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Abstract: Femtosecond optical measurements of photoexcitable molecular crystals carry ultrafast 
dynamics information with structural sensitivity. The creation and detection of transient dynamics 
depend on the optical parameters, as well as the explicit molecular structure, crystal symmetry, 
crystal orientation, polarisation of the photoexciting beam, and interaction geometry. In order to 
retrieve the linear and non-linear population transfer in photoexcited crystals, excitation theory is 
combined here with the calculation of birefringence decomposition and is shown for both the gen-
eralised uniaxial and biaxial systems. A computational tool was constructed based on this treatment 
to allow modelling of electric field decomposition, dipole projections, and non-linear excitation pop-
ulation levels. This is available open source and with a GUI for ease of use. Such work has applica-
tions in two areas of ultrafast science: multidimensional optical crystallography and femtosecond 
time-resolved X-ray crystallography. 

Keywords: SFX; TR-SFX; crystallography; XFEL; 2DES; birefringence; non-linear excitation;  
population dynamics 
 

1. Introduction 
Molecular physics applications in ultrafast science are rapidly developing in multiple 

areas of spectroscopy and X-ray diffraction. Here, we consider the application of ultrafast 
techniques to single crystal studies, with the aim to interpret and exploit the structural 
sensitivity of the information obtained from photoinduced dynamics. 

Practical approaches for quantitative analysis of ultrafast processes in crystals com-
bine the areas of crystal optics, X-ray crystallography, and non-linear optical excitation 
theory. The basis for this approach is formed by the electric field decomposition in the 
presence of birefringence, and the resulting linear combination of the separate field-dipole 
interactions for the orthogonal modes that solve Maxwell’s equations in anisotropic me-
dia. In the area of ultrafast spectroscopy, two-dimensional electronic spectroscopy (2DES) 
is a powerful technique that provides ultrafast dynamics information [1,2]. The method-
ology, analysis, and theory of 2DES [3] is highly advanced and has shown many fascinat-
ing examples and results for complex materials, including photosynthesis [4,5], solid state 
physics, and solar cell science [6]. Two-dimensional electronic spectroscopy measure-
ments intrinsically have ultrafast time resolution and can be applied to a multitude of 
molecular processes for isolated pigments, as well as structures and aggregates with weak 
or strong coupling. There are very similar considerations for two-dimensional infrared 
spectroscopy of oriented single crystals and other four-wave mixing techniques such as 
time-domain impulsive Raman spectroscopy. There are many different types of ultrafast 
and non-linear spectroscopy experiments. Experimentally, ultrafast spectroscopy typi-
cally uses femtosecond optical pulses that are resonant with electronic and/or vibrational 
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transitions and create and interrogate coherences and populations in molecular systems. 
Recently, the theoretical framework was shown for two-dimensional spectroscopy meas-
urements of oriented single crystals [7]. This is a unique application, where the non-linear 
spectroscopy measurement is sensitive to explicit molecular structure, crystal symmetry, 
crystal orientation, and polarisation of the incident field. The third-order response of mo-
lecular crystals is generally different from that of isotropic solutions. Depending on the 
crystal symmetry, the interesting case arises where selected Feynman pathways that con-
tribute to the overall third-order response become symmetry-disallowed, whereas the al-
lowed pathways are weighted via the symmetry progressions of the four-point correlation 
functions for each individual coherence. An analytical calculation of the resulting four-
point correlation functions was shown, from the initial result of using crystal classes or 
reduced point-group symmetries, to include all point-group symmetries following defi-
nition of additional zero-valued tensor elements [7]. The method therefore adheres to 
Neumann’s Principle, which states that the symmetry elements of any physical property 
of a crystal must include the symmetry elements of the point group of the crystal [8]. The 
theory was shown and demonstrated for selected polarisation conditions that correspond 
to the principal directions of refractive indices. Here, we provide a set of tools to model 
the electric field decomposition and associated dipole projections in a more generalised 
approach to extend such measurements to include all crystal orientations and polarisation 
directions, excluding the isotropic directions of the optic axes. 

We emphasise that serial femtosecond crystallography (SFX), which is an emerging 
technique at X-ray free-electron laser facilities (XFELs) [9–11], could benefit from the con-
sideration of this orientation-sensitive information that arises from crystal photoexcita-
tion. Using pump-probe techniques, femtosecond time resolution has been achieved for 
X-ray crystallography of macromolecules. The SFX approach relies on collecting many 
stationary diffraction images of micrometre-sized crystals in a distribution of random ori-
entations. Typically, many thousands of individual crystals are measured. Scaling and 
merging techniques then find the magnitudes of the structure-factor amplitudes that are 
used for structure solution. Importantly, this analysis is also generally applied to time-
resolved, pump-probe SFX data. The different crystal orientations, however, result in dif-
ferences of linear and non-linear population dynamics, such that the usual methodology, 
which averages over all orientations, loses this information that is intrinsically present in 
the dataset. Furthermore, averaging suppresses the light-induced differences relative to 
orientations that maximise the interactions. Such phenomenon can be particularly rele-
vant for low quantum yield (<10%) reactions where the signal to noise ratio is a significant 
issue. Another observation is that, since SFX datasets already contain orientational infor-
mation for each indexed frame, the methodology we propose can be retroactively applied 
to previously collected datasets.  

A general method has previously been proposed for the calculation of populations 
from photoexcitation in oriented uniaxial crystals (which include trigonal, tetragonal, and 
hexagonal point-group symmetries) [12]. Here, we extend the analysis to include biaxial 
crystals and provide practical methods and a set of tools for decomposing the electric field 
of the pump laser and calculating the associated modified dipole projections. Further-
more, we provide practical guidance and methods to deal with crystal orientation, indic-
atrix determination, indexing, and molecular structure transforms, as well as solving am-
biguities where these arise. We go on to describe and present a computational toolbox that 
combines birefringence decomposition and calculation with non-linear excitation theory. 
The toolbox is presented for the purpose that it can be applied to specific examples and 
systems in two-dimensional optical crystallography and in TR-SFX. The toolbox is pro-
vided as open source and is user friendly, including a graphical user interface and worked 
examples. 
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2. Crystal Orientation and Practical Determination of Principal Indices of Refraction 
The following provides a summary and practical guidance to determine crystal ori-

entation, as well as how the measurement and determination of the directions and values 
for the principal indices of refraction can be carried out. This is necessary since the meth-
ods for calculation of population transfer in Sections 4 and 6 will be presented in this co-
ordinate frame. In order to add the molecular dynamics modelling, the crystallographic 
axes must be rotated onto the optical frame. Most of the following information is available 
in standard texts of crystallography and mineralogy such as Nye (1959) [8]. However, 
methods commonly used in mineralogy are rarely used in protein crystallography or 
chemical crystallography and are worth summarising for these specific purposes. 

Firstly, we summarise the crystal classes with respect to the directions of principal 
indices of refraction. These can be represented by the optical indicatrix. This three-dimen-
sional ellipsoid is given by the following: ݔଶ݊ଵଶ + ଶ݊ଶଶݕ + ଶ݊ଷଶݖ = 1 (1)

where ݊ଵ, ݊ଶ, and ݊ଷ are the principal refractive indices of the crystal. 

2.1. Uniaxial Crystals 
For uniaxial crystals, ݊ଵ = ݊ଶ  and the optical indicatrix is rotationally symmetric 

about the optic axis. The optic axis here corresponds to the direction of the high-symmetry 
crystallographic axis. A ray travelling along this direction in the crystal encounters an 
isotropic medium and double diffraction does not occur. Uniaxial crystals have two prin-
cipal axes of refraction and magnitudes of refractive index associated with them. For trig-
onal, tetragonal, and hexagonal point-group symmetries, the index ellipsoid is always ro-
tationally symmetric. The consequence is that the decomposition of polarised radiation by 
double refraction only depends on the angle between the ray direction and the optic axis. 
When the polarisation direction is along one of the two principal axes of refraction, no 
double refraction occurs, given that the component in the other direction is zero. For an 
incident k-vector, the intersection plane between the normal of the k-vector and the indic-
atrix of a uniaxial crystal produces an ellipse (Figure 1 left & middle). The semi-axes of 
this ellipse correspond to the orthogonal radiation modes that solve Maxwell’s equations 
for anisotropic media. Thus, for any k-vector direction the polarisation direction of these 
modes is invariant and the initial polarisation of the incident wave is decomposed along 
these modes and determines their amplitudes accordingly. This treatment disregards at-
tenuation, which will result in a circular polarisation. For many practical examples, atten-
uation is limited and this approximation can be made. In practice, micrometre-sized pro-
tein crystals have relatively low absorption values (<0.3 OD) due to the large unit cell that 
contains only a single or a few chromophores. If larger crystals are studied, the measure-
ment of dichroic absorption along the principal axis will allow a straightforward modifi-
cation of the birefringence decomposition for low attenuation to allow for circular polari-
sation conditions. For crystals of small molecules, the optical density is much larger and 
optical penetration may be insufficient, even to allow transmission measurements. Reflec-
tion measurements are more appropriate for such materials. Similarly, optical activity is 
disregarded but would have only a very small effect on the indicatrix. Although in iso-
lated cases optical activity could modify the directions of decomposition, this is rare and 
possible only if the index differences in the absence of a field are very close in magnitude. 
Consequently, optical activity is also neglected in the following description. Therefore, 
explicit measurements of the magnitude of the indices of refraction and of the intrinsic 
birefringence are not necessary for uniaxial symmetries for the purpose of analysis of lin-
ear and non-linear population dynamics. 
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Figure 1. Negative uniaxial (left), positive uniaxial (middle), and biaxial (right) indicatrix represen-
tations. The plane that is normal to the input k-vector bisects the indicatrix to create an ellipse, the 
semi-major axis of which are the decomposed electric field vectors. Due to symmetry one of the axes 
in the uniaxial case is always the same (݊௢). In the biaxial case the polarisation of the incident ray 
(P) is shown to decompose into e1 and e2 along the axis as defined by the semi-axis of the ellipse 
 .(௠௔௫ݎ̂ & ௠௔௫ݏ̂)

2.2. Biaxial Crystals 
For biaxial symmetries, it is necessary to obtain values for all three principal refrac-

tive indices (Figure 1), in addition to a determination of their directions in the crystallo-
graphic frame, depending on the presence or absence of two-fold symmetry elements in 
their point group. Triclinic, monoclinic, and orthorhombic symmetries belong to the crys-
tal classes that are biaxial, where ݊ଵ ≠ ݊ଶ ≠ ݊ଷ. In triclinic crystals, the absence of sym-
metry elements causes there to be no relation between the directions of the principal re-
fractive indices and the crystallographic directions, other than by coincidence [7,8,13,14]. 
In order to measure and obtain this relationship, it is necessary to combine birefringence 
measurements in the polarising microscope together with an indexing determination for 
the crystal morphology. Starting with the latter, measurements of the angles between crys-
tal faces using the microscope and an appropriate three-axis rotation stage can result in 
unambiguous indexing for selected or all crystal faces. The unit cell dimensions must be 
determined by X-ray crystallographic indexing using rotation ranges. This approach will 
be facilitated if crystal faces include singular indices rather than higher order indices. This 
condition is met for many protein crystals [15]. If indexing by visual means fails, it will be 
necessary to perform a face-indexing using X-ray crystallography, which provides the ori-
entation matrix for the correct indexing solution. Monoclinic crystals include one two-fold 
symmetry axis, which by convention is the b-axis. The two-fold symmetry ensures that 
one of the principle refractive index axes is in the direction of the crystallographic b-axis. 
The consequence is that, for a k-vector perpendicular to the b-axis, double refraction oc-
curs such that one polarisation direction corresponds to the b-axis and is furthermore 
wavelength-independent. For any other k-vector, knowledge of the directions of n1 and n3 
and their values is needed. For orthorhombic crystals, each axis is associated with a two-
fold symmetry operation which fixes the directions of the principle refractive indices in 
the crystallographic directions. Indexing of orthorhombic crystals may present particular 
challenges. The unit cell is rectangular, and crystals may either appear rectangular or 
show more facets (e.g., they can have a dodecahedral shape). The visual measurement 
under the microscope of the interfacial angles, together with the unit cell dimension in-
formation, can usually allow indexing in this manner [15]. When crystal morphology is 
rectangular, or appears rectangular in at least four directions, the crystal faces can either 
reflect the orientation of the unit cell or they are combination directions. As an example, 
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Perutz showed that orthorhombic crystals of carboxy-haemoglobin appear almost square 
in cross section, but end in bipyramidal prisms with {1 1 1} faces. The faces for the central 
part with a square cross section are {1 1 0} [16]. The direction of the principal refractive 
indices can therefore be determined; however, there can arise an ambiguity for assign-
ment of index to those directions. Typically, X-ray crystallographic face indexing is 
needed. In general, for biaxial crystals it is necessary to make measurements of the mag-
nitude of all three refractive indices ݊ଵ, ݊ଶ, and ݊ଷ and of the intrinsic birefringence val-
ues. 

In order to make measurements of the magnitude of birefringence, it is first necessary 
to orient crystals according to a known index. Crystals must also be embedded in mother 
liquor such that refraction at the surface is minimised. Mounting in quartz capillaries can 
aid in this part. When birefringent crystals are viewed under crossed polarisers, two situ-
ations can result in extinction. Either the view is along one of the two optic axes (in which 
case the crystal appears to be optically isotropic) or one of the principal axes of refractive 
index is aligned with a polariser direction. Consequently, under these conditions, the crys-
tals will appear bright under parallel polarisers. When a crystal is rotated to the extinction 
point, all colours vanish and the view appears dark. To measure the difference in refrac-
tive index between principal axes, the crystal is rotated 45° away from the extinction point 
and a Berek compensator is inserted in the light path between the polarisers. 

The retardance (ܴ) between two waves is the product of the birefringence (Δ݊) and 
the optical path length through the crystal (d) and must also be measured: ܴ = ∆݊ × ݀ (2)

The retardance is also given as a function of the wavelength ߣ଴ and the phase differ-
ence ߶ between the waves: ܴ = (߶ × ଴)/2 (3)ߣ

The fast axis of the Berek compensator should be along the slow axis of the crystal in 
order to arrive at a measurement of compensation of retardance. The compensator is cal-
ibrated such that the retardance value can be read after rotation of the drum, once the 
extinction point is obtained. The Δ݊௔,௕,௖  values measured in the a,b and c directions 
should be measured individually. In addition, these values are related according to: Δ݊௔ = Δ݊௕ − Δ݊௖ (4)

where Δ݊௔ = ݊௖ − ݊௕, Δ݊௕ = ݊௖ − ݊௔, Δ݊௖ = ݊௕ − ݊௔,  if Δ݊௔ is the smallest birefringence 
and Δ݊௕ is the largest birefringence. This relationship allows the verification of the inde-
pendent intrinsic birefringence measurements. 

The values of birefringence of crystals are typically in the range of 10−2–10−4 [15]. An 
alternative to the Berek compensator measurement uses the conventional Michel-Levy 
chart [17]. The method is less precise and only provides an estimate. In addition, since 
Newton’s series appear in multiple orders, there may be uncertainty in the order of as-
signment. Using either visual colour determination or a spectrometer measurement, there 
may also be significant error in the estimate of birefringence determination using this 
method. In optical mineralogy, the phase contrast (or oblique illumination) method would 
additionally provide a means for estimating the refractive indices, but this requires im-
mersion in liquids with a large refractive index [18].  

An additional method that is used in optical mineralogy that may be useful for cer-
tain cases of resolving indexing ambiguity is conoscopy analysis. Conoscopy is the exam-
ination of the interference figures and colour patterns in the focal plane of the microscope 
objective lens, produced by an anisotropic crystalline section viewed under convergent 
light illumination and crossed polarisers. This method requires the use of a Bertrand lens 
or phase telescope, or alternatively, a conoscope lens that is used in the polarising micro-
scope. The method may be less suitable for protein crystals, as single crystals need to fill 
the field of view or they must be in an aperture to view the interference image. Conoscopy 
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images are instructive when viewing either in the direction of an optic axis or perpendic-
ular to an optic axis. The optics allow a two-dimensional projection and view of the inter-
ference pattern and colours. Conoscopy can directly distinguish uniaxial and biaxial crys-
tals. The use of waveplates and quarter waveplates allow the identification of negative 
and positive crystals, hence aiding in the assignment of fast and slow crystal axes [19]. For 
biaxial crystals, conoscopy can also show the angle between the two optic axes, which is 
an independent verification of the indicatrix modelling following the index determina-
tion. 

In order to construct the indicatrix, the absolute values of the principle refractive in-
dices should be determined. The mean refractive index 〈݊〉  can be derived from the value 
of the index increment ܿߜ/݊ߜ for a different concentration in solution, in combination 
with the calculated concentration in the crystal from the unit cell dimension. 〈݊〉 = ݊௦௢௟௩௘௡௧ + ܿߜ௦௔௠௣௟௘݊ߜ) ) × ܿ (5)

For example, a value of index increment 0.187 = ܿߜ/݊ߜ mL/g was measured at the 
wavelength of 436 nm by Holtzer et al. [20] for the protein tropomyosin. 

2.3. Cubic Crystals 
Finally, we briefly consider cubic crystals. Crystals with point-group groups 432, 4ത3m, 23, m3, or m3m are not doubly refracting and also appear isotropic in the linear 

optical response. However, the non-linear optical response of cubic crystals does not equal 
that of isotropic solutions and samples. Specifically, isotropic materials have 21 non-zero 
third-order susceptibility tensor elements, of which only 3 are independent. Isotropic ma-
terials have 60 zero-valued third-order tensor elements in the dipole approximation [21]. 
All cubic point groups also show 21 non-zero tensor elements; however, 7 of those are 
independent for 23 and m3 point groups, and 4 are independent for 432, 4ത3m, and m3m 
point groups. As an example, the isotropic tensor element ߯௬௬௭௭  also equals ߯௭௭௬௬ , 
whereas for point groups 23 and m3 it does not; rather, ߯௬௬௭௭  also equals ߯௭௭௫௫  and ߯௫௫௬௬. Then, for point groups 432, 4ത3m, and m3m, ߯௬௭௬௭  is equal to the same elements as 
those in isotropic materials, but the independent group ߯௫௫௫௫ =  ߯௬௬௬௬ =  ߯௭௭௭௭ appears 
which does not follow the isotropic sum rule ߯௫௫௫௫ = ߯௫௫௬௬ + ߯௫௬௫௬ + ߯௫௬௬௫. Therefore, 
non-linear behaviour of cubic crystals is distinct from isotropic solutions. The non-linear 
optical response for crystal symmetries has been discussed previously and is more appro-
priately quantified in terms of the response-function formalism [7]. This is beyond the 
scope of this paper. The objective here is to generalise the use of non-linear cross sections 
in combination with birefringence decomposition. 

3. Rotation Matrix for Transition Dipole Moment to the Optical Frame 
The objective of this contribution is to compute the linear and non-linear population 

transfer following birefringence decomposition of an arbitrary k-vector, with an emphasis 
on showing its application to the more challenging biaxial symmetries. The combination 
of crystal optics that evaluate birefringence decomposition in the explicit molecular frame 
and non-linear excitation theory is the key technique for analysis and is explicitly shown 
for biaxial crystals for the first time here. The X-ray crystallographic coordinates from the 
structure solution are needed as the first step in the analysis. Typically, quantum chemical 
calculations of transition dipole moments are conducted in the molecular frame using 
quantum chemistry methods. Electronic transitions are often accurately found at the TD-
DFT level using an appropriate density functional, such as CAM-B3LYP in the case of 
light atoms [22]. With Cartesian coordinates in the crystallographic directions, an Euler 
rotation matrix then transforms this direction to the optical frame [14] (Figure 2). In the 
following, all optical calculations are performed in the coordinate frame of the principal 
refractive indices. 
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Figure 2. For the example of a triclinic unit cell (left), there is no relation between the crystallo-
graphic Cartesian axes (a, b, c; green) and the principal optical directions (n1, n2, n3, red). The indic-
atrix is not shown. A transition dipole moment vector μ in the crystallographic coordinate frame is 
transformed to the optical frame by Euler rotation (Euler angles κ, λ, ν; right). 

4. Electric Field Decomposition Using the Indicatrix 
The decomposition of the electric field in uniaxial and biaxial crystals has been pre-

viously described by Sage et al. [14] and others [13].  
In a uniaxial crystal, due to symmetry, the refractive index in two of the crystal axes 

is equal (݊ଵ = ݊ଶ  ≠ ݊ଷ). This results in the field decomposing into an ordinary (݁௢) and 
extraordinary (݁௘) optic axis, where the refractive index of the ordinary is ݊௘೚ = ݊ଵ = ݊ଶ, 
whereas that of the extraordinary depends on the angle of the incident ray vector ( ෠݇) and 
the high-symmetry axis ߠ௞, such that ݊௘೐ = ݊ଷ cos  ௞. As previously stated, this is trueߠ
except in the special case of ߠ௞ → 0, where ෠݇ is aligned down the optic (high-symmetry) 
axis and the crystal appears isotropic. 

In a biaxial crystal (݊ଵ ≠ ݊ଶ ≠ ݊ଷ), the decomposed electric field vectors are deter-
mined by the extrema of the ellipse that bisects the indicatrix ellipsoid in the plane normal 
to ෠݇ (Figure 1 right). In our model, we determine these vectors numerically for each ෠݇ or 
crystal orientation. A random vector is generated perpendicular to ෠݇, (̂ݎ) and normalized, 
and the cross product of the two is used to find the third corresponding perpendicular 
vector (̂ݏ). Then, ̂ݎ and ̂ݏ are iteratively rotated about ෠݇ (i.e., in the plane of the ellipse as 
shown in Figure 1) until the maxima solutions of Equation (1) are found (those being the 
semi-major axes of the ellipse). It is important to note that this method requires the condi-
tion that ݊ଷ > ݊ଵ & ݊ଶ. Figure 3 shows the calculation of the intrinsic birefringence by 
computing the difference between the refractive index of the two decomposed vectors as 
a function of orientation such than minima represent points where the axis are equal and 
hence the location of the optic axes. This was performed for two test case crystals using 
the literature values of refractive index for topaz and muscovite, in can be seen how the 
relative distribution of the refractive indices determines the position of the optic axes. 
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Figure 3. Calculation of intrinsic birefringence by subtraction of indicatrix projection ellipse semi-
major axes from each other as a function of ߠ௞ & ߶௞. Distributions are shown in 2D (left) and 3D 
spherical (right) projections for a topaz crystal (a,b) with refractive indices of ݊ଵ = 1.618, ݊ଶ =1.620, and ݊ଷ = 1.627  and muscovite (c,d) crystal with indices ݊ଵ = 1.563, ݊ଶ = 1.596, and ݊ଷ =1.601. Maxima denote areas of high birefringence while the minima correspond to points where the 
refractive indices are equal and hence an optic axis. The small differences in refractive index cause 
a significant difference in separation of the optic axes as seen in the 3D projections (black lines). An 
example of a uniaxial crystal is shown in the Supplementary Materials. 

5. Dipole Projections  
From Sage et al. [14] the absorption in a particular direction for a biaxial crystal is 

given as: 

ܣ =  ෍ 3߳ఈఈ ܿ݀ 1݉ ෍൫̂ߤఈ௝ ∙ ݁̂൯ଶ௠
௝ୀଵ  (6)

In orthorhombic space groups, the two-fold symmetry in all three principal direc-
tions results in the coincidence of the principal optic axes being with the crystal axes, and 
also the value of ൫̂ߤఈ௝ ∙ ݁̂൯ଶ being invariant in the two-fold rotation such that the transition 
dipole orientations can be described with respect to the crystallographic axes [14]: ̂ߤఈ௝ = ൫sin ఈ௝ߠ cos ߶ఈ௝ , sin ఈ௝ߠ sin ߶ఈ௝ , cos ఈ௝൯ (7)ߠ

where ߠ and ߶ are the polar and azimuthal angles, measured with respect to the chosen 
crystal axis. In monoclinic space groups there is only one two-fold symmetry direction 
that results in the alignment of one optic axis with the crystallographic b-axis. However, 
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in triclinic space groups the absence of symmetry elements causes there to be no relation-
ship between the crystallographic and optical directions. Therefore, we present the treat-
ment for biaxial crystals only in relationship to the optical directions. In this work, we 
define these angles with respect to the high refractive index axis (Figure 1 right). This 
results in the dipole projection being simply the square projection of these two vectors 
summed over all dipoles within the asymmetric unit, 〈(̂ߤ ∙ ݁̂)ଶ〉.  

In the uniaxial case, the value of 〈(̂ߤ ∙ ݁̂)ଶ〉 is strongly impacted by the rotational sym-
metry of the system [12,14], resulting in:  〈(̂ߤ ∙ ݁̂ଷ)ଶ〉 = cosଶ ߤ̂)〉ௗ (8)ߠ ∙ ݁̂ଵ)ଶ〉 = ߤ̂)〉  ∙ ݁̂ଶ)ଶ〉 = ½ sin ௗ (9)ߠ

where ݁̂ଷ is the high-symmetry axis. Combining (8) & (9) with ෠݇ in spherical coordinates 
gives the total value: 〈(̂ߤ ∙ ݁̂)ଶ〉 = ሾܿݏ݋ଶߠ௞cosଶ θୢ , sinଶ ௞ߠ ½ sinଶ ௗߠ , ½ sin ௗሿߠ ቈݖݕݔ቉ (10)

The first observation is that this value is invariant in ߶ௗ. Secondly, when looking at 
the distributions over all values of ෠݇ (see Supplementary Materials and [12]) it can be 
seen that dipoles aligned parallel to the high-symmetry axis result in a larger variation of 〈(̂ߤ ∙ ݁̂)ଶ〉, with a significant number of orientations where the term is actually suppressed. 
Conversely, when the dipole is oriented perpendicular to the high-symmetry axis, the 
maximum value that 〈(̂ߤ ∙ ݁̂)ଶ〉 is suppressed by is a factor of 2, though it is also noted that 
non-zero values are obtained over a larger number of orientations [12]. 

6. Linear and Non-Linear Excitation Calculations 
Photoexcitation is modelled, as in Hutchison et al. [12], with a three-level system of 

ground-(ܵ଴), first-( ଵܵ), and second-(ܵଶ) excited state. The populations are calculated using 
the following rate equations: 

ௌܰబ(ݐ) = ௌܰబ(−∞) exp ቈߪௌబ→భ(ݐ)ܨℏ߱ ቉ (11)

ௌܰభ(ݐ + (ݐ݀ = ௌܰబ(−∞) ቆ1 − exp ቈߪௌబ→భ(ݐ)ܨℏ߱ ቉ቇ − ௌܰమ(ݐ) (12)

ௌܰమ(ݐ) = ௌܰభ(ݐ) ቆ1 − exp ቈߪௌభ→మ(ݐ)ܨℏ߱ ቉ቇ (13)

where ௌܰ೙ is the population of the ܵ௡ state, ௌܰబ(−∞) is the ground-state population cal-
culated from the absorption, ߳ௌబ. ߪ௡ is the cross section of that state transition, and (ݐ)ܨ  
and ߱ are the temporally integrated flux and central frequency of the excitation pulse, 
respectively. To incorporate the effect of the electric field decomposition, the pulse energy 
of each optic axis (ܧ௘೙) is scaled by the dot product of that axis with the polarisation vector. 
The dipole projections are used to scale ߪ௡ such that ߪ௡(ݐ)ܨ can be written as [12]: ߪ௡(ݐ)ܨ =  ሾ〈(̂ߤ ∙ ݁̂ଵ)ଶ〉 ∙ ூሿߪ3  ∙  Fୣభ(ݐ)݀ݐ + ሾ〈(̂ߤ ∙ ݁̂ଶ)ଶ〉 ∙ ூሿߪ3 ∙ (14)  (ݐ)௘మܨ

where 〈(̂ߤ ∙ ݁̂)ଶ〉 is the total averaged dipole projection in the ݁̂௡ optic axis and ߪூ is the 
averaged isotropic cross section, as determined by spectroscopy on a solution or randomly 
oriented crystalline samples. An example of this calculation performed on a single orien-
tation for several different pulse energies and values of 〈(̂ߤ ∙ ݁̂)ଶ〉 is shown in Figure 4. 
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Figure 4. Modelled populations of ܵ଴, ଵܵ, and ܵଶ as a function of pulse energy for different ෠݇ ori-
entations, which resulted in weak (a), medium (b), and strong (c) optical pumping. In each case the 
cross sections were ߪௌబ→ௌభ = 7.3 ×  10ିଵ଻ cm−1, ߪௌభ→ௌమ = 3.32 ×  10ିଵ଼cm−1, and ߪௌ೙೗ = 4.6 ×  10ିଵ଻ 
cm−1 and the spot size was 100 μm (FWHM). These values were chosen based on those recorded for 
PYP in [23], with the exception that ߪௌభ→ௌమ was 10 times larger than that reported for demonstration 
purposes. 

7. Toolkit Program 
A computational toolbox was constructed to allow the straightforward modelling of 

the electric field decomposition, associated dipole projections, and linear and non-linear 
optical excitation in uniaxial and biaxial crystals. It was constructed in python3 using the 
Anaconda [24] libraries and includes a graphically user interface (GUI) for ease of use. 
The code is open source and available at https://github.com/cdmhutchison/Xtal-orienta-
tion-excitation (accessed on 22-04-2022). 

It consists of two main functions: 
The first uses the theory described in Sections 3 and 4. For a given (i) crystal type 

(uniaxial or biaxial), (ii) principal refractive indices, and (iii) dipole orientations, the code 
scans ෠݇ over all polar (ߠ௞), azimuth (߶௞), and roll (߰௞) angles and generates arrays of 
electric field decompositions and associated values of 〈(̂ߤ ∙ ݁̂)ଶ〉. Depending on which 
frame is being considered, ߰௞ can correspond to the rotation of the crystal or the polari-
sation of the incident field. 

The second function takes electric field vectors and values of 〈(̂ߤ ∙ ݁̂)ଶ〉 and uses the 
molecular extinction coefficients (߳) for linear excitation (߳ௌబ→ௌభ), sequential double excita-
tion (߳ௌభ→ௌమ), and nonlinear absorption (߳௡௟), along with the crystal optical density and 
excitation pulse parameters to calculate the populations after excitation as described in 
Section 5.  

8. Biaxial Crystal Modelling Examples  
Figure 5 shows modelled electric field and dipole projection distributions for two 

biaxial protein crystals with different refractive index distributions. A single dipole was 
included in the asymmetric unit aligned below the c-axis. In the first case (Figure 5a–c), 
the optic axis was aligned closer to the c-axis (Figure 3a,b); as such, the result was close to 
that of a uniaxial crystal with a dipole aligned to the high-symmetry axis. A large angular 
dependence was seen on ߠ௞ with close to zero dependence on ߰௞. The biaxial birefrin-
gence manifested with a small dependence on ߶௞, particularly near to the optic axis.  
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In the second case (Figure 5d & Supplementary Materials), the effect was far more 
pronounced as the optic axes are closer together and nearly perpendicular to the dipole 
projection. The result was a highly modified distribution of ܧଵ ∗ ߤ̂)〉 ∙ ݁̂ଵ)ଶ〉 + ଶܧ ߤ̂)〉∗ ∙ ݁̂ଶ)ଶ〉. 

 
Figure 5. Modelled distributions of the electric field, 〈(̂ߤ௡ ∙ ݁̂௡)ଶ〉, and their products for a theoretical 
biaxial protein crystal that is dipole-oriented along a two-fold symmetry axis. These are shown 
mapped over ߠ௞,߰௞ (߶௞ = 0) (a) and ߠ௞, ߶௞(߰௞ = 0) (b). The refractive index distribution was cho-
sen to be the same as the topaz modelled in Figure 3. Also shown are zoomed plots of the total 
product (ܧଵ ∗ ߤ̂)〉 ∙ ݁̂ଵ)ଶ〉 + ଶܧ ∗ ߤ̂)〉 ∙ ݁̂ଶ)ଶ〉) for a topaz (c) and the same model repeated for a musco-
vite-like refractive index distribution (d). The location of the optic axis (pink rings) can be seen to 
impact the distributions. 

Figure 6 shows the population calculation for the same two crystals described in Fig-
ures 3 and 5. It can be seen that there is significant similarity between the shape of ܧ௡ ߤ̂)〉∗ ∙ ݁̂௡)ଶ〉 and the relative pumping, with a significant excitation of ܵଶ population seen 
for some orientations and complete suppression for others for the same laser pulse pa-
rameters. This mapping could be used to sort an SFX dataset to distinguish between 
strongly- and weakly-pumped crystals.  
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Figure 6. Modelled population distributions for the same biaxial crystals described in Figure 5. In 
each case, the crystal was excited by a 130 fs, 1 μJ pulse in a 100 μm (FWHM) spot. In each case, the 
cross sections were ߪௌబ→ௌభ = 7.3 ×  10ିଵ଻ cm−1, ߪௌభ→ௌమ = 3.32 ×  10ିଵ଼  cm−1, and ߪௌ೙೗ = 4.6 × 10ିଵ଻ cm−1. It can be seen that the distributions of ܧ ∗ ߤ̂)〉 ∙ ݁̂)ଶ〉 (Figure 5) were encoded into the 
distributions of S0, S1, and S2. In certain regions, strong pumping results in significant depletion of 
S0, which occurred until a state was saturated. 

9. Assumptions, Approximations, and Extensions of the Excitation Model 
In order to keep the code as general as possible, and therefore, more applicable to the 

largest number of users/targets, we acknowledge that a number of simplifications were 
made. Firstly, the population modelling only considers the relative populations of three 
energy levels (ground-, single-, and double-excited states). In reality, the number of elec-
tronic states may be large and the dynamics of a system more complex, e.g. involving 
evolutions that can occur within the excitation pulse length. Stimulated emission pump-
ing may be added if the carrier frequency, dynamic Stokes shift, and pulse duration sup-
port the process. Quantification of the stimulated-emission cross section can be conducted 
on the basis of modelling power density dependence of femtosecond transmission under 
such conditions [25]. Such modifications can be added in the provided toolbox by speci-
fying the additional rate equations. Secondly, we make no assumptions about how the 
relative populations will evolve in the time between the excitation (pump) pulse and a 
potential measurement (probe), be that spectroscopic or diffraction-based. To tailor it to a 
specific scheme, the code could be simply modified to include more complex rate equa-
tions and further temporal evolution. The presented applications considered electronic 
excitation only. However, for low bandgap or spin transition systems, thermal excitation 
and lattice heating should be considered as well [26]. Finally, we do not consider the mac-
roscopic crystal shape, such as the refraction that will occur at the crystal edges or any 
focusing that could occur with a curved-facet crystal (such as needles), both phenomena 
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that will vary depending on exact crystal size and each’s orientation. For many applica-
tions, however, the refraction could be minimal if index matching of the solution or sol-
vent is achieved. 

10. Conclusions 
This contribution shows methods and results that allow analysis of non-linear exci-

tation for any direction of the incoming pulse and any crystal symmetry. The code and 
software toolbox that is provided can be directly used to apply the method for ultrafast 
measurements of single crystals, either for non-linear spectroscopy or X-ray crystallog-
raphy. The polarisation dependence of four-wave mixing experiments is well known. Up 
to 81 non-zero third-order tensor elements can describe the total response, and they are 
tabulated in textbooks. A practical application that specifically selects a set of tensor ele-
ments for the analysis of the material response is typically conducted under conditions of 
precise alignment with one or more optic axes. Using the methods shown here, such ex-
periments can also deal with other directions. As described in the introduction, there is 
also the additional application of serial crystallography. In this technique, a stream of 
small single crystals is used for pump-probe measurements. Although preferential crystal 
orientation in such jets is seen, usually there is a good coverage of all directions. Applica-
tion of non-linear excitation theory using the method shown here is particularly useful in 
this case. 
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www.mdpi.com/article/10.3390/app12094309/s1. The Supplementary Materials are supplied along-
side this manuscript, including the following: Figures S1–S3: Uniaxial dipole projection and popu-
lation modelling of different dipole orientations; Figures S4 and S5: Biaxial (muscovite-like) addi-
tional population plots; Figures S6 and S7: Biaxial (topaz-like) additional population plots. 
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