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Abstract: The prediction of bearing remaining useful life (RUL) plays a pivotal role in ensuring
the safe operation of machinery and reducing maintenance loss. Traditional prediction methods
only consider the features of one domain or integrate the features of multiple domains into a one-
dimensional sequence as the model input, which leads to some inaccuracy in prediction. In order
to improve the prediction accuracy, a bearing RUL prediction method based on the parallel deep
residual convolution neural network (P-ResNet), which is considered both time-domain features
and time–frequency features, is proposed in this paper. Synchronous wavelet transform (SWT) is
adopted to extract time–frequency features from original vibration signals. Both the time domain
features and time–frequency domain features after dimension reduction by PCA are used as input to
P-ResNet, which contains two series of parallel convolution operations to learn the time–frequency
features and time-domain features, respectively, to ensure the comprehensiveness of information-
bearing degradation. The residual layers were added to enhance the learning ability of time–frequency
features. Kalman filter algorithm was used to smooth the prediction results. The IEEE PHM 2012 Data
Challenge datasets were used as data sources for model training and prediction. Compared with the
traditional convolutional neural network (CNN), the P-ResNet model maintains the synchronization
of global and local information and has a stronger learning ability. The experiment data validate
the effectiveness of the proposed method, and the comparison between the prosed methods and the
others proves the superiority of the proposed method.

Keywords: bearing; remaining useful life prediction; deep learning; convolutional neural network

1. Introduction

As a critical technology to guarantee the reliability and safety of equipment, prognos-
tics and health management (PHM) has made plenty of theoretical achievements and has
been broadly used in the last few decades [1]. PHM aims to maximize the availability of
engineering assets, reduce maintenance losses and improve system reliability and secu-
rity. RUL prediction has been regarded as the foundation and core of PHM technology
for a long time.

Rolling element bearings are significant mechanical components in rotating machinery,
which is a common cause of operation failures [2]. The precise RUL estimation of the bear-
ings can obviously improve the reliability and operation safety of the rotating machinery
and avoid accidents. RUL prediction methods are broadly divided into model-based and
data-driven methods.

Model-based methods use prior knowledge of equipment degradation and failure
mechanisms to mathematically model equipment degradation and failure behavior and
then estimate model parameters based on the collected data [3]. However, the estab-
lishment of a physical model to describe the degradation trend depends on thoroughly
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understanding the failure mechanism of the system. With the increasing complexity of the
equipment, it is generally difficult to obtain the failure mechanism of the equipment, or the
cost of obtaining the failure mechanism is too high. With the rapid development of modern
industry, data-driven methods have been developed rapidly.

Data-driven methods rely on historical run-to-failure data to estimate the RUL by
different machine learning methods. In recent years, a variety of data-driven algorithms
have been proposed and made good achievements. Gebraeel et al. [4] developed a bearing
performance degradation model using an artificial neural network and successfully pre-
dicted the bearing RUL. Ben Ali et al. [5] used the artificial neural network and Weibull
theory to predict the bearing RUL. The experimental analysis shows that the predicted
results of the artificial neural network are consistent with the actual results. In order to
predict the RUL of industrial equipment precisely, Chen et al. [6] proposed a multivariate
grey RBF hybrid model which combines the grey model and RBF neural network’s strong-
point, effectively ensuring the prediction accuracy and has practical value in engineering
application. Loutas et al. [7] used multiple signal features and support vector regression
(SVR) to make bearing RUL predictions. Song et al. [8] used a relevance vector machine
to train and predict the battery capacity and, at the same time, used the Kalman filter
(KF) to optimize the predicted results online, thereby achieving the RUL prediction of the
battery. Although data-driven methods are feasible in many cases, their main challenge
is to extract effective representative features from the unprocessed data. However, the
performance defects of traditional machine learning models significantly limit their ability
to learn advanced features.

In recent years, Deep Learning (DL) has made great breakthroughs in computer vision,
natural language processing and other fields. Deep learning is characterized by a deep
network structure with multiple layers stacked in the network, which can automatically
and accurately construct high-level features from low-level features to learn a hierarchy
of features [9]. A convolutional neural network (CNN) is a classic deep learning model
that can automatically learn high-dimensional abstract features from the raw data, effec-
tively establish the relationship between the degradation trend of mechanical properties
and the measured data and reduce the dependence on prior knowledge and physical
knowledge. Research on CNN-based RUL predictions started in 2016. Babu et al. [10]
proposed a CNN model for RUL prediction, which has two convolutional layers and two
pooling layers to extract the characteristics of the original signal, and combined it with
a multilayer perceptron (MLP) to achieve bearing RUL prediction. Zhu et al. [11] used
continuous wavelet transform to obtain the time–frequency images of bearing vibration
signals and then input the images into CNN to achieve the bearing RUL prediction. Li
et al. [12] performed a short-time Fourier transform on multiple time signals of bearings
to obtain time–frequency images and then used time–frequency images to train CNN
models; the correlation between neighboring signals was used to obtain good prediction
results. Yang et al. [13] proposed a double-CNN structure, the first CNN was used to
determine the starting degradation time of the bearing, and then the second CNN was
used for RUL prediction. Compared with existing methods, it has higher accuracy. Luo
et al. [14] proposed a CNN based on attention mechanism and Bi-LTSM. The original
signals are directly input to CNN to extract time–frequency domain features, then the time–
frequency features are input to Bi-LTSM with an attention mechanism for learning and
bearing RUL prediction.

Although the studies mentioned above achieved satisfactory results, in the traditional
deep learning model for bearing RUL prediction, multiple signal characteristics are not
considered, which leads to inadequate comprehensiveness of bearing degradation failure
information. Therefore, the deep learning-based bearing RUL prediction model considering
features of multiple domains has become a research direction. Ren et al. [15] proposed
a deep learning method for multi-bearing RUL collaborative prediction based on CNN
and multiple signal characteristics. Cheng et al. [16] proposed a two-stage approach for
bearing RUL prediction, which consists of a fast search and finds of density peaks clustering
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algorithm for health state recognition and a multi-dimensional recurrent neural network
model based on LTSM and GRU. The input of the model contains features of the time
domain, frequency domain and time–frequency domain, but the features are gathered into
one-dimensional sequences. Processing automatical completely without any parameters
presetting is one of the highlights of this work. Huang et al. [17] proposed a prediction
method based on a self-organizing map (SOM) and back propagation network, in which
two time-domain features are considered as well as three frequency-domain features of
different bearing defects. In their work, a new effective indicator was extracted by minimum
quantization error (MQE) derived by SOM to train the back propagation model in order to
learn more high dimensional features of bearing degradation.

The time–frequency representation method, which can extract advanced features hid-
den in signals, has been widely used for nonstationary signals. However, the model using
only the 2D time–frequency features, such as the proposed methods in the literature [11,12],
lack enough robustness [18]. Cao et al. [19] proposed a novel temporal convolutional
network with a residual self-attention mechanism. The Hilbert–Huang Transform was
adopted to extract the three-dimensional marginal spectrum, which contains time-domain
features and time–frequency domain features as input of their proposed CNN model, which
combined the causal convolution and dilated convolution. In the literature [18], Wang et al.
proposed a 3D convolutional neural network, and the sub-sequences of time–frequency
features were extracted by continuous wavelet transform for training the 3D CNN model
to learn more effective hidden features.

In this paper, a new P-ResNet framework-based intelligent RUL prediction method
is proposed. Synchrosqueezed wavelet transforms (SWT) were adopted to obtain time–
frequency images of raw collected data. The 1D time-domain characteristics and 2D
time–frequency images were input into the P-ResNet model, which contains two parallel
series of convolutional operations to learn the time–frequency features and time-domain
features, respectively, in parallel. Adding residual layers to the deep network model to the
2D series of convolutional operation enhances the learning ability of 2D time–frequency
domain features. Since the RUL prediction noise and other uncertainties, the KF algorithm
was adopted to reduce the uncertainties and obtain more accurate results. Experiments
were performed on a commonly used rolling bearing degradation data set to verify the
effectiveness of the method.

The rest of this paper is organized as follows: The theoretical background is provided
in Section 2. The proposed method is presented in Section 3 and experimentally validated
in Section 4. The paper ends with the conclusions in Section 5.

2. Theoretical Background
2.1. Synchrosqueezed Wavelet Transforms

Bearing degradation signal is complex and nonstationary, time–frequency domain
features can represent such kind of information effectively. Wavelet transform (WT) is
a common time–frequency analysis technique, which is widely applied in the condition
monitoring of rotating machinery. However, the traditional WT has the disadvantages of
low time–frequency resolution, and the signal features are fuzzy in time–frequency domain,
which has a negative impact on the degraded feature extraction of bearings.

Synchrosqueezed Wavelet Transforms (SWT) [20] is a time–frequency rearrangement
method based on traditional wavelet transform (WT), using the characteristic that the phase
of the signal is not affected by the scale transformation in the frequency domain after WT
to obtain the corresponding frequency at each scale. Then, the scale of the same frequency
is added, and the wavelet coefficients obtained by WT are redistributed and compressed so
that the value near the frequency is compressed into the frequency. SWT mainly includes
the following steps. Firstly, the continuous wavelet transform is applied to the signal

Wx(a, b) = a−
1
2

∫ +∞

−∞
x(t)ψ

(
t− b

a

)
dt (1)
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where a is the scaling parameter, b is the translating parameter, x(t) is a 1-D degradation
signal. ψ(t) is the complex conjugate of mother wavelet function. Then instantaneous
frequency ωx(a, b) for the signal x is calculated by

ωx(a, b) = −i(Wx(a, b))−1 ∂

∂b
Wx(a, b). (2)

The information is transferred from the time–scale plane to the time–frequency plane,
according to the map (b, a)→ (b, ωx(a, b)) . Wx(a, b) is computed only at discrete values
ak, with ak − ak−1 = (∆a)k, and its synchrosqueezed transform TX(ωl , b) was likewise
determined only at the centers ωl of the successive bins [ωl − ∆ω/2,ωl + ∆ω/2], with
ωl −ωl−1 = ∆ω. This process is expressed as

Tx(ωl , b) = (∆ω)−1 ∑
ak :|ωx(a,b)−ωl |≤∆ω/2

Wx(a, b)ak
−3/2∆ak. (3)

In this way, each frequency component in the signal is compressed in the frequency
domain direction, and the problem of the low resolution of the traditional WT in the
time–frequency domain is solved.

2.2. Deep Residual Convolutional Neural Networks

Because the bearing degradation process has strong nonlinear characteristics, the
shallow, deep learning model is difficult to find the optimal results. Increasing the width
and depth of traditional CNN can improve network performance, but with the increase
in network layers, some local features are lost, and there are problems such as gradients
disappearance and explosion [21]. The residual network structure [22] effectively solves
these problems and significantly improves model performance. The residual network
consists of a series of residual blocks, as shown in Figure 1, which can be expressed as

y = F(x, {Wi}) + x (4)

where x and y are the input and output vectors of the corresponding network layer, re-
spectively, the function F(x, {Wi}) represents the residual mapping to be learned. The
shortcut connections introduce neither extra parameter nor computation complexity, and
the performance degradation of traditional neural networks with increasing depth is solved.
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Figure 1. Residual block.

2.3. Parallel Network Structure

The time-domain features contain the time-dependent vibration characteristics, and
the time–frequency domain features can effectively reveal the nonstationary characteris-
tics of the bearing degradation signals. The collected bearing vibration signals are one-
dimensional time series, while the time–frequency images are two-dimensional, and the
forms of the features are quite different. The traditional processing method is to manually
extract partial degradation features and combine them into a one-dimensional sequence for
analysis [16,23] or only use one domain feature for analysis [12,13], which cannot guarantee
the comprehensiveness of degradation information.
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In this paper, the time-domain features and the time–frequency images are combined
as input by using the P-ResNet. One-dimensional convolution operation of the time
domain features and two-dimensional convolution operation of the time–frequency images
are carried out to ensure the comprehensiveness of the bearing degradation information.
The structure of the P-ResNet model is shown in Figure 2. The corresponding networks
of time–frequency images include seven two-dimensional convolutional layers, a two-
dimensional pooling layer, two residual layers, and a flattened layer. The corresponding
networks of the time domain features include four one-dimensional convolutional layers,
two one-dimensional pooling layers, and a flattened layer. Then the two flattened layers are
combined into a one-dimensional vector as the input of the fully connected layer. Finally,
the RUL is predicted through three fully connected layers.
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3. Proposed Method
3.1. Flow Chart

Figure 3 presents the flow chart of the proposed prognostic method. The collection of
bearing vibration signals is performed by sensors. In most instances, the state of the bearing
is stable at the initial stage of operation, and the bearing can be considered healthy without
the need for accurate RUL estimation. If a certain threshold value indicating the start of
degradation is reached, an accurate prediction is performed, and the time corresponding to
the threshold value is expressed as the start prediction time (SPT).
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After collecting the original vibration data of the bearing, SPT is first determined.
The data after SPT are transformed by SWT to obtain the time–frequency images. The
time-domain characteristics and time–frequency images are input into the regression model
for training and RUL prediction.

3.2. SPT Determination

The bearing vibration signal before SPT rarely contains information about bearing
degradation; it is very important to determine SPT, which affects the accuracy of RUL
estimation [24]. The root mean square (RMS) is the most appropriate indicator of bearing
health because it shows the trends of the different health statuses of the bearing: in the
normal stage, the RMS remains stable; in the initial degradation stage, the RMS starts linear
growth; in the severe degradation stage, the RMS starts nonlinear growth, but there are
some outliers caused by random noises in the RMS.

This paper adopts a simple and effective method to determine the SPT. At the initial
stage of bearing operation, the RMS of the bearing vibration signal and its mean value µ
and variance σ were calculated. Then the moving average (MA) method is used to compute
the RMS mean value µi of the next five consecutive samples; when |µi − µ| > 3σ, the time
corresponding to the maximum sample of the five samples is selected as SPT. Experiments
show that the method effectively filters out RMS abnormal points.

3.3. Training Details of Neural Network Model

The structure of P-ResNet is shown in Figure 2. The input layer consists of two parts,
the size of the time–frequency images is 32 × 32, and the size of the time-domain feature
is 2560 × 1. In order to avoid the problems of gradient vanishing or explosion, the whole
model uses rectified linear units (ReLU) as the activation function. In order to solve the
instability of RUL prediction and obtain more accurate results, the RUL percentage is
used as the label of bearing data. First, determine the SPT of training data, then the labels
corresponding to the training data are set to be linearly decreasing,

yi = Ri = 1− Ti − T1

Te − T1
(5)

where yi is the label of the input at time ti, Ri is the RUL percentage of the training data at
time ti. Te is the total time of the test; T1 is the SPT, Ti is the run time for now. The model
first evaluates the level of degradation of bearing performance and then maps the RUL
percentage to bearing RUL.
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Because RUL prediction is a regression problem, mean square error (MSE) [25], which
has the advantage of a fast convergence rate, is quite a suitable loss function to adopt for
the model,

L(ŷ, y) =
1
m

m

∑
i=1

(ŷi − yi)
2

(6)

where m is the batch size and ŷi represents the corresponding RUL percentage prediction
by the P-ResNet, yi denotes the actual RUL percentage of the ith sample.

In the model training, the model parameters are updated by the back propagation
algorithm, and the loss function is iteratively minimized by the Adam optimization algo-
rithm [26]. The weights of all layers are initialized with a mean value of 0 and a standard
deviation of 0.01. The biases are initialized with 0. The learning rate is set to 0.01, each
batch contains 32 samples, and the number of training epochs is 1000.

3.4. Smoothing

The RUL prediction by the regression model usually has local fluctuations, but the
actual bearing RUL has a linear relationship with the running time. In order to reduce the
measurement noise and other uncertainties to obtain more accurate results, the KF algo-
rithm [27] is adopted. The KF algorithm consists of two stages: prediction and measurement
update. The equations for the prediction stage are

xt|t−1 = xt−1|t−1
Pt|t−1 = Pt−1|t−1 + Q

Kt = Pt|t−1

(
Pt|t−1 + Rt

)−1

xt|t = xt|t−1 + Kt

(
ŷt − xt|t−1

) (7)

where xt|t−1 is the RUL prediction using the previous RUL, xt−1|t−1 is the best RUL predic-
tion at time t− 1, Pt|t−1 is the variance of xt|t−1, Q is the variance of system process, Kt is
Kalman gain, Rt is the variance of measurement noise. ŷt represents the bearing RUL at
time t obtained by the P-ResNet model. xt|t is the optimized predicted value obtained by
KF at time t. The variance update process is

Pt|t = (1− Kt)Pt|t−1 (8)

where Pt|t is the variance of xt|t. The initial value x0 is set to be 1, Q is set to be 1 × 10−4,
and R0 is set to be 4 × 10−3.

4. Experimental Study
4.1. Dataset Description

The experimental data were collected from PRONOSTIA in the IEEE PHM 2012 Data
Challenge [28]. During the experiments, a radial force of 4 kN was applied to the test
bearings for accelerated life testing. The rotating speed of bearings is 1800 r/min. In order
to monitor the degradation process, the bearing was installed with two acceleration sensors,
where one was set on the vertical axis, and the other one was on the horizontal axis. The
sampling frequency of the vibration signal is 25.6 kHz, 2560 data points were recorded at
0.1 s per sampling, and the recording interval is 10 s. When the amplitude of the vibration
signal exceeded 20 g, the bearing was considered invalid, and the experiment was stopped.
The PRONOSTIA platform is shown in Figure 4.
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Figure 4. The PRONOSTIA platform.

In this paper, the signals collected in the horizontal direction were used for analysis.
The bearing1_1 and bearing1_2, which contain a total of 3674 samples, were used as training
sets, and the bearing1_3 in size of 1802 samples and bearing1_4 in size of 1139 samples
were used as test sets.

Matlab was used for data preprocessing, including SPT determination, SWT and PCA
dimension reduction, as well as for plotting the diagrams. Tensorflow framework was used
for implementing the P-ResNet, model training and testing.

4.2. Experimental Process

The vibration signals of the training sets are shown in Figure 5a,b, and the RMS of the
training sets are shown in Figure 5c,d. First was determining the SPT of the training sets,
which is indicated by the red dashed line in Figure 4. It was observed that the SPT of the
two bearings is 1427 and 824, respectively.

After the SPT was determined, the data after SPT were processed. Each sample has
2560 points, which can be directly used as the time domain features to input the regression
model. The training sets are transformed into time–frequency images by SWT. In order
to illustrate the frequency energy change with regard to time, the vibration signals and
time–frequency images of the first and last samples of bearing1_1 are shown in Figure 6.
From Figure 6, we can see that the frequency fluctuations in the time–frequency image of
the bearing in the initial degradation stage are not obvious. However, in the final stage,
defective bearings appear periodic pulse phenomenon. These time–frequency images
320 × 2560 are resized to 32 × 32 to form a standard image size using principal component
analysis (PCA), which is used as input of the regression model. The time-domain features
and time–frequency images, and corresponding labels are used to train the regression
model. After model training is finished, the RUL of test sets can be predicted.
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The vibration signals of the test sets are shown in Figure 7a,b, and the RMS of the
test sets are shown in Figure 7c,d. First, the SPT of the test sets was determined, which is
indicated by the red dashed line in Figure 7. The test samples after SPT were processed
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in the same way as the training sets, and then input into the regression model for RUL
prediction.
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The RUL prediction results of the test sets are shown in Figure 8. It can be seen from
Figure 8 that the smoothed prediction curve is quite close to the actual RUL, which can
prove that the proposed method is effective for detecting the bearing degradation trend
and predicting RUL.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 14 
 

  
(c) (d) 

Figure 7. Vibration signals of the test sets and their RMS: (a) vibration signal of the bearing1_3; (b) 
vibration signal of the bearing1_4; (c) RMS of the bearing1_3; and (d) RMS of the bearing1_4. 

The RUL prediction results of the test sets are shown in Figure 8. It can be seen from 
Figure 8 that the smoothed prediction curve is quite close to the actual RUL, which can 
prove that the proposed method is effective for detecting the bearing degradation trend 
and predicting RUL. 

  
(a) (b) 

Figure 8. RUL prediction results of the test sets. (a) RUL prediction results of the Bearing1_3 by the 
proposed method; (b) RUL prediction results of the Bearing1_4 by the proposed method. 

4.3. Comparisons with Different Methods 
A comparison of the RUL prediction results with results from the other three 

methods is presented so as to evaluate the performance of the proposed method 
comprehensively. The first method [14] relies on time–frequency images and CNN to 
predict bearing RUL. The second method [10] uses the time domain characteristics of 
bearing vibration signals and CNN to predict the bearing RUL. The third method [7] uses 
SVR to predict bearing RUL. 

The commonly used performance comparison indexes are mean absolute error 
(MAE) and root mean square error (RMSE), which are defined as 

1

1 ˆMAE
m

i i
i
y y

m =

= − , (9) 

( )
2

1

1 ˆRMSE
m

i i
i
y y

m =

= −  (10) 

where m is the number of samples in the test sets and ˆ iy  represents the corresponding 
RUL percentage estimation by the deep neural network, iy  denotes the actual RUL 
percentage of the ith sample, the comparison results are shown in Table 1. It can be clearly 
seen that the MAE and RMSE value performed by the proposed method is smaller than 

Figure 8. RUL prediction results of the test sets. (a) RUL prediction results of the Bearing1_3 by the
proposed method; (b) RUL prediction results of the Bearing1_4 by the proposed method.

4.3. Comparisons with Different Methods

A comparison of the RUL prediction results with results from the other three meth-
ods is presented so as to evaluate the performance of the proposed method compre-
hensively. The first method [14] relies on time–frequency images and CNN to predict
bearing RUL. The second method [10] uses the time domain characteristics of bearing
vibration signals and CNN to predict the bearing RUL. The third method [7] uses SVR to
predict bearing RUL.
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The commonly used performance comparison indexes are mean absolute error (MAE)
and root mean square error (RMSE), which are defined as

MAE =
1
m

m

∑
i=1
|ŷi − yi|, (9)

RMSE =

√√√√ 1
m

m

∑
i=1

(ŷi − yi)
2

(10)

where m is the number of samples in the test sets and ŷi represents the corresponding RUL
percentage estimation by the deep neural network, yi denotes the actual RUL percentage of
the ith sample, the comparison results are shown in Table 1. It can be clearly seen that the
MAE and RMSE value performed by the proposed method is smaller than those performed
by the other three methods. By taking the MAE value as the standard, the RUL prediction
accuracy of the proposed method was improved by at least 3% compared with the other
three methods. With the RMSE value as the standard, there is also at least a 3% accuracy
improvement of the proposed method compared with the other three methods.

Table 1. Numerical prognostic performance comparisons of different methods.

The Proposed
Method

Time–Frequency
Features + CNN

Time Domain
Features + CNN SVR

Bearing1_3 MAE 0.09 0.12 0.15 0.14
RMSE 0.12 0.16 0.22 0.31

Bearing1_4 MAE 0.17 0.73 0.31 0.25
RMSE 0.23 0.26 0.28 0.36

The comparison with the time–frequency features + CNN method shows that the
proposed method have more robustness for different test set [18] and a small increase in
prediction accuracy, which proves that learning two domain types of features in parallel
is more comprehensive and more robust for RUL prediction. Compared with the time-
domain features + CNN method, the prediction accuracy of the proposed method has
a quite sufficient increase, which proves that the time–frequency features are important
to consider. The last comparison with the SVR method shows the defects of traditional
machine learning to learn complex features.

5. Conclusions

In this paper, a bearing RUL prediction method based on P-ResNet was proposed.
During machine operation, the start prediction time was firstly determined by an RMS-
based moving average method. Then, the time–frequency domain images of raw data were
obtained by synchrosqueezed wavelet transform (SWT). To ensure the comprehensiveness
of the bearing degradation information and improve the accuracy of the RUL prediction,
the time domain features of bearing vibration signals and the time–frequency images were
both used as the inputs of the parallel convolutional network model, which can learn those
two types of features with two different series of convolutional operations in parallel. The
residual network layers in the regression model enhance the learning ability. Finally, the
KF algorithm is used to maintain the stability of the predicted results. In order to verify
the performance of the proposed method, the IEEE PHM 2012 Data Challenge dataset was
adopted for experimental study. The experimental results prove that the proposed method
is effective for bearing RUL prediction. Compared with the other three methods, at least a
3% accuracy improvement proved that the proposed method has certain superiority.

The advantages of the proposed methods are summarized as follows. (1) Synchrosqueezed
wavelet transform (SWT), which overcomes the low time–frequency resolution of the tra-
ditional wavelet transform, was adopted to obtain time–frequency domain features of
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vibration signals. With both time–frequency domain features and time-domain features
as training data, the comprehensiveness of bearing degradation information can be en-
sured. (2) A parallel deep residual convolutional neural network (P-ResNet) was used
for training and RUL prediction. In the structure of P-ResNet, there are two parallel se-
ries of convolutional layers to learn time–frequency domain features and time-domain
features, respectively, and residual layers to enhance the learning ability, which can obtain
a more accurate trained model for RUL prediction. (3) The KF algorithm was adopted
for smoothing the predicted results, which can effectively reduce the measurement noises
and other uncertainties.

In terms of practical application, the proposed method can be applied to the rolling
bearing RUL prediction for equipment in the fields of automobile, metallurgy, petrochem-
ical, and so on to reduce the probability of bearing failure, improve the reliability of
equipment and finally reduce economic losses for enterprises.

There are two directions for our further research on this work. First of all, to verify
different components of the RUL prediction performance of the proposed method, more
vibration signal datasets collected from different equipment components such as gear
and worm must be used for training the proposed model, which adjusted the parameters.
Secondly, in order to be applied to the RUL prediction of bearing under different working
conditions, the proposed model will be improved with unsupervised domain adaptation.
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