tool Methodology Model
[20] Property-.based Testing of JSON based a
Web Services
[21] Model-driven Testing of RESTful APIs O O
[22] RESTful API Automated Test Case Generation a (|
(23] Study on REST API Test Model Supporting Web 0 0
Service Integration
Automatic Generation of Test Cases for REST
X
[24] APIs: a Specification-Based Approach = = =
[25] Metamorphic Testing of RESTful Web APIs O O
[26] Automated API Testing O (]
[27] RESTler: Stateful REST API Fuzzing O O
QuickREST: Property-based Test Generation of 5 5
(28] OpenAPI-Described RESTful APIs = = =
[29] AI-Driven Web API Testing O O
A simple, lightweight framework for testing
[30] RESTful services with TTCN-3 - H
[31] Differential Regression Testing for REST APIs g O
RESTTESTGEN: Automated Black-Box Testing of
[32] RESTful APIs . -
Deep Learning-Based Prediction of Test Input
X
[33] Validity for RESTful APIs - X -
RESTest: Automated Black-Box Testing of
X]
[34] RESTfulWeb APIs - . X
A Black Box Tool for Robustness Testing of
X
[35] REST Services = = =

4.4. RQ4—What Support Do Solutions Provide for Authentication-Enabled RESTful APIs’
Testing and Unit Test Generation?

Developing authentication for RESTful APIs has several methodologies to follow.
Those RESTful APIs are known as protected ones, which cannot be accessed by an anony-
mous user. The login process must be completed successfully first in order to get the
identification, which can be then used to access the protected part of the RESTful APIs’
endpoint collection. The variance is quite high when it comes to actual implementation.
Based on the analysis of primary studies, it can be inferred that it is extremely difficult
to come up with a solution that takes care of that aspect. Several studies excluded unit
test generation for protected (i.e., authentication enabled) RESTful APIs” endpoints. Some
of the common authentication implementation methods for RESTful APIs are described
as follows:

o Token-based authentication: After successful authentication (i.e., log in using user-
name and password), a long identification string is assigned to the user session, which
is called a token. This is usually encrypted and sent back and forth manually between
request-response sessions. The creation and validating mechanisms of tokens totally
depend on the developer or organization; therefore, it can be done in many different
ways and, as such, there is no strict standard. This poses a huge problem when trying
to incorporate protected RESTful APIs into test generation. Every token usually has a
validity time limit, after which it expires and a new token is required.

e Cookie-based authentication: This mechanism depends on generating a piece of
authentication information called a cookie, which is sent back and forth between

Appl. Sci. 2022,12, 4369

12 of 16

request-response sessions like a token-based approach. However, the creation of the
cookie depends on the framework being used for RESTful API development. A cookie
is created after successful login using credentials and has an expiry time. There are
many options available to choose the framework.

e APl keys-based authentication: API keys-based authentication does not require the
use of credentials (i.e., username and password) to be authenticated. Instead, we
need to use an already issued secret API key from the host of RESTful APIs to be able
to use its services. The key is issued either freely or by using paid membership, for
example, using map services or social media services. As this is a secret key and is
usually not shared, it would be impossible to create unit tests for such services and
test them appropriately.

During our analysis, we did not come across any study that proposes a solution that
takes care of the protected RESTful APIs when it comes to unit test generation, which
implies that a major part of the RESTful APIs would have to be manually tested using
manually generated unit tests. This also helps to infer that developing an authentication-
enabled testing framework for RESTful APIs is an area with a huge scope of research.

5. Discussion and Threats to Validity
This section presents the general discussion, and the threats to validity are explained.

5.1. General Discussion

’

In this SLR, we systematically reviewed the available literature on RESTful APIs
testing methodologies. This study resulted in providing the challenges, problems, and
available solutions and approaches associated with the testing domain for RESTful APIs.
The presented results intend to classify and categorize the available solutions. The classifi-
cation is based on the approach being used. This laid forth the path for further work on
those approaches and the implementation of further tools based on the presented models
and frameworks.

One of the core aspects of this review is to find out solutions addressing authentication
when it comes to RESTful API testing. This is because most of the RESTful API endpoints
are protected and, if not covered by auto-generation of unit tests, code coverage can be
affected. This would result in insufficient and unreliable testing and code coverage. We
came across no complete solution that falls into the autogenerate unit test-based testing
category, which covers authentication, which means that there is a lot of dependence on
manual testing, which always has a probability of low code coverage.

During the analysis, we found that the selected studies use a common approach to
look into the description document of the REST APIs for unit test generation. The open
API (a.k.a., swagger) format is one of the most commonly followed formats for describing
REST APIs. Because of this, and the fact that authenticated REST APIs endpoints are not
covered by any of the approaches, the studies are understood to have the same level of
performance for code coverage. Fault detection, on the other hand, is best achieved by
RESTTESTGEN: Automated Black-Box Testing of RESTful APIs [32]. The study has tested
some of the well-known publicly available REST APIs. The statistics are shown to draw the
conclusion clearly.

There are many situations in which REST APIs are hosted on-premise and in the cloud,
but these are not accessible publicly because they are used for internal systems. On the other
hand, several instances of REST APIs are publicly available in terms of use. In either case,
access to the source code is usually not available. This is one of the common reasons that
black-box testing becomes a viable option. The advantage of black-box testing is that the
proposed solution can easily generate and run unit tests by just analyzing the description of
REST APIs. The disadvantage is that the exact location or reason for the fault would not be
easy to find out, especially when the implementation hides the actual cause of the error in
the output. White-box testing has a clear advantage in terms of finding the actual cause and
location of the error or bug. However, access to the source code is a must for this kind of

Appl. Sci. 2022,12, 4369

13 of 16

testing. The code coverage aspect remains the same in both testing methodologies. One of
the main obstacles to achieving a high level of code coverage is to test authenticated REST
APIs. A proposed solution can achieve a high level of code coverage if it is able to invoke
and call all or max REST APIs” endpoints, using either black-box or white-box testing.
There are also additional techniques that can improve search-based test case gen-
eration for testing RESTful web services and aim at fully automating the evaluation of
testing approaches. Martin-Lopez et al. [36] proposed a catalog of 10 test coverage criteria
for RESTful APIs and a framework for the testing approach evaluation. They used two
real-world APIs for the evaluation of their proposal and demonstrated that the coverage
levels correlate with measurements of fault detection. Vosta [37] investigated how t-wise
combinatorial testing works for REST APIs and reported that 1-wise, 2-wise, and 3-wise
interaction testing techniques of REST APIs detect the same faults when mutation testing
is executed on the test suite. Mutation testing was used to inject faults into the system
under test. Zhang et al. [38] developed a search-based method, which is integrated into the
Many Independent Objectives (MIO) evolutionary search algorithm. They evaluated the ap-
proach on seven open-source RESTful web services and demonstrated that resource-based
sampling strategies achieve much higher performance compared with the baseline MIO.

5.2. Threats to Validity

Construct validity: There might be some publications available that were missed
owing to the missed synonyms that could be used for the search. As some terms were used
slightly differently in some papers, some observations might have been affected.

Internal validity: Paper selection bias was minimized because all authors were in-
volved during this procedure and a consensus was reached while evaluating the papers.

External validity: One major factor that can obstruct the validity of this SLR is the
number of studies. As the topic is still an emerging topic, there are not many published
studies available. There could be some frameworks, tools, and models in practice in the
industry that are not formally published as research papers.

Conclusion validity: To minimize the conclusion validity threat, authors drew conclu-
sions based on discussions and common understanding; therefore, the individual basis on
the interpretation of results was reduced in this research.

6. REST APIs” Open Issues, Challenges, and Research Directions

REST APIs are very diverse, both in terms of development and testing. Various
methodologies, frameworks, and approaches have been put in practice by various orga-
nizations. Because of this diversity and flexibility, organizations do not have to follow a
specific framework or methodology. This has led to challenges related specifically to testing.
One of the major challenges that we found was authentication support in generating unit
tests for REST APIs. As there are many different authentication techniques used these
days, this makes it difficult to automate unit test generation. Moreover, organizations
do not usually share the way in which authentication has been implemented, and it is
continuously evolving; therefore, it has become even harder to come up with a generic unit
test generation framework that covers authenticated REST APIs. Some recent papers have
proposed this for future research. As authenticated or protected REST APIs” endpoints
are not included in test case generation, the achieved code coverage is low—this is the
second most prevailing challenge. This has set a future research direction focused on
studying the possible common and baseline standard being followed when authentication
is implemented. Based on this study, the authentication support for REST APIs’ testing is
desired to be designed as a pluggable module in the proposed solution.

7. Conclusions

In this paper, we investigated literature that covers different aspects of RESTful API
testing from test generation with and without an oracle to black-box testing, where there is

Appl. Sci. 2022,12, 4369

14 of 16

no access to the source code; to input generation, be it using fuzzing or an oracle; and to
output prediction using machine learning to test and feedback automation.

As covered in the results section, there have been several challenges faced by the
researchers to come up with an effective framework for unit test generation and testing
in general. We can infer from the discussion that following universal standards while
developing and describing RESTful APIs will make even existing frameworks and method-
ologies more effective. This is because of the fact that testing and unit test generation
strongly depends on the standard document description of the RESTful API (e.g., XML,
plain JSON, or OpenAPI (a.k.a., swagger)). As a first step, this standardization will alleviate
the first level of challenge. Secondly, this review also shows that keeping the descriptive
document consistent is equally important. Thirdly, missing comprehensive support for
authentication-enabled RESTful APIs’ testing is still an open area to perform research.

We believe that this article will help pave the way for further RESTful API testing-
based research. Machine learning is being used to predict the output of a given test case
input. Using machine learning to predict the code coverage of a given test suit would be an
interesting and important research topic. It can help determine which test suites to keep
and which to update or discard owing to its code coverage, which is paramount for the test
suite’s maintainability, along with security-focused testing, as this paper already identified.
There is a serious lack of security-friendly RESTful API test suites, which has the added
sensitivity that such an API calls would manage sensitive or secured parts of the service
and, as such, unexpected behavior of such an APl is a security threat in itself.

Further work in the future would be to enhance the outcomes of this SLR and focus
on the role of machine learning being applied to improve the testing solutions, along with
authentication enablement for RESTful APIs.

Author Contributions: Conceptualization: A.E., M. AM.E.A. and C.C; data curation: A.E. and
M.A.M.E.A ; formal analysis: A.E., M.\ AM.E.A,, C.C. and D.M,; investigation: A.E., M.\ AM.EA.,
C.C. and D.M.; methodology: A.E.,, M\ AM.E.A., C.C. and D.M.; project administration: C.C.; re-
sources: A.E, M(AM.E.A., C.C. and D.M,; supervision: C.C.; validation: A.E, M.\ AM.E.A,, C.C.
and D.M.; writing—original draft: A.E.,, M. AM.E.A., C.C. and D.M.; writing—review and editing:
AE., ML AME.A, C.C. and D.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the Norwegian University of Science and Technology,
Norway for the support of Open Access fund.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: The authors thank their universities for scientific database subscriptions and
infrastructure support that enabled this collaborative research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronym Definition

REST Representational state transfer

API Application programming interfaces
SLR Systematic literature review

WWW World Wide Web

HTTP Hypertext transfer protocol

URI Uniform resource identifier

JSON JavaScript object notation

Appl. Sci. 2022,12, 4369 150f 16

References

1. Li, L,; Chou, W.; Zhou, W.; Luo, M. Design Patterns and Extensibility of REST API for Networking Applications. IEEE Trans.
Netw. Serv. Manag. 2016, 13, 154-167. [CrossRef]

2. Neumann, A.; Laranjeiro, N.; Bernardino, J. An Analysis of Public REST Web Service APIs. IEEE Trans. Serv. Comput. 2018, 14,
957-970. [CrossRef]

3. Pahl, C,; Jamshidi, P. Microservices: A Systematic Mapping Study. In Proceedings of the 6th International Conference on Cloud
Computing and Services Science—Volume 1 and 2, Rome, Italy, 23-25 April; pp. 137-146. [CrossRef]

4. Khare, R.; Taylor, R. Extending the Representational State Transfer (REST) architectural style for decentralized systems. In
Proceedings of the 26th International Conference on Software Engineering, Edinburgh, UK, 28 May 2004; pp. 428-437. [CrossRef]

5. Pautasso, C.; Zimmermann, O.; Leymann, F. Restful web services vs. “big” web services: Making the Right Architectural Decision.
In Proceedings of the 17th International Conference on World Wide Web, Beijing, China, 21-25 April 2008; pp. 805-814. [CrossRef]

6. Ed-Douibi, H.; Izquierdo, J.L.C.; Cabot, J. OpenAPItoUML: A tool to generate UML models from OpenAPI definitions. In
Proceedings of the International Conference on Web Engineering, Céceres, Spain, 5-8 June 2018; Springer: Cham, Switzerland,
2018; pp. 487-491.

7. Fielding, R.T.; Taylor, R.N. Architectural Styles and the Design of Network-Based Software Architectures; University of California:
Irvine, CA, USA, 2008.

8. Mogul,].C,; Frystyk, H.; Masinter, L.; Leach, P.; Berners-Lee, T. Hypertext Transfer Protocol-HTTP/1.1. Terminology 1.3. 1999.
Available online: https://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf (accessed on 20 November 2021).

9. Ghani, I; Wan-Kadir WM, N.; Mustafa, A. Web service testing techniques: A systematic literature review. Int. J. Adv. Comput. Sci.
Appl. 2019, 10, 443-458. [CrossRef]

10. Nabil, E.I. Specifications for web services testing: A systematic review. In Proceedings of the 2015 IEEE World Congress on
Services, Washington, DC, USA, 27 June-2 July 2015; pp. 152-159.

11. Tosi, D.; Morasca, S. Supporting the semi-automatic semantic annotation of web services: A systematic literature review. Inf.
Softw. Technol. 2015, 61, 16-32. [CrossRef]

12. Rusli, H.M,; Ibrahim, S.; Puteh, M. Testing Web Services Composition: A Mapping Study. Commun. IBIMA 2011, 2011, 1-12.
[CrossRef]

13. Chen, Z,; Shen, L.; Li, F. Exploiting Web service geographical neighborhood for collaborative QoS prediction. Futur. Gener.
Comput. Syst. 2017, 68, 248-259. [CrossRef]

14. Silic, M;; Delac, G.; Krka, I; Srbljic, S. Scalable and Accurate Prediction of Availability of Atomic Web Services. IEEE Trans. Serv.
Comput. 2013, 7, 252-264. [CrossRef]

15. Elia, L. A,; Laranjeiro, N.; Vieira, M. ITWS: An extensible tool for interoperability testing of web services. In Proceedings of the
2014 IEEE International Conference on Web Services, Anchorage, AK, USA, 27 June-2 July 2014; pp. 409-416.

16. Nacer, A.A.; Bessai, K.; Youcef, S.; Godart, C. A Multi-criteria Based Approach for Web Service Selection Using Quality of Service
(QoS). In Proceedings of the IEEE International Conference on Services Computing, New York City, NY, USA, 27 June-2 July 2015;
pp. 570-577. [CrossRef]

17. Selvam, R.; Senthilkumar, A. Webservice based vulnerability testing framework. In Proceedings of the 2014 International
Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6-8 March 2014; pp.
1-6.

18. Barbir, A.; Hobbs, C.; Bertino, E.; Hirsch, E; Martino, L. Challenges of testing web services and security in SOA implementations.
In Test and Analysis of Web Services; Springer: Berlin/Heidelberg, Germany, 2007; pp. 395-440.

19. Kitchenham, B.; Charters, S. Guidelines for performing Systematic Literature Reviews in Software. Engineer. Techn. Rep. 2007, 5,
1-57.

20. Fredlund, L.A ; Earle, C.B.; Herranz, A.; Marino,]. Property-Based Testing of JSON Based Web Services. In Proceedings of the
IEEE International Conference on Web Services, Anchorage, AK, USA, 27 June-2 July 2014; pp. 704-707. [CrossRef]

21. Fertig, T.; Braun, P. Model-driven Testing of RESTful APIs. In Proceedings of the 24th International Conference on World Wide
Web, Florence, Italy, 18-22 May 2015; pp. 1497-1502. [CrossRef]

22. Arcuri, A. RESTful API Automated Test Case Generation. In Proceedings of the IEEE International Conference on Software
Quality, Reliability and Security (QRS), Prague, Czech Republic, 25-29 July 2017; pp. 9-20. [CrossRef]

23. Wenhui, H.; Yu, H.; Xueyang, L.; Chen, X. Study on REST API Test Model Supporting Web Service Integration. In Proceedings of
the IEEE 3rd International Conference on Big Data Security on Cloud (Bigdatasecurity), IEEE International Conference on High
Performance and Smart Computing (Hpsc), and IEEE International Conference on Intelligent Data and Security (ids), Beijing,
China, 26-28 May 2017; pp. 133-138. [CrossRef]

24. Ed-Douibi, H.; Izquierdo, J.L.C.; Cabot,]. Automatic Generation of Test Cases for REST APIs: A Specification-Based Approach. In
Proceedings of the IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), Stockholm, Sweden,
16-19 October 2018; pp. 181-190. [CrossRef]

25. Segura, S.; Parejo, J.A.; Troya, J.; Ruiz-Cortes, A. Metamorphic Testing of RESTful Web APIs. IEEE Trans. Softw. Eng. 2017, 44,
1083-1099. [CrossRef]

26. Isha, A.; Sharma, A.; Revathi, M. Automated API Testing. In Proceedings of the 3rd International Conference on Inventive

Computation Technologies (ICICT), Coimbatore, India, 15-16 November 2018; pp. 788-791. [CrossRef]

http://doi.org/10.1109/TNSM.2016.2516946
http://doi.org/10.1109/TSC.2018.2847344
http://doi.org/10.5220/0005785501370146
http://doi.org/10.1109/icse.2004.1317465
http://doi.org/10.1145/1367497.1367606
https://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf
http://doi.org/10.14569/IJACSA.2019.0100858
http://doi.org/10.1016/j.infsof.2015.01.007
http://doi.org/10.5171/2011.598357
http://doi.org/10.1016/j.future.2016.09.022
http://doi.org/10.1109/TSC.2013.3
http://doi.org/10.1109/scc.2015.83
http://doi.org/10.1109/icws.2014.110
http://doi.org/10.1145/2740908.2743045
http://doi.org/10.1109/qrs.2017.11
http://doi.org/10.1109/bigdatasecurity.2017.35
http://doi.org/10.1109/edoc.2018.00031
http://doi.org/10.1109/TSE.2017.2764464
http://doi.org/10.1109/icict43934.2018.9034254

Appl. Sci. 2022,12, 4369 16 of 16

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Atlidakis, V.; Godefroid, P.; Polishchuk, M. RESTler: Stateful REST API Fuzzing. In Proceedings of the 41st International
Conference on Software Engineering, Montreal, QC, Canada, 25-29 May 2019; pp. 748-758. [CrossRef]

Karlsson, S.; Causevic, A.; Sundmark, D. QuickREST: Property-based Test Generation of OpenAPI-Described RESTful APIs. In
Proceedings of the IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), Porto, Portugal,
24-28 October 2020; pp. 131-141. [CrossRef]

Martin-Lopez, A. Al-Driven Web API Testing. In Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), Seoul, Korea, 5-11 October 2020; pp. 202-205. Available online:
https://doi.ieeecomputersociety.org/ (accessed on 20 November 2021).

Vassiliou-Gioles, T. A simple, lightweight framework for testing RESTful services with TTCN-2020. In Proceedings of the IEEE
20th International Conference on Software Quality, Reliability and Security Companion (QRS-C), Vilnius, Lithuania, 11-14
December 2020; pp. 498-505. [CrossRef]

Godefroid, P.; Lehmann, D.; Polishchuk, M. Differential regression testing for REST APIs. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, New York, NY, USA, 18-22 July 2020; pp. 312-323.
[CrossRef]

Viglianisi, E.; Dallago, M.; Ceccato, M. RESTTESTGEN: Automated Black-Box Testing of RESTful APIs. In Proceedings of the
IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), Porto, Portugal, 24-28 October 2020;
pp. 142-152. [CrossRef]

Mirabella, A.G.; Martin-Lopez, A.; Segura, S.; Valencia-Cabrera, L.; Ruiz-Cortes, A. Deep Learning-Based Prediction of Test Input
Validity for RESTful APIs. In Proceedings of the IEEE/ACM Third International Workshop on Deep Learning for Testing and
Testing for Deep Learning (DeepTest), Madrid, Spain, 1 June 2021; pp. 9-16. [CrossRef]

Martin-Lopez, A.; Segura, S.; Ruiz-Cortés, A. RESTest: Automated black-box testing of RESTful web APIs. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, New York, NY, USA, 11-17 July 2021; pp.
682-685. [CrossRef]

Laranjeiro, N.; Agnelo, J.; Bernardino, J. A Black Box Tool for Robustness Testing of REST Services. IEEE Access 2021, 9,
24738-24754. [CrossRef]

Martin-Lopez, A.; Segura, S.; Ruiz-Cortés, A. Test coverage criteria for RESTful web APIs. In Proceedings of the 10th ACM
SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation, New York, NY, USA, 26-27
August 2019; pp. 15-21.

Vosta, D. Evaluation of the T-Wise Approach for Testing REST APIs. Master’s Thesis, KTH Royal Institute of Technology,
Stockholm, Sweden, 2020.

Zhang, M.; Marculescu, B.; Arcuri, A. Resource-based test case generation for restful web services. In Proceedings of the genetic
and evolutionary computation conference, Prage, Czech Republic, 13-17 July 2019; pp. 1426-1434.

http://doi.org/10.1109/icse.2019.00083
http://doi.org/10.1109/icst46399.2020.00023
https://doi.ieeecomputersociety.org/
http://doi.org/10.1109/qrs-c51114.2020.00089
http://doi.org/10.1145/3395363.3397374
http://doi.org/10.1109/icst46399.2020.00024
http://doi.org/10.1109/deeptest52559.2021.00008
http://doi.org/10.1145/3460319.3469082
http://doi.org/10.1109/ACCESS.2021.3056505

	Introduction
	Background and Related Work
	Background
	Related Work

	Research Methodology
	Review Protocol
	Research Questions
	Search Strategy
	Exclusion Criteria
	Quality Score
	Data Synthesis

	Results
	RQ1—What Are the Main Challenges in Generating Unit Tests for RESTful APIs?
	RQ2—What Are the Code Coverage Concerns When It Comes to Testing RESTful APIs?
	RQ3—What Are the Existing Solutions Available to Meet Testing and Unit Test Generation Challenges?
	RQ4—What Support Do Solutions Provide for Authentication-Enabled RESTful APIs’ Testing and Unit Test Generation?

	Discussion and Threats to Validity
	General Discussion
	Threats to Validity

	REST APIs’ Open Issues, Challenges, and Research Directions
	Conclusions
	References

