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Abstract: Femtosecond optical measurements of photoexcitable molecular crystals carry ultrafast
dynamics information with structural sensitivity. The creation and detection of transient dynamics
depend on the optical parameters, as well as the explicit molecular structure, crystal symmetry, crystal
orientation, polarisation of the photoexciting beam, and interaction geometry. In order to retrieve
the linear and non-linear population transfer in photoexcited crystals, excitation theory is combined
here with the calculation of birefringence decomposition and is shown for both the generalised
uniaxial and biaxial systems. A computational tool was constructed based on this treatment to allow
modelling of electric field decomposition, dipole projections, and non-linear excitation population
levels. This is available open source and with a GUI for ease of use. Such work has applications in two
areas of ultrafast science: multidimensional optical crystallography and femtosecond time-resolved
X-ray crystallography.

Keywords: SFX; TR-SFX; crystallography; XFEL; 2DES; birefringence; non-linear excitation; population
dynamics

1. Introduction

Molecular physics applications in ultrafast science are rapidly developing in multiple
areas of spectroscopy and X-ray diffraction. Here, we consider the application of ultrafast
techniques to single crystal studies, with the aim to interpret and exploit the structural
sensitivity of the information obtained from photoinduced dynamics.

Practical approaches for quantitative analysis of ultrafast processes in crystals combine
the areas of crystal optics, X-ray crystallography, and non-linear optical excitation theory.
The basis for this approach is formed by the electric field decomposition in the presence of
birefringence, and the resulting linear combination of the separate field-dipole interactions
for the orthogonal modes that solve Maxwell’s equations in anisotropic media. In the area
of ultrafast spectroscopy, two-dimensional electronic spectroscopy (2DES) is a powerful
technique that provides ultrafast dynamics information [1,2]. The methodology, analysis,
and theory of 2DES [3] is highly advanced and has shown many fascinating examples
and results for complex materials, including photosynthesis [4,5], solid state physics, and
solar cell science [6]. Two-dimensional electronic spectroscopy measurements intrinsically
have ultrafast time resolution and can be applied to a multitude of molecular processes for
isolated pigments, as well as structures and aggregates with weak or strong coupling. There
are very similar considerations for two-dimensional infrared spectroscopy of oriented sin-
gle crystals and other four-wave mixing techniques such as time-domain impulsive Raman
spectroscopy. There are many different types of ultrafast and non-linear spectroscopy ex-
periments. Experimentally, ultrafast spectroscopy typically uses femtosecond optical pulses
that are resonant with electronic and/or vibrational transitions and create and interrogate
coherences and populations in molecular systems. Recently, the theoretical framework
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was shown for two-dimensional spectroscopy measurements of oriented single crystals [7].
This is a unique application, where the non-linear spectroscopy measurement is sensitive to
explicit molecular structure, crystal symmetry, crystal orientation, and polarisation of the
incident field. The third-order response of molecular crystals is generally different from that
of isotropic solutions. Depending on the crystal symmetry, the interesting case arises where
selected Feynman pathways that contribute to the overall third-order response become
symmetry-disallowed, whereas the allowed pathways are weighted via the symmetry
progressions of the four-point correlation functions for each individual coherence. An
analytical calculation of the resulting four-point correlation functions was shown, from
the initial result of using crystal classes or reduced point-group symmetries, to include all
point-group symmetries following definition of additional zero-valued tensor elements [7].
The method therefore adheres to Neumann’s Principle, which states that the symmetry
elements of any physical property of a crystal must include the symmetry elements of
the point group of the crystal [8]. The theory was shown and demonstrated for selected
polarisation conditions that correspond to the principal directions of refractive indices.
Here, we provide a set of tools to model the electric field decomposition and associated
dipole projections in a more generalised approach to extend such measurements to include
all crystal orientations and polarisation directions, excluding the isotropic directions of the
optic axes.

We emphasise that serial femtosecond crystallography (SFX), which is an emerging
technique at X-ray free-electron laser facilities (XFELs) [9–11], could benefit from the con-
sideration of this orientation-sensitive information that arises from crystal photoexcitation.
Using pump-probe techniques, femtosecond time resolution has been achieved for X-ray
crystallography of macromolecules. The SFX approach relies on collecting many stationary
diffraction images of micrometre-sized crystals in a distribution of random orientations.
Typically, many thousands of individual crystals are measured. Scaling and merging
techniques then find the magnitudes of the structure-factor amplitudes that are used for
structure solution. Importantly, this analysis is also generally applied to time-resolved,
pump-probe SFX data. The different crystal orientations, however, result in differences
of linear and non-linear population dynamics, such that the usual methodology, which
averages over all orientations, loses this information that is intrinsically present in the
dataset. Furthermore, averaging suppresses the light-induced differences relative to ori-
entations that maximise the interactions. Such phenomenon can be particularly relevant
for low quantum yield (<10%) reactions where the signal to noise ratio is a significant
issue. Another observation is that, since SFX datasets already contain orientational infor-
mation for each indexed frame, the methodology we propose can be retroactively applied
to previously collected datasets.

A general method has previously been proposed for the calculation of populations
from photoexcitation in oriented uniaxial crystals (which include trigonal, tetragonal, and
hexagonal point-group symmetries) [12]. Here, we extend the analysis to include biaxial
crystals and provide practical methods and a set of tools for decomposing the electric field
of the pump laser and calculating the associated modified dipole projections. Furthermore,
we provide practical guidance and methods to deal with crystal orientation, indicatrix
determination, indexing, and molecular structure transforms, as well as solving ambiguities
where these arise. We go on to describe and present a computational toolbox that combines
birefringence decomposition and calculation with non-linear excitation theory. The toolbox
is presented for the purpose that it can be applied to specific examples and systems in
two-dimensional optical crystallography and in TR-SFX. The toolbox is provided as open
source and is user friendly, including a graphical user interface and worked examples.

2. Crystal Orientation and Practical Determination of Principal Indices of Refraction

The following provides a summary and practical guidance to determine crystal orien-
tation, as well as how the measurement and determination of the directions and values for
the principal indices of refraction can be carried out. This is necessary since the methods
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for calculation of population transfer in Sections 4 and 6 will be presented in this coordi-
nate frame. In order to add the molecular dynamics modelling, the crystallographic axes
must be rotated onto the optical frame. Most of the following information is available in
standard texts of crystallography and mineralogy such as Nye (1959) [8]. However, meth-
ods commonly used in mineralogy are rarely used in protein crystallography or chemical
crystallography and are worth summarising for these specific purposes.

Firstly, we summarise the crystal classes with respect to the directions of princi-
pal indices of refraction. These can be represented by the optical indicatrix. This three-
dimensional ellipsoid is given by the following:

x2

n2
1
+

y2

n2
2
+

z2

n2
3
= 1 (1)

where n1, n2, and n3 are the principal refractive indices of the crystal.

2.1. Uniaxial Crystals

For uniaxial crystals, n1 = n2 and the optical indicatrix is rotationally symmetric
about the optic axis. The optic axis here corresponds to the direction of the high-symmetry
crystallographic axis. A ray travelling along this direction in the crystal encounters an
isotropic medium and double diffraction does not occur. Uniaxial crystals have two
principal axes of refraction and magnitudes of refractive index associated with them. For
trigonal, tetragonal, and hexagonal point-group symmetries, the index ellipsoid is always
rotationally symmetric. The consequence is that the decomposition of polarised radiation
by double refraction only depends on the angle between the ray direction and the optic
axis. When the polarisation direction is along one of the two principal axes of refraction,
no double refraction occurs, given that the component in the other direction is zero. For
an incident k-vector, the intersection plane between the normal of the k-vector and the
indicatrix of a uniaxial crystal produces an ellipse (Figure 1 left & middle). The semi-axes
of this ellipse correspond to the orthogonal radiation modes that solve Maxwell’s equations
for anisotropic media. Thus, for any k-vector direction the polarisation direction of these
modes is invariant and the initial polarisation of the incident wave is decomposed along
these modes and determines their amplitudes accordingly. This treatment disregards
attenuation, which will result in a circular polarisation. For many practical examples,
attenuation is limited and this approximation can be made. In practice, micrometre-sized
protein crystals have relatively low absorption values (<0.3 OD) due to the large unit
cell that contains only a single or a few chromophores. If larger crystals are studied, the
measurement of dichroic absorption along the principal axis will allow a straightforward
modification of the birefringence decomposition for low attenuation to allow for circular
polarisation conditions. For crystals of small molecules, the optical density is much larger
and optical penetration may be insufficient, even to allow transmission measurements.
Reflection measurements are more appropriate for such materials. Similarly, optical activity
is disregarded but would have only a very small effect on the indicatrix. Although in
isolated cases optical activity could modify the directions of decomposition, this is rare and
possible only if the index differences in the absence of a field are very close in magnitude.
Consequently, optical activity is also neglected in the following description. Therefore,
explicit measurements of the magnitude of the indices of refraction and of the intrinsic
birefringence are not necessary for uniaxial symmetries for the purpose of analysis of linear
and non-linear population dynamics.

2.2. Biaxial Crystals

For biaxial symmetries, it is necessary to obtain values for all three principal refractive
indices (Figure 1), in addition to a determination of their directions in the crystallographic
frame, depending on the presence or absence of two-fold symmetry elements in their point
group. Triclinic, monoclinic, and orthorhombic symmetries belong to the crystal classes
that are biaxial, where n1 6= n2 6= n3. In triclinic crystals, the absence of symmetry elements
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causes there to be no relation between the directions of the principal refractive indices and
the crystallographic directions, other than by coincidence [7,8,13,14]. In order to measure
and obtain this relationship, it is necessary to combine birefringence measurements in the
polarising microscope together with an indexing determination for the crystal morphology.
Starting with the latter, measurements of the angles between crystal faces using the micro-
scope and an appropriate three-axis rotation stage can result in unambiguous indexing
for selected or all crystal faces. The unit cell dimensions must be determined by X-ray
crystallographic indexing using rotation ranges. This approach will be facilitated if crystal
faces include singular indices rather than higher order indices. This condition is met for
many protein crystals [15]. If indexing by visual means fails, it will be necessary to perform
a face-indexing using X-ray crystallography, which provides the orientation matrix for the
correct indexing solution. Monoclinic crystals include one two-fold symmetry axis, which
by convention is the b-axis. The two-fold symmetry ensures that one of the principle refrac-
tive index axes is in the direction of the crystallographic b-axis. The consequence is that, for
a k-vector perpendicular to the b-axis, double refraction occurs such that one polarisation
direction corresponds to the b-axis and is furthermore wavelength-independent. For any
other k-vector, knowledge of the directions of n1 and n3 an8tals, each axis is associated with
a two-fold symmetry operation which fixes the directions of the principle refractive indices
in the crystallographic directions. Indexing of orthorhombic crystals may present particular
challenges. The unit cell is rectangular, and crystals may either appear rectangular or show
more facets (e.g., they can have a dodecahedral shape). The visual measurement under
the microscope of the interfacial angles, together with the unit cell dimension information,
can usually allow indexing in this manner [15]. When crystal morphology is rectangular,
or appears rectangular in at least four directions, the crystal faces can either reflect the
orientation of the unit cell or they are combination directions. As an example, Perutz
showed that orthorhombic crystals of carboxy-haemoglobin appear almost square in cross
section, but end in bipyramidal prisms with {1 1 1} faces. The faces for the central part with
a square cross section are {1 1 0} [16]. The direction of the principal refractive indices can
therefore be determined; however, there can arise an ambiguity for assignment of index
to those directions. Typically, X-ray crystallographic face indexing is needed. In general,
for biaxial crystals it is necessary to make measurements of the magnitude of all three
refractive indices n1, n2, and n3 and of the intrinsic birefringence values.
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Figure 1. Negative uniaxial (left), positive uniaxial (middle), and biaxial (right) indicatrix represen-
tations. The plane that is normal to the input k-vector bisects the indicatrix to create an ellipse, the
semi-major axis of which are the decomposed electric field vectors. Due to symmetry one of the axes
in the uniaxial case is always the same (no). In the biaxial case the polarisation of the incident ray
(P) is shown to decompose into e1 and e2 along the axis as defined by the semi-axis of the ellipse
(ŝmax & r̂max).

In order to make measurements of the magnitude of birefringence, it is first necessary
to orient crystals according to a known index. Crystals must also be embedded in mother
liquor such that refraction at the surface is minimised. Mounting in quartz capillaries
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can aid in this part. When birefringent crystals are viewed under crossed polarisers, two
situations can result in extinction. Either the view is along one of the two optic axes (in
which case the crystal appears to be optically isotropic) or one of the principal axes of
refractive index is aligned with a polariser direction. Consequently, under these conditions,
the crystals will appear bright under parallel polarisers. When a crystal is rotated to the
extinction point, all colours vanish and the view appears dark. To measure the difference in
refractive index between principal axes, the crystal is rotated 45◦ away from the extinction
point and a Berek compensator is inserted in the light path between the polarisers.

The retardance (R) between two waves is the product of the birefringence (∆n) and
the optical path length through the crystal (d) and must also be measured:

R = ∆n× d (2)
The retardance is also given as a function of the wavelength λ0 and the phase difference

φ between the waves:
R = (φ× λ0)/2 (3)

The fast axis of the Berek compensator should be along the slow axis of the crystal
in order to arrive at a measurement of compensation of retardance. The compensator is
calibrated such that the retardance value can be read after rotation of the drum, once the
extinction point is obtained. The ∆na,b,c values measured in the a, b and c directions should
be measured individually. In addition, these values are related according to:

∆na = ∆nb − ∆nc (4)

where ∆na = nc − nb, ∆nb = nc − na, ∆nc = nb − na, if ∆na is the smallest birefrin-
gence and ∆nb is the largest birefringence. This relationship allows the verification of the
independent intrinsic birefringence measurements.

The values of birefringence of crystals are typically in the range of 10−2–10−4 [15].
An alternative to the Berek compensator measurement uses the conventional Michel-
Levy chart [17]. The method is less precise and only provides an estimate. In addition,
since Newton’s series appear in multiple orders, there may be uncertainty in the order
of assignment. Using either visual colour determination or a spectrometer measurement,
there may also be significant error in the estimate of birefringence determination using
this method. In optical mineralogy, the phase contrast (or oblique illumination) method
would additionally provide a means for estimating the refractive indices, but this requires
immersion in liquids with a large refractive index [18].

An additional method that is used in optical mineralogy that may be useful for certain
cases of resolving indexing ambiguity is conoscopy analysis. Conoscopy is the examination
of the interference figures and colour patterns in the focal plane of the microscope objective
lens, produced by an anisotropic crystalline section viewed under convergent light illumi-
nation and crossed polarisers. This method requires the use of a Bertrand lens or phase
telescope, or alternatively, a conoscope lens that is used in the polarising microscope. The
method may be less suitable for protein crystals, as single crystals need to fill the field of
view or they must be in an aperture to view the interference image. Conoscopy images
are instructive when viewing either in the direction of an optic axis or perpendicular to
an optic axis. The optics allow a two-dimensional projection and view of the interference
pattern and colours. Conoscopy can directly distinguish uniaxial and biaxial crystals.
The use of waveplates and quarter waveplates allow the identification of negative and
positive crystals, hence aiding in the assignment of fast and slow crystal axes [19]. For
biaxial crystals, conoscopy can also show the angle between the two optic axes, which is an
independent verification of the indicatrix modelling following the index determination.

In order to construct the indicatrix, the absolute values of the principle refractive
indices should be determined. The mean refractive index 〈n〉 can be derived from the value
of the index increment δn/δc for a different concentration in solution, in combination with
the calculated concentration in the crystal from the unit cell dimension.

〈n〉 = nsolvent +

(
δnsample

δc

)
× c (5)
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For example, a value of index increment δn/δc = 0.187 mL/g was measured at the
wavelength of 436 nm by Holtzer et al. [20] for the protein tropomyosin.

2.3. Cubic Crystals

Finally, we briefly consider cubic crystals. Crystals with point-group groups 432,
43m, 23, m3, or m3m are not doubly refracting and also appear isotropic in the linear
optical response. However, the non-linear optical response of cubic crystals does not equal
that of isotropic solutions and samples. Specifically, isotropic materials have 21 non-zero
third-order susceptibility tensor elements, of which only 3 are independent. Isotropic
materials have 60 zero-valued third-order tensor elements in the dipole approximation [21].
All cubic point groups also show 21 non-zero tensor elements; however, 7 of those are
independent for 23 and m3 point groups, and 4 are independent for 432, 43m, and m3m
point groups. As an example, the isotropic tensor element χyyzz also equals χzzyy, whereas
for point groups 23 and m3 it does not; rather, χyyzz also equals χzzxx and χxxyy. Then, for
point groups 432, 43m, and m3m, χyzyz is equal to the same elements as those in isotropic
materials, but the independent group χxxxx = χyyyy = χzzzz appears which does not follow
the isotropic sum rule χxxxx = χxxyy + χxyxy + χxyyx. Therefore, non-linear behaviour
of cubic crystals is distinct from isotropic solutions. The non-linear optical response for
crystal symmetries has been discussed previously and is more appropriately quantified
in terms of the response-function formalism [7]. This is beyond the scope of this paper.
The objective here is to generalise the use of non-linear cross sections in combination with
birefringence decomposition.

3. Rotation Matrix for Transition Dipole Moment to the Optical Frame

The objective of this contribution is to compute the linear and non-linear population
transfer following birefringence decomposition of an arbitrary k-vector, with an emphasis
on showing its application to the more challenging biaxial symmetries. The combination of
crystal optics that evaluate birefringence decomposition in the explicit molecular frame
and non-linear excitation theory is the key technique for analysis and is explicitly shown
for biaxial crystals for the first time here. The X-ray crystallographic coordinates from
the structure solution are needed as the first step in the analysis. Typically, quantum
chemical calculations of transition dipole moments are conducted in the molecular frame
using quantum chemistry methods. Electronic transitions are often accurately found at the
TD-DFT level using an appropriate density functional, such as CAM-B3LYP in the case of
light atoms [22]. With Cartesian coordinates in the crystallographic directions, an Euler
rotation matrix then transforms this direction to the optical frame [14] (Figure 2). In the
following, all optical calculations are performed in the coordinate frame of the principal
refractive indices.
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4. Electric Field Decomposition Using the Indicatrix

The decomposition of the electric field in uniaxial and biaxial crystals has been previ-
ously described by Sage et al. [14] and others [13].

In a uniaxial crystal, due to symmetry, the refractive index in two of the crystal axes
is equal (n1 = n2 6= n3). This results in the field decomposing into an ordinary (eo) and
extraordinary (ee) optic axis, where the refractive index of the ordinary is neo = n1 = n2,
whereas that of the extraordinary depends on the angle of the incident ray vector (k̂) and
the high-symmetry axis θk, such that nee = n3 cos θk. As previously stated, this is true
except in the special case of θk → 0 , where k̂ is aligned down the optic (high-symmetry)
axis and the crystal appears isotropic.

In a biaxial crystal (n1 6= n2 6= n3), the decomposed electric field vectors are deter-
mined by the extrema of the ellipse that bisects the indicatrix ellipsoid in the plane normal
to k̂ (Figure 1 right). In our model, we determine these vectors numerically for each k̂ or
crystal orientation. A random vector is generated perpendicular to k̂, (r̂) and normalized,
and the cross product of the two is used to find the third corresponding perpendicular
vector (ŝ). Then, r̂ and ŝ are iteratively rotated about k̂ (i.e., in the plane of the ellipse
as shown in Figure 1) until the maxima solutions of Equation (1) are found (those being
the semi-major axes of the ellipse). It is important to note that this method requires the
condition that n3 > n1 & n2. Figure 3 shows the calculation of the intrinsic birefringence by
computing the difference between the refractive index of the two decomposed vectors as a
function of orientation such than minima represent points where the axis are equal and
hence the location of the optic axes. This was performed for two test case crystals using
the literature values of refractive index for topaz and muscovite, in can be seen how the
relative distribution of the refractive indices determines the position of the optic axes.
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Figure 3. Calculation of intrinsic birefringence by subtraction of indicatrix projection ellipse semi-
major axes from each other as a function of θk & φk. Distributions are shown in 2D (left) and 3D
spherical (right) projections for a topaz crystal (a,b) with refractive indices of n1 = 1.618, n2 = 1.620,
and n3 = 1.627 and muscovite (c,d) crystal with indices n1 = 1.563, n2 = 1.596, and n3 = 1.601.
Maxima denote areas of high birefringence while the minima correspond to points where the refractive
indices are equal and hence an optic axis. The small differences in refractive index cause a significant
difference in separation of the optic axes as seen in the 3D projections (black lines). An example of a
uniaxial crystal is shown in the Supplementary Materials.
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5. Dipole Projections

From Sage et al. [14] the absorption in a particular direction for a biaxial crystal is
given as:

A = ∑
α

3εαcd
1
m

m

∑
j=1

(
µ̂αj·ê

)2 (6)

In orthorhombic space groups, the two-fold symmetry in all three principal directions
results in the coincidence of the principal optic axes being with the crystal axes, and also
the value of

(
µ̂αj·ê

)2 being invariant in the two-fold rotation such that the transition dipole
orientations can be described with respect to the crystallographic axes [14]:

µ̂αj =
(
sin θαj cos φαj, sin θαj sin φαj, cos θαj

)
(7)

where θ and φ are the polar and azimuthal angles, measured with respect to the chosen
crystal axis. In monoclinic space groups there is only one two-fold symmetry direction
that results in the alignment of one optic axis with the crystallographic b-axis. However, in
triclinic space groups the absence of symmetry elements causes there to be no relationship
between the crystallographic and optical directions. Therefore, we present the treatment
for biaxial crystals only in relationship to the optical directions. In this work, we define
these angles with respect to the high refractive index axis (Figure 1 right). This results in
the dipole projection being simply the square projection of these two vectors summed over
all dipoles within the asymmetric unit, 〈(µ̂·ê)2〉.

In the uniaxial case, the value of 〈(µ̂·ê)2〉 is strongly impacted by the rotational sym-
metry of the system [12,14], resulting in:

〈(µ̂·ê3)
2〉 = cos2 θd (8)

〈(µ̂·ê1)
2〉 = 〈(µ̂·ê2)

2〉 = sin θd (9)

where ê3 is the high-symmetry axis. Combining (8) & (9) with k̂ in spherical coordinates
gives the total value:

〈(µ̂·ê)2〉 =
[
cos2θk cos2 θd, sin2 θk sin2 θd, sin θd

] x
y
z

 (10)

The first observation is that this value is invariant in φd. Secondly, when looking at the
distributions over all values of k̂ (see Supplementary Materials and [12]) it can be seen that
dipoles aligned parallel to the high-symmetry axis result in a larger variation of 〈(µ̂·ê)2〉,
with a significant number of orientations where the term is actually suppressed. Conversely,
when the dipole is oriented perpendicular to the high-symmetry axis, the maximum value
that 〈(µ̂·ê)2〉 is suppressed by is a factor of 2, though it is also noted that non-zero values
are obtained over a larger number of orientations [12].

6. Linear and Non-Linear Excitation Calculations

Photoexcitation is modelled, as in Hutchison et al. [12], with a three-level system of
ground-(S0), first-(S1), and second-(S2) excited state. The populations are calculated using
the following rate equations:

NS0(t) = NS0(−∞) exp
[

σS0→1 F(t)
}ω

]
(11)

NS1(t + dt) = NS0(−∞)

(
1− exp

[
σS0→1 F(t)

}ω

])
− NS2(t) (12)

NS2(t) = NS1(t)
(

1− exp
[

σS1→2 F(t)
}ω

])
(13)

where NSn is the population of the Sn state, NS0(−∞) is the ground-state population
calculated from the absorption, εS0 . σn is the cross section of that state transition, and F(t)
and ω are the temporally integrated flux and central frequency of the excitation pulse,
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respectively. To incorporate the effect of the electric field decomposition, the pulse energy
of each optic axis (Een ) is scaled by the dot product of that axis with the polarisation vector.
The dipole projections are used to scale σn such that σnF(t) can be written as [12]:

σnF(t) =
[
〈(µ̂·ê1)

2〉·3σI

]
· Fe1(t)dt +

[
〈(µ̂·ê2)

2〉·3σI

]
·Fe2(t) (14)

where 〈(µ̂·ê)2〉 is the total averaged dipole projection in the ên optic axis and σI is the
averaged isotropic cross section, as determined by spectroscopy on a solution or ran-
domly oriented crystalline samples. An example of this calculation performed on a single
orientation for several different pulse energies and values of 〈(µ̂·ê)2〉 is shown in Figure 4.
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Figure 4. Modelled populations of S0, S1, and S2 as a function of pulse energy for different k̂
orientations, which resulted in weak (a), medium (b), and strong (c) optical pumping. In each
case the cross sections were σS0→S1 = 7.3 × 10−17 cm−1, σS1→S2 = 3.32 × 10−18 cm−1, and
σSnl = 4.6× 10−17 cm−1 and the spot size was 100 µm (FWHM). These values were chosen based on
those recorded for PYP in [23], with the exception that σS1→S2 was 10 times larger than that reported
for demonstration purposes.

7. Toolkit Program

A computational toolbox was constructed to allow the straightforward modelling of
the electric field decomposition, associated dipole projections, and linear and non-linear
optical excitation in uniaxial and biaxial crystals. It was constructed in python3 using the
Anaconda [24] libraries and includes a graphically user interface (GUI) for ease of use. The
code is open source and available at https://github.com/cdmhutchison/Xtal-orientation-
excitation (accessed on 22 April 2022).

It consists of two main functions:
The first uses the theory described in Sections 3 and 4. For a given (i) crystal type

(uniaxial or biaxial), (ii) principal refractive indices, and (iii) dipole orientations, the code
scans k̂ over all polar (θk), azimuth (φk), and roll (ψk) angles and generates arrays of electric
field decompositions and associated values of 〈(µ̂·ê)2〉. Depending on which frame is
being considered, ψk can correspond to the rotation of the crystal or the polarisation of the
incident field.

The second function takes electric field vectors and values of 〈(µ̂·ê)2〉 and uses the
molecular extinction coefficients (ε) for linear excitation (εS0→S1), sequential double exci-
tation (εS1→S2), and nonlinear absorption (εnl), along with the crystal optical density and
excitation pulse parameters to calculate the populations after excitation as described in
Section 5.

https://github.com/cdmhutchison/Xtal-orientation-excitation
https://github.com/cdmhutchison/Xtal-orientation-excitation
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8. Biaxial Crystal Modelling Examples

Figure 5 shows modelled electric field and dipole projection distributions for two
biaxial protein crystals with different refractive index distributions. A single dipole was
included in the asymmetric unit aligned below the c-axis. In the first case (Figure 5a–c),
the optic axis was aligned closer to the c-axis (Figure 3a,b); as such, the result was close to
that of a uniaxial crystal with a dipole aligned to the high-symmetry axis. A large angular
dependence was seen on θk with close to zero dependence on ψk. The biaxial birefringence
manifested with a small dependence on φk, particularly near to the optic axis.
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Figure 5. Modelled distributions of the electric field, 〈(µ̂n·ên)
2〉, and their products for a theoretical

biaxial protein crystal that is dipole-oriented along a two-fold symmetry axis. These are shown
mapped over θk,ψk (φk = 0) (a) and θk, φk(ψk = 0) (b). The refractive index distribution was chosen
to be the same as the topaz modelled in Figure 3. Also shown are zoomed plots of the total product
(E1 ∗ 〈(µ̂·ê1)

2〉+ E2 ∗ 〈(µ̂·ê2)
2〉) for a topaz (c) and the same model repeated for a muscovite-like

refractive index distribution (d). The location of the optic axis (pink rings) can be seen to impact
the distributions.

In the second case (Figure 5d & Supplementary Materials), the effect was far more
pronounced as the optic axes are closer together and nearly perpendicular to the dipole
projection. The result was a highly modified distribution of E1 ∗ 〈(µ̂·ê1)

2〉+ E2 ∗ 〈(µ̂·ê2)
2〉.

Figure 6 shows the population calculation for the same two crystals described in
Figures 3 and 5. It can be seen that there is significant similarity between the shape of
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En ∗ 〈(µ̂·ên)
2〉 and the relative pumping, with a significant excitation of S2 population

seen for some orientations and complete suppression for others for the same laser pulse
parameters. This mapping could be used to sort an SFX dataset to distinguish between
strongly- and weakly-pumped crystals.
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Figure 6. Modelled population distributions for the same biaxial crystals described in Figure 5. In each
case, the crystal was excited by a 130 fs, 1 µJ pulse in a 100 µm (FWHM) spot. In each case, the cross
sections were σS0→S1 = 7.3× 10−17 cm−1, σS1→S2 = 3.32× 10−18 cm−1, and σSnl = 4.6× 10−17 cm−1.
It can be seen that the distributions of E ∗ 〈(µ̂·ê)2〉 (Figure 5) were encoded into the distributions of S0,
S1, and S2. In certain regions, strong pumping results in significant depletion of S0, which occurred
until a state was saturated.

9. Assumptions, Approximations, and Extensions of the Excitation Model

In order to keep the code as general as possible, and therefore, more applicable to
the largest number of users/targets, we acknowledge that a number of simplifications
were made. Firstly, the population modelling only considers the relative populations of
three energy levels (ground-, single-, and double-excited states). In reality, the number of
electronic states may be large and the dynamics of a system more complex, e.g. involving
evolutions that can occur within the excitation pulse length. Stimulated emission pumping
may be added if the carrier frequency, dynamic Stokes shift, and pulse duration support
the process. Quantification of the stimulated-emission cross section can be conducted on
the basis of modelling power density dependence of femtosecond transmission under such
conditions [25]. Such modifications can be added in the provided toolbox by specifying
the additional rate equations. Secondly, we make no assumptions about how the relative
populations will evolve in the time between the excitation (pump) pulse and a potential
measurement (probe), be that spectroscopic or diffraction-based. To tailor it to a specific
scheme, the code could be simply modified to include more complex rate equations and
further temporal evolution. The presented applications considered electronic excitation
only. However, for low bandgap or spin transition systems, thermal excitation and lattice
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heating should be considered as well [26]. Finally, we do not consider the macroscopic
crystal shape, such as the refraction that will occur at the crystal edges or any focusing that
could occur with a curved-facet crystal (such as needles), both phenomena that will vary
depending on exact crystal size and each’s orientation. For many applications, however,
the refraction could be minimal if index matching of the solution or solvent is achieved.

10. Conclusions

This contribution shows methods and results that allow analysis of non-linear exci-
tation for any direction of the incoming pulse and any crystal symmetry. The code and
software toolbox that is provided can be directly used to apply the method for ultrafast
measurements of single crystals, either for non-linear spectroscopy or X-ray crystallogra-
phy. The polarisation dependence of four-wave mixing experiments is well known. Up to
81 non-zero third-order tensor elements can describe the total response, and they are tabu-
lated in textbooks. A practical application that specifically selects a set of tensor elements
for the analysis of the material response is typically conducted under conditions of precise
alignment with one or more optic axes. Using the methods shown here, such experiments
can also deal with other directions. As described in the introduction, there is also the
additional application of serial crystallography. In this technique, a stream of small single
crystals is used for pump-probe measurements. Although preferential crystal orientation in
such jets is seen, usually there is a good coverage of all directions. Application of non-linear
excitation theory using the method shown here is particularly useful in this case.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12094309/s1. The Supplementary Materials are supplied
alongside this manuscript, including the following: Figures S1–S3: Uniaxial dipole projection and
population modelling of different dipole orientations; Figures S4 and S5: Biaxial (muscovite-like)
additional population plots; Figures S6 and S7: Biaxial (topaz-like) additional population plots.
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