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Abstract: Domain diversities, including inconsistent annotation and varied image collection condi-
tions, inevitably exist among different facial expression recognition (FER) datasets, posing an evident
challenge for adapting FER models trained on one dataset to another one. Recent works mainly
focus on domain-invariant deep feature learning with adversarial learning mechanisms, ignoring
the sibling facial action unit (AU) detection task, which has obtained great progress. Considering
that AUs objectively determine facial expressions, this paper proposes an AU-guided unsupervised
domain-adaptive FER (AdaFER) framework to relieve the annotation bias between different FER
datasets. In AdaFER, we first leverage an advanced model for AU detection on both a source and a
target domain. Then, we compare the AU results to perform AU-guided annotating, i.e., target faces
that own the same AUs as source faces would inherit the labels from the source domain. Meanwhile,
to achieve domain-invariant compact features, we utilize an AU-guided triplet training, which ran-
domly collects anchor–positive–negative triplets on both domains with AUs. We conduct extensive
experiments on several popular benchmarks and show that AdaFER achieves state-of-the-art results
on all these benchmarks.

Keywords: facial expression recognition (FER); action units; unsupervised cross-domain FER

1. Introduction

Facial expression is one of the most important modalities in human emotional commu-
nication. Accurately recognizing facial expressions helps individuals understand various
human emotions and intents, which is applied in a wide range of applications, such as
human–computer interaction [1], service robots [2], and medicinal treatments [3]. Both in
industrial and academic areas, in past decades, many well-labeled datasets [4–12] and
high-performance algorithms [13–15] have been proposed to automatically recognize
facial expressions.

In general, deep learning-based facial expression recognition (FER) methods [9–11,13–15]
achieve high performance only when the training domain is identical or similar to the
testing domain. However, due to the diversities of inconsistent annotation and different
image collection conditions, there inevitably exists annotation biases (domain gaps) among
different datasests, which poses an evident challenge for adapting FER models trained
on one dataset to another one. As shown in Figure 1, a naive cross-domain method that
deploys a trained model on a different target domain often fails. To this end, many methods
have been presented methods for mitigating the domain shift in FER [16–18], though
almost all the methods follow general domain adaption algorithms, ignoring the sibling
facial action unit (AU) detection task. Action units (AUs) represent the movement of facial
muscles, which have lower bias than subjective facial expression annotations. Intuitively,
AUs can be regarded as auxiliary cues to alleviate the annotation and data biases (domain
gaps) among different FER datasets.
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Figure 1. Illustration of unsupervised domain-adaptive facial expression recognition. A model
trained on a source domain usually fails on a target domain due to subjective inconsistent annotations
and different imaging conditions. AdaFER leverages the objective facial action units for auxiliary
training, effectively relieving the annotation bias between source and target domains.

In this paper, considering the remarkable progress and stable performance of AU
detection [19,20], we propose an AU-guided unsupervised domain-adaptive FER (AdaFER).
The AdaFER consists of two crucial modules: AU-guided annotating (AGA) and AU-guided
triplet training (AGT). Given two groups of images from a source domain and a target
domain, we first utilize an advanced pretrained AU detection model to extract the AUs’
coding from both domains. Then, we perform AU-guided annotating as follows: for each
image on the target domain, we use its AU’s coding to query the source domain. All the
images on a source domain with the same AU coding as the query image will be used
for annotating. By default, the query image is assigned with a soft label, which is the
statistic label distribution of the retrieval images. Further, to achieve structure-reliable and
compact facial expression features, we perform the AU-guided triplet training. Each triplet
is generated by comparing the AU coding of source and target images. For example, when
a source image is used as an anchor, we randomly sample a positive (negative) sample that
has same (different) AUs as the anchor from all target images. With AdaFER, we are able to
fine-tune a source-pretrained model on a target domain with both pseudo-soft labels and
triplet loss, which effectively prevents FER performance degradation on the target domain.

Overall, our contributions can be summarized as follows:

• We heuristically utilize the relationship between action units and facial expressions for
cross-domain facial expression recognition, and propose an AU-guided unsupervised
domain-adaptive FER (AdaFER) framework;

• We elaborately design an AU-guided annotation module to assign soft labels for a
target domain and an AU-guided triplet training module to learn structure-reliable
and compact facial expression features;

• We conduct extensive experiments on several popular benchmarks and significantly
outperform the state-of-the-art methods.

2. Related Work

In general, facial expression recognition (FER) can be conducted for static images or
dynamic videos. Facial expressions may refer to micro expressions [12] and basic macro
expressions. In this paper, we focus on the static image-based FER for basic macro expressions.

2.1. Facial Expression Recognition

Recently, facial expression recognition has achieved significant progress due to well-
designed feature extraction methods and high-performance algorithms. They first detect
and align faces using several popular face detectors, such as MTCNN [21] and Dlib [22].
For feature extraction, a large number of methods focus on modeling the facial geometry
and appearance features to help facial expression recognition. From the feature-type
view, these features can be generally divided into hand-crafted features and deep-learning
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features. A hand-crafted feature usually contains texture-based features and geometry-
based features [23–25]. Sometimes, they are used in a combination called hybrid features.
For deep-learning features, Tang [26] and Kahou et al. [27] utilized deep CNNs for feature
extraction, and won the FER2013 and Emotiw2013 challenges, respectively. Zhou et al. [28]
achieved a remarkable result in the Emotiw2019 multi-modal emotion recognition challenge
by using an audio-video deep fusion method. To address the pose variant and occlusion
in FER, Wang et al. [13] and Li et al. [14] designed a region-based attention network.
Wang et al. [15] proposed a self-cure network to suppress uncertainty samples in FER
datasets. Liu et al. [29] introduced a facial action units (FAUs)-based network for expression
recognition. Daniel et al. [30] presented a cross-platform real-time multi-face expression
recognition toolkit using FAUs, which shows the robustness of FAUs in FER systems.

2.2. Action Units Detection

A facial action coding system (FACS) [31] uses action units (AUs) to represent facial
muscle movements. Facial action units detection has been widely used in the face percep-
tion and emotion analysis research areas, including deception detection [32], diagnosing
mental health [33], and improving e-learning experiences [34]. The impressive progress of
AUs detection are due mainly to large-scale datasets and well-designed methods. Large-
scale datasets include two categories: one is collected from a controlled or a laboratory
environment, the other is collected from the Internet or is collected “in the wild”. The
BP4D [35], DISFA [36], and GFT [37] datasets are collected from controlled conditions.
BP4D contains 41 subjects from 18 to 29 years old. They require subjects to join eight
different tasks (one-on-one interviews (inducing pleasure), watching movie clips (induc-
ing sadness), suddenly hearing a voice (inducing surprise), improvising a funny song
(inducing embarrassment), feeling threatened (inducing fear), putting one’s hands into ice
water, experiencing an insult from the experimenter (inducing anger), and smelling some
peculiar smell (inducing disgust)) and record the changes of the subjects. The BP4D dataset
simultaneously records 2D and 3D facial expression videos, in which 2D videos contain
more than 160,000 face images. The DISFA [36] dataset collects 27 videos when subjects
watch movies. Each video consists of 4845 frames. All videos are annotated with AUs
encoding, as well as with the five levels of intensity. GFT [37], as the first dataset to include
the conversations of multiple people, records 240 videos of 3 people communicating. They
annotate 20 AUs with a 0–1 code and divide the GFT into training and validation sets.
EmotioNet [10] downloads 1,000,000 images from the Internet and manually annotates
50,000 images with 11 AUs for training and testing. In addition, the 900,000 images of
EmotioNet are automatically annotated by the pretrained model using manual annotation
for 50,000 images.

The methods of AUs detection can be summarized as follows. Supervised meth-
ods: Walecki et al. [38] propose a Copula CNN deep learning approach by combining
conditional random field (CRF)-encoded AU dependencies with deep learning. Ji [19]
propose a dynamic threshold for each AU to improve the performance of AU detection.
Semi-supervised methods: Peng [39] utilize the relationships between AUs encoding and
expression categories to automatically annotate the AU labels for facial images with only
expression labels. Wu et al. [40] use the restricted Boltzmann machine to model the AU
distribution, which is further used to train the AU classifiers with partially labeled data.
Niu et al. [20] propose two networks to generate multi-view features for both labeled and
unlabeled face images, and utilize multi-label co-regularization loss to minimize the the
distance between the predicted AU probability distributions of the two views.

2.3. Cross-Domain FER

It is inevitable that distribution divergences among different facial expression datasets
will exist, due to variant collecting conditions and annotating subjectiveness. In past
decades, cross-domain FER (CD-FER) has recieved more attention [16,18,41–48]. Gener-
ally, the CD-FER can be divided into semi-supervised-based, unsupervised-based, and
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generation-based methods. Semi-supervised-based methods [45,49] apply a convolutional
neural network (CNN) model to train a classification model using limited labeled sam-
ples from a target domain. For the unsupervised-based methods, Valstar et al. [50] use
a Gabor feature-based landmark detector to localize facial points and track them in fa-
cial sequences to model temporal facial activation for facial expression recognition. They
trained the recognition model using the CK database and performed the test in the MMI
database for cross-validation. Zheng et al. [48] propose a transductive transfer subspace
learning method using labeled source domain images and unlabelled auxiliary target do-
main images to jointly learn a discriminative subspace. For generation-based methods,
Zong et al. [18] propose a domain regeneration framework (DR) that aims at learning a
domain regenerator to regenerate samples from source and target databases, respectively.
Wang et al. [51] introduce an unsupervised domain-adaptation method using a generative
adversarial network (GAN) on the target dataset, and dynamically assign the unlabelled
GAN-generated samples distributed pseudo-labels according to the current prediction
probabilities. In order to understand the conditional probability distributions’ differences
between the source and target datasets, Li et al. [42] develop a deep emotion-conditional
adaption network that simultaneously considers the conditional distribution bias and
expression class imbalance problem in CD-FER. Chen et al. [17] propose an adversarial
graph representation adaptation (AGRA) framework that unifies graph representation
propagation with adversarial learning for cross-domain holistic–local feature co-adaptation.
Different from the above works, our work utilizes AU information as auxiliary cues to
bridge the gap between different FER datasets, and is expected to learn a generic feature
space for a source and a target dataset.

3. Methodology
3.1. Overview of AdaFER

The goal of our method is to mitigate the domain gap, including inconsistent annota-
tions and different imaging conditions. Considering the relationship between subjective
facial expressions and objective action units, we propose a simple yet efficient AU-guided
unsupervised domain-adaptive facial expression recognition (AdaFER) method. Figure 2
illustrates the pipeline of our AdaFER, which mainly consists of two crucial modules: (i) an
AU-guided annotation (AGA) module and (ii) an AU-guided triplet training (AGT) module.
Given images from a source domain and a target domain, we first utilize a pretrained AU
detection model to extract the AUs coding for images from both domains. Then, the AGA
module assigns a soft/hard pseudo-label for each image in the target domain by comparing
the AUs between the source and target domains. For example, one of the AGA strategies
is to assign a target image with a hard label that is the same as a source image if both
images have equal AUs. Meanwhile, we mine triplets among the source and target domains
according to the AUs. For example, given an anchor image in the target domain, a positive
image in the source domain is the one with equal AUs, and a negative image is the one
with different AUs. We jointly train the FER model on the source domain with ground
truths and on the target domain with pseudo-labels and triplets.

3.2. The AU Distributions of FER Datasets

To check whether AUs have low bias among FER datasets (RAF-DB, FERPlus, ExpW,
CK+), we visualize the AU distributions of each facial expression category. Specifically, we
first utilize a pretrained AU detection model to extract AUs for each image. Then, we make
statistics of AU occurrence numbers over each category. After normalizing, we show the
AU statistics in Figure 3. We observe that (i) the AU distributions of the same categories
are very similar among different datasets, and (ii) different facial expressions own very
different AU distributions, which indicates that AUs offer discriminate cues.
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Figure 2. The pipeline of our AdaFER. First, a pretrained AU detection model is used to extract
facial action units, and then an AU-guided annotation (AGA) module assigns pseudo-labels for joint
training on the source domain and the target domain. AdaFER makes full use of the objective AUs to
bridge the gap between FER datasets caused by subjective and inconsistent annotations.
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Figure 3. The distributions of AUs in different FER datasets. It can be seen that the AU distributions
of a certain class in different datasets are almost consistent.



Appl. Sci. 2022, 12, 4366 6 of 15

3.3. AU-Guided Annotating

We introduce the AU-Guided Annotation (AGA) module to assign pseudo-labels for
target domain images according to AU detection results. Specifically, we elaborately design
several assignment schemes as follows.

Source-based hard label assignment (S-hard). Given an image Xi
s and its detected

AUs Ei
s from the source domain, the S-hard scheme utilizes Ei

s as a query to search for target
domain images that have same AUs with Ei

s. For a face image X j
t in the target domain, its

label can be defined as follows:

y
X j

t
= yXi

s
if Ej

t ≡ Ei
s (1)

where y
X j

t
denotes the facial expression label of X j

t . S-hard assigns all the retrieval images

in the target domain with the label of Xi
s.

Target-based hard label assignment (T-hard). Different from the S-hard scheme,
the T-hard scheme uses target domain images as query images. Given an image Xi

t and its
detected AUs Ei

t from the target domain, it first utilizes the Ei
t to retrieve all the images in

source domain, denoting them as [X1
s , . . . , Xk

s ]. Then, with the ground truths of the source
domain images, T-hard assigns the most-frequent label to the target domain image Xi

t.
Target-based soft label assignment (T-soft). For a query image from the target do-

main, unlike the hard assignment scheme, the T-soft scheme directly uses the label distribu-
tion of retrieval samples to assign each target domain image a soft label vector. It is worth
noting that there does not exist a source-based soft label assignment since we do not have
the labels of the target domain images.

Learning with AGA. After assigning pseudo-labels for the target domain, we can
train the FER models in traditional ways. Suppose Ys ∈ R1×M represents the labels of M
source domain images, YS−hard ∈ R1×N , YT−hard ∈ R1×N , and YT−soft ∈ RC×N denote
the labels of N target domain images in S-hard, T-hard, and T-Soft schemes; we use the
following loss function by default to train with AGA module:

Lc = CE(Ps, Ys) + β((CE(Pt, YS−hard) + KL(Pt, YT−soft)), (2)

where CE denotes the cross-entropy loss function, KL is the KL divergence loss function,
and Pt and Ps represent the predictions of the target and source domain images. β is the
trade-off ratio between the two loss values, calculated by pseudo-labels and ground truths.

3.4. AU-Guided Triplet Training

To achieve structure-reliable and compact facial features, we perform AU-guided
triplet training (AGT) to further narrow the gap among different domains. The key step is
to sample triplets from source and target domains.

Triplet selection. Intuitively, we can select triplets from the union of the source
domain and target domain. However, considering that CD-FER is a classification task, we
ignore the triplets in the source domain since the ground truths are available. Specifically,
we keep only those cross-domain triplets. Given an anchor in the source domain (Xa

s ) or
the target domain (Xa

t ), we first use it to retrieve the images of the target domain or the
source domain that own the same AUs, and then we randomly select a positive sample
from the target domain (Xp

t ) or source domain (Xp
s ), according to the retrieval samples,

and a negative sample Xn
t or Xn

s , according to the rest of the samples from the target or
source domain. Thus, we mainly select two kinds of cross-domain triplets: (Xa

s ,Xp
t ,Xn

t ) and
(Xa

t ,Xp
s ,Xn

s ). We conduct triplet selection in an offline manner. In addition, we also perform
hard-negative mining by sorting the similarities between the AU scores of the anchor and
all negative samples. We randomly select a sample from these with AU similarities that is
larger than a threshold τn (0.5 by default) as a negative sample.



Appl. Sci. 2022, 12, 4366 7 of 15

AU-guided triplet loss. After the selection of triplets, we use triplet loss to learn the
discriminative and compact features as follows:

Ltri = max{0, γ− (‖Fa − Fn‖ −
∥∥Fa − Fp

∥∥)}, (3)

where Fa, Fp, and Fn represent the L2-normalized features of the anchor, positive, and nega-
tive images, respectively. γ is a margin which can be a fixed hyper parameter or a learnable
parameter. We evaluate it in the Experiments section. Training with these cross-domain
triplets, we can obtain a cross-domain common feature space which makes similar facial
images close and dissimilar ones far away. Considering both pseudo-annotations and
triplets, the total loss function is Lall = Lc + εLtri, where ε is a trade-off ratio.

3.5. Implementation Details

AU detection and FER backbone. Face images are detected and aligned by Reti-
naface [52] and further resized to 224× 224 pixels. We utilize an advanced AU detector that
was pretrained on the EmotiNet dataset using the MLCR [20] algorithm to extract AUs for
each image. We then evaluate the effectiveness of AdaFER using ResNet-18 [53]. ResNet-18
is pre-trained on the MS-Celeb-1M face recognition dataset and the facial features for triplet
training are extracted from the last pooling layer.

Training. We use the PyTorch toolbox (https://pytorch.org/, accessed on 22 October 2021)
to implement our method on a Linux server with 1 Nvidia Tesla V100 GPU. For training, we
set the batch size to 128, i.e., 128 triplets with ground truth labels or pseudo-labels. In each
iteration, all the images are optimized by cross-entropy loss, KLDiv loss, and AU-guided
triplet Loss. The ratio β is defaulted as 1 and evaluated in the ensuing Experiments section.
The triplet loss margin γ is set to 0.5 by default. The ratio of Lc and Ltri is empirically set
to 1:1, and its influence will be studied in the ensuing ablation study in the Experiments
section. The leaning rate is initialized as 0.001 with an Adam optimizer using an exponential
(gamma = 0.9) scheme to reduce the learning rate. We stop training at the 40th epoch.

4. Experiments

In this section, we first describe the employed datasets. We then demonstrate the
robustness of our AdaFER in cross-domain facial expression recognition tasks. Further,
we conduct ablation studies to show the effectiveness of each module and the settings of
hyper-parameters in AdaFER. After that, We compare AdaFER to related state-of-the-art
methods. Finally, to obtain a better understanding of AdaFER, we visualize the statistical
distributions of CK+ and FERPlus datasets.

4.1. Datasets

The RAF-DB [11] dataset consists of 30,000 facial images annotated with 7 basic and
14 compound facial expressions from 40 trained students. In our experiments, we, by
default, used RAF-DB as the source dataset, and only images with 7 basic expressions
(neutral, happiness, surprise, sadness, anger, disgust, fear, neutral) were used, which led to
12,271 images for training.

The FER2013 and FERPlus [8] datasets contain 28,709 training images, 3589 validation
images, and 3589 test images. The image size of these datasets is 48 × 48. FER2013 is
collected by Google Image Search API and annotated by seven facial expressions. How-
ever, the annotations of FER2013 are not accurate because there are only two annotators.
Therefore, the FERPlus dataset is extended from FER2013, as in the ICML 2013 challenges,
and it is also re-annotated by 10 annotators, and a contempt category is added.

The CK+ [9] dataset contains 593 video sequences from 123 subjects. Among these
videos, 327 sequences from 118 subjects are labeled with 7 expressions (except neutral),
i.e., anger, contempt, disgust, fear, happiness, sadness, and surprise. All the subjects start
from neutral and increase their expression intensity to seven expressions. Therefore, we
select the last 3 frames with peak formation from each sequence and the first frame (neutral

https://pytorch.org/
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face) of each sequence, resulting in 1236 images. We follow previous work [9] to choose
1108 images for training and 128 images for testing.

The ExpW [54] dataset contains 91,793 images that are annotated by 1 of the 7 ex-
pressions. Since the official ExpW dataset does not provide training/testing splits, we
follow [17] to select 28848 for training, 28,853 for validating and 28,848 for testing.

The JAFFE [55] dataset collects 213 images from 10 Japanese females in lab-controlled
conditions. Here, we chose 170 images for training and 43 images for testing.

4.2. AdaFER for Unsupervised CD-FER

To evaluate the effectiveness of AdaFER, we compare several baseline methods with
our proposed AdaFER, using RAF-DB as the source dataset and testing on the CK+,
JAFFE, ExpW, FER2013, and FERPlus datasets We implement five baseline methods in total,
as follows:

• #1: We train the ResNet-18 (also pre-trained on MS-Celeb-1M) model on source data
and directly test on target data;

• #2: We first extract AUs for both the source and the target data, and then use the
AUs of each image in the target data to query the source data. Finally, we assign the
most-frequent category of retrieval images to the target image;

• #3: We first use the trained model on the source data to predict hard pseudo-labels of
the target data, then fine-tune the model on target data;

• #4: This method is identical to method #3, except that the predicted pseudo-labels are
kept as vectors (i.e., soft labels);

• #5: We use both the images and the detected AUs as inputs to train a classification on
the source set, and then fine-tune the model on pseudo-soft labelled target data.

The results are shown in Table 1. Several observations can be concluded, as fol-
lows: first, our AdaFER almost outperforms all other baseline methods by a large margin,
especially when testing on the lab-controlled CK+ and JAFFE datasets. Second, using
pseudo-labels (#3 and #4) to fine-tune model on target data also achieves large improve-
ments over #1. Third, the naive AU-based method (#2) performs better than method #1 on
the FERPlus and ExpW datasets, which indicates that AUs are useful among similar data.
Last, but not least, the naive AU-based method degrades in the lab-controlled FER datasets,
which suggests that there exists an AU domain gap between in-the-wild datasets and the
lab-controlled datasets. Nevertheless, our AdaFER mitigates the domain gap and achieves
large improvements on both the in-the-wild and the lab-controlled datasets.

Table 1. Performance (%) comparison between the proposed AdaFER and baseline methods. RAF-DB
is used as source dataset.

Method CK+ JAFFE ExpW FER2013 FERPlus

#1 70.54 46.51 61.53 52.91 62.40
#2 65.11 27.50 66.52 46.31 68.35
#3 74.42 55.81 68.13 55.89 63.81
#4 73.64 58.14 69.41 54.81 70.02
#5 71.32 53.49 73.58 57.15 77.99

AdaFER 81.40 61.37 70.86 57.29 78.22

Visualization of AU-guided annotating. To further investigate AdaFER, we visualize
the pseudo-labels of the target images annotated by the AGA module and baseline method
#3. We use our T-soft assignment and list the top three categories. As shown in Figure 4,
AGA achieves better results than baseline method #3. In the first six images, AGA assigns
the highest weights on the ground-truth category. The last two bad cases are extremely
ambiguous, even for humans, and our AGA seems to assign reasonable categories for them.
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Figure 4. Visualizations of pseudo-labels from baseline method #3 and our AGA module. BSA
represents baseline method #3.

4.3. Ablation Studies

We conduct ablation studies for the modules of our AdaFER and other hyper parameters.
The three types of label assignments. In AGA, we introduce three kinds of assign-

ment, namely, S-hard, T-hard, and T-soft. We explore individual types and their com-
bination on the CK+, ExpW, FERPlus, and FER2013 datasets. The results are shown in
Figure 5. For individual assignments, we observe that the T-soft strategy performs best
on average, followed by the S-hard strategy. Combining the T-soft and S-hard strategies
further boosts performance in most cases. We use this combination strategy by default in
the following experiments.

CK+ ExpW FERplus FER2013
Datasets

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

S-hard
T-hard
T-soft
S-hard & T-hard
S-hard & T-soft

Figure 5. Evaluation of pseudo-assignment strategies.

Anchor images in AGT module. In AU-guided triplet training, both the source and
target data can be used as anchor images. We evaluate the effect of the anchor images
in Table 2. As can be observed, using source data as anchor images largely outperforms
the target anchor scheme on the CK+ dataset, which may be explained by the target CK+
dataset being too small to collect enough triplet samples. Both individual anchor schemes
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perform similarly on large-scale datasets, and combining both schemes consistently boosts
performance on all datasets.

Table 2. Evaluation of the influences of anchor images on the AGA module.

Source Target CK+ ExpW FER2013 FERPlus
√

× 80.62 69.90 54.36 77.61
×

√
71.23 69.73 55.45 77.93√ √
81.40 70.86 57.29 78.22

AU-guided annotating (AGA) and AU-guided triplet training (AGT) are two crucial
modules in AdaFER, which, respectively, leverages pseudo-labels for target domain images
and constraints the distance structure of each triplet tuple. To explore the effectiveness
of each module, we conduct the evaluation on the CK+, ExpW, FER2013, and FERPlus
datasets. As shown in Table 3, both the AGA and AGT modules can individually improve
the baseline by a large margin, and they perform similarly on most of the datasets. This may
be explained by that both the AGA and AGT modules essentially resort to AU information,
and the only difference is that AGA performs supervision on the classifier, while AGT does
so on the feature mapping. Nevertheless, from the results of AGA+AGT, it is clear that they
compliment each other on all the datasets.

Table 3. Evaluation of AU-guided annotating (AGA) and AU-guided triplet training (AGT) on the
CK+, ExpW, FER2013, and FERPlus datasets.

AGA AGT CK+ ExpW FER2013 FERPlus

× × 70.54 61.53 52.91 62.40√
× 80.62 68.45 55.20 77.42

×
√

80.28 69.80 56.45 74.50√ √
81.40 70.86 57.29 78.22

The margin γ of the AGT module. γ is a margin parameter to control the distance
between the anchor-positive pair and the anchor-negative pair. Theoretically, it can be
a learnable parameter in the end-to-end framework. We evaluate it with both a fixed
mode and a learnable mode. The results are illustrated in Figure 6. For the fixed mode,
we evaluate a margin from 0.25 to 1.5, with 0.25 as the interval. On all of the four FER
datasets, our default margin γ = 0.5 achieves the highest performance. Larger margins
make training harder, which degrades performance on the CK+ and ExpW datasets. For the
learnable mode, γ, respectively, converges to 0.62 (±0.034), 0.37 (±0.067), 0.71(±0.026),
and 0.42(±0.033) on the CK+, ExpW, FERPlus, and FER2013 datasets. Meanwhile, the learn-
able γ also obtains competitive results.

CK+ ExpW FERplus FER2013
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Figure 6. Evaluation of the margin parameter (γ), and the trade-off ratios ε and β.
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The trade-off ratios β and ε. β is the trade-off ratio between two loss values calculated
by the pseudo-labels and ground truths in Equation (2). ε is the trade-off ratio between
Lc and Ltri. We evaluate them from 0.0 to 2.0, with 0.25 as the interval on the FERPlus
dataset, and present the results in Figure 6. For both β and ε, the final performance
increases gradually and reaches the peak in value 1.0. Larger values degrade performance
dramatically, which illustrates that all the loss items are almost equally important.

The threshold for hard-negative mining of triplet samples. For triplet selection, we
sort the AU scores and set a threshold for negative mining. We evaluate the threshold from
0 to 0.75 in Table 4. On all datasets, increasing the threshold from 0 to 0.5 boosts performance
largely. A too-small threshold could result in zero triplet loss since the triplet samples are
too easy. A too-large threshold may introduce hard-positive samples as negative ones,
which is harmful for training.

Table 4. Evaluation of the threshold for hard-negative mining.

Threshold CK+ ExpW FER2013 FERPlus

0 68.99 65.24 52.21 66.68
0.25 72.03 68.23 56.23 74.23
0.5 81.40 70.86 57.29 78.22

0.75 80.96 69.12 55.80 77.72

4.4. Comparison with State-of-the-Art Methods

Table 5 compares our AdaFER with 13 state-of-the-art (SOTA) methods in the CD-FER
task. The methods from the bottom table use RAF-DB as the source dataset, and those from
the upper table use other datasets. As shown in Table 5, our AdaFER achieves competitive
results compared to the SOTA methods. Zavarez et al. [56] achieve SOTA quality on CK+
using six datasets. ECAN [42] obtain SOTA quality on the JAFFE and FER2013 datasets
using a model pretrained on VGGFace2 and then fine-tuned on RAF-DB2.0, which is not
publicly available. For fair comparison, the methods in the bottom part of Table 5 use
the same source dataset and backbone. The mean accuracy over all target datasets is also
computed for easy comparison. Our AdaFER obtains accuracy values of 81.40%, 61.37%,
57.29%, and 70.86% on the CK+, JAFFE, FER2013, and ExpW datasets, respectively, which
are the new state-of-the-art CD-FER results for these datasets. Moreover, our AdaFER does
not increase any computing cost in the inference phase. AGRN [17] needs to extract holistic
and local features to initialize the nodes of the target domain in the inference stage, which
is time-cosuming. LPL [11] relies on the assumption of both the source and target domains.

To evaluate the robustness of our method on different source datasets, we also
show the performance of CD-FER using FERPlus as the source dataset. Note that the
FER2013 dataset has the same images as FERPlus; therefore, we ignore its performance on
FER2013. Our AdaFER also improves the baseline method (#3) by a large margin in terms
of mean accuracy.

Understanding AU-guided learning. To better understand the differences between
the baseline method (#3) and our AdaFER, we utilize the T-SNE method to illustrate the
feature distributions of the test sets of the CK+ and FERPlus datasets. The results are shown
in Figure 7. We can find that our AdaFER can learn more compact features than the baseline
in unsupervised CD-FER tasks. For CK+, “Neutral” samples are the most scattered ones
for the baseline method; AdaFER can cluster them dramatically. For FERPlus, the samples
of same categories are clustered compactly, while those of different categories are largely
separated. These illustrates the reason why AdaFER improves the baseline dramatically.
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Table 5. Comparison of the state-of-the-art methods on the CK+, JAFFE, FER2013, and ExpW datasets.
The results of upper part are taken from the corresponding papers, and the results of the bottom part
are taken from the implementation of a cross-domain facial expression recognition benchmark [57].
The last column shows the mean accuracy of the performances on all the datasets.

Methods Source Dataset Backbones CK+ JAFFE FER2013 ExpW Mean

Da et al. [58] BOSPHORUS HOG and Gabor Filters 57.60 36.2 - - -
Hasani et al. [59] MMI and FERA and DISFA Inception-ResNet 67.52 - - - -
Hasani et al. [60] MMI and FERA Inception-ResNet 73.91 - - - -
Zavarez et al. [56] Six Datasets VGG-Net 88.58 44.32 - - -

Mollahosseini et al. [61] Six Datasets Inception 64.20 - 34.00 - -
DETN [62] RAF-DB Manually Designed Net 78.83 57.75 52.37 - -
ECAN [42] RAF-DB 2.0 VGG-Net 86.49 61.94 58.21 - -

CADA [63] RAF-DB ResNet-18 73.64 55.40 54.71 63.74 61.87
SAFN [64] RAF-DB ResNet-18 68.99 49.30 53.31 68.32 59.98
SWD [65] RAF-DB ResNet-18 72.09 53.52 53.70 65.85 61.29
LPL [11] RAF-DB ResNet-18 72.87 53.99 53.61 68.35 62.20

DETN [62] RAF-DB ResNet-18 64.19 52.11 42.01 43.92 50.55
ECAN [42] RAF-DB ResNet-18 66.51 52.11 50.76 48.73 54.52
AGRA [17] RAF-DB ResNet-18 77.52 61.03 54.94 69.70 65.79

AdaFER RAF-DB ResNet-18 81.40 61.37 57.29 70.86 67.73
Baseline (#3) FERPlus ResNet-18 64.34 41.86 - 66.64 57.87

AdaFER FERPlus ResNet-18 65.12 46.51 - 73.58 61.47

CK+ FERplus

Baseline

AdaFER

Baseline

AdaFER

Surprise Fear NeutralHappyDisgust Sad Angry

Figure 7. Visualization of the feature distributions on the CK+ and FERPlus datasets. The top and
bottom parts show the feature distributions using the baseline method and AdaFER, respectively.

5. Conslusions

In this paper, we address the unsupervised domain-adaptive facial expression recogni-
tion task with auxiliary facial action units. Our method is very different from existing cross-
domain FER methods, which typically follow generic cross-domain methods. Specifically,
we proposed an AU-guided unsupervised domain-adaptive FER (AdaFER) framework,
which includes an AU-guided annotation module and an AU-guided triplet training mod-
ule. We evaluated several AU-guided annotation strategies and triplet selection methods.
Extensive experiments on several popular benchmarks have shown the effectiveness of
our AdaFER.
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Limitations and future work. Since our method resorts to AU for consistent labeling,
the accuracy of AU detection may be limited. In addition, our method actually only focuses
on the label bias of different datasets; thus, the data bias problem in both FER and AU
detection can be our future work.
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