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Abstract: In this article, the radial basis function method with polyharmonic polynomials for solving
inverse problems of the stationary convection–diffusion equation is presented. We investigated the
inverse problems in groundwater pollution problems for the multiply-connected domains containing
a finite number of cavities. Using the given data on the part of the boundary with noises, we aim
to recover the missing boundary observations, such as concentration on the remaining boundary
or those of the cavities. Numerical solutions are approximated using polyharmonic polynomials
instead of using the certain order of the polyharmonic radial basis function in the conventional
polyharmonic spline at each source point. Additionally, highly accurate solutions can be obtained
with the increase in the terms of the polyharmonic polynomials. Since the polyharmonic polynomials
include only the radial functions. The proposed polyharmonic polynomials have the advantages of a
simple mathematical expression, high precision, and easy implementation. The results depict that the
proposed method could recover highly accurate solutions for inverse problems with cavities even
with 5% noisy data. Moreover, the proposed method is meshless and collocation only such that we
can solve the inverse problems with cavities with ease and efficiency.

Keywords: inverse problems; polyharmonic polynomials; radial basis function; groundwater pollution;
convection–diffusion

1. Introduction

In recent years, numerical methods have been used extensively to simulate the move-
ment of contaminants to groundwater [1,2]. Applications of groundwater pollution prob-
lems as well as inverse problems require accurate input data and parameters for solving
the convection–diffusion equation [3]. However, the parameters are sometimes difficult
to measure directly from the physical point of view. Meanwhile, measurement error and
measurement uncertainty are often encountered. The inverse problems of the convection–
diffusion equation involve the findings of the missing geometric shape, unknown physical
parameters, and other conditions from historical observations [4,5].

Several numerical approaches have been successfully applied in the inverse problems
for groundwater relative problems. The methods such as the model reduction technique,
the differential evolution algorithm, and the collocation method have been used [6–8].
Identifying sources requires the solution of an inverse problem since this information has
to be generally inferred from sparsely available measurements [9].

Inverse problems are often ill-posed, and the measurement uncertainty may enlarge
numerical error exponentially in the solution [10,11]. To solve the ill-posed inverse prob-
lems, the meshless method, such as the Trefftz method and the radial basis function (RBF)
method, may be a better alternative due to its meshless and high accuracy [12–15]. In order
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to model the backward inverse heat conduction problem, a meshless method based on the
Trefftz formulation was presented [16]. Recently, the RBF method has become a promising
numerical approach for solving direct problems [17–20]. Compared to the conventional
RBF collocation method, the RBF method with the polyharmonic polynomials can obtain
highly accurate solutions [21,22]. Accordingly, the attempt of using the collocation meshless
method for solving inverse problems with cavities was made in this study.

The polyharmonic polynomials (PPs) are a series of polyharmonic RBFs, including
even radial terms and natural logarithms [23]. Several inverse problems of convection–
diffusion equation for the multiply-connected domains containing a finite number of
cavities were investigated. Numerical solutions are approximated using polyharmonic
RBFs instead of using the certain term of the polyharmonic RBF in the conventional
polyharmonic spline at each source point. Additionally, highly accurate solutions can
be obtained with the increase in the terms of polyharmonic polynomials. Additionally,
examples in simply and multiply connected domains were carried out. A brief outline of the
article is as follows: the description of the governing equation and boundary conditions are
defined in Section 2; the mathematical formulation of the proposed method is introduced
in Section 3; the convergence analysis is described in Section 4; several numerical examples
are provided in Section 5; the disucssion is described in Section 6; and finally, conclusions
are drawn in Section 7.

2. The Governing Equation

It is well known that the stationary groundwater pollution problem in porous media
is governed by the convection–diffusion equation as follows [1,5]

Lu(x) = f (x), x ∈ Ω, (1)

where L is the differential operator, L = ∇2 + α ∂
∂x + β ∂

∂y + γ; u(x) is the variable of interest
which usually is the concentration; x is the spatial coordinate, x = (x, y); f (x) is the given
function; Ω is the problem domain; ∇ is the gradient; and α, β, and γ are given functions.
The boundary conditions are applied as follows:

B1u(x) = g(x), x ∈ ∂Ω1, (2)

B2u(x) = h(x), x ∈ ∂Ω1, (3)

where ∂Ω1 is the boundary, B1 and B2 are boundary operators described as B1 = 1 and
B2 = ∂/∂n, g(x) and h(x) are the given functions, n is the outward normal vector described
as n = (nx, ny), and nx and ny are the normal directions of the x and y axes, respectively.

The inverse problems for simply and multiply connected domains are displayed in
Figure 1a,b, respectively. As illustrated in Figure 1a, the boundary includes ∂Ω1 and ∂Ω2,
where ∂Ω1 and ∂Ω2 are the known and unknown boundaries, respectively. As depicted in
Figure 1b, the boundary includes ∂Ω1, ∂Ω2, and ∂Ω3, where ∂Ω3 is the unknown boundary.
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3. The Radial Basis Function

One of the commonly used polyharmonic RBF is [21–23]

ϕ(r) = r2k ln(r), k = 1, 2, 3 · · · , (4)

where ϕ(r) is the basis function, r is the distance between points, written as r = |x− xs|, x
is the inner or boundary points, xs is the source point, and k is the order which is a certain
value. In this study, we propose polyharmonic polynomials (PPs), which are a series of
polyharmonic RBFs at each center or source as follows:

ϕ(r) =
MN

∑
k=1

r2k ln(r), k = 1, 2, 3 · · · (5)

where MN is the term of the PPs. The first derivative of Equation (5) for x and y yields the
following:

∂ϕ(x)
∂x

∼=
MN

∑
k=1

(x− xs)r2k−2[2k ln(r) + 1], (6)

∂ϕ(x)
∂y

∼=
MN

∑
k=1

(y− ys)r2k−2[2k ln(r) + 1], (7)

where xs and ys are the x- and y-coordinates of the center point, respectively. The second
derivative of Equation (5) yields the following:

∂2 ϕ(x)
∂x2

∼=
MN

∑
k=1

[
(x− xs)2r2k−4[(4 k2 − 4k) ln(r) + 4k− 2] + r2k−2[2k ln(r) + 1]

]
and (8)

∂2 ϕ(x)
∂y2

∼=
MN

∑
k=1

[
(y− ys)2r2k−4[(4 k2 − 4k) ln(r) + 4k− 2] + r2k−2[2k ln(r) + 1]

]
(9)

Employing the PPs for the function approximation, we have:

u(x) ∼=
MO

∑
j=1

MN

∑
k=1

aj,kr2k
j ln(rj), (10)

where aj,k is the unknown coefficient determined by collocation, MO is the total number of

source points, rj is the radial distance at the jth source point, rj =
∣∣∣x− xs

j

∣∣∣, and xs
j is the jth
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source point described as xs
j =

(
xs

j , ys
j

)
. Equation (10) is the function approximation that

is built up by intruding the proposed PPs into the RBF. In order to satisfy the boundary
conditions (as shown in Equations (2) and (3)), Equation (10) is then imposed at each
boundary point. Therefore, we primarily adopt Equation (10) for collocating the boundary
points in this study.

Inserting the aforementioned equations into Equation (1), the governing equation can
be written as:

MO
∑

j=1

MN
∑

k=1
aj,kr2k−2

j [4 k2 ln(rj) + 4k
]
+ α

MO
∑

j=1

MN
∑

k=1
aj,k(x− xs

j )r
2k−2
j

[
2k ln(rj) + 1

]
+β

MO
∑

j=1

MN
∑

k=1
aj,k(y− ys

j )r
2k−2
j

[
2k ln(rj) + 1

]
+ γ

MO
∑

j=1

MN
∑

k=1
aj,kr2k

j ln(rj) = f (x).
(11)

Equation (11) is mainly utilized for the discretization of inner collocation points
within the solution domain. Since the proposed PPs are not a solution to the stationary
convection–diffusion equation, the inner points must be collocated inside the domain for
the discretization. Thus, Equation (11) is mainly imposed to satisfy the governing equation
(stationary convection–diffusion equation) at each inner point. By using Equation (11) and
boundary data as shown in Equations (2) and (3), we obtained the following linear system:

Pa = Q, (12)

in which P is an n×m matrix, where m = MO ×MN , n = nI + nD + nN , nI is the inner
collocation number, nD is the boundary point number for Dirichlet boundary, nN is the
boundary point number for Neumann boundary, a is an m× 1 vector that includes unknown
coefficients described as a = [a1 a2 . . . am]

T, Q is an n× 1 vector, n is the total number of
points, and a1, a2, . . . , am are the unknown coefficients to be solved.

The input data with noises are considered as follows:

ĝ(x) = g(x) × (1 + δ × rand) and ĥ(x) = h(x) × (1 + δ × rand), (13)

where ĝ(x) and ĥ(x) are the input data with noises, rand is a random number ranging from
−1 to 1, and δ is the noise level. The maximum absolute error (MAE) is

MAE = max
∣∣û(xj

)
− u

(
xj
)∣∣, 1 ≤ j ≤ nt, (14)

and the root mean square error (RMSE) is

RMSE =

√√√√ nt

∑
j=1

[û
(
xj
)
− u

(
xj
)
]
2/nt, (15)

where nt is the validation point number and û(xj) and u
(
xj
)

are the analytical and numeri-
cal solutions at the jth validation point, respectively. The validation points coincided with
the inner points where Equation (11) is imposed.

4. Validation of the Proposed RBF

A benchmark problem enclosed by a simply connected domain was adopted for the
validation. We adopted the simplified form of Equation (1), which is the Laplace equation
for the inverse problem for the validation as

∇2u(x) = 0. (16)
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The boundary shape is

∂Ω = {(x, y)|x = ρ(θ) cos(θ), y = ρ(θ) sin(θ), 0 ≤ θ ≤ 2πω},

ρ(θ) =
1/3

√
cos (3θ) +

√
2− sin2 (3θ).

(17)

The boundary conditions are expressed as follows:

B1u(x) = g(x), x ∈ ∂Ω1, (18)

B2u(x) = h(x), x ∈ ∂Ω1. (19)

The overspecified boundary conditions are assigned using the analytical solution:

u(x) = ey sin x + ex sin y. (20)

The sources are placed outside the boundary using the equation.

xs
j = ηρs

j

(
cos θs

j , sin θs
j

)
, j = 1, . . . , MO, (21)

where η is the dilation parameter, ρs
j is the radius of the sources at the jth source point, and

θs
j is the angle of the sources at the jth source point.

For obtaining better accuracy, the centers are often regarded as fictitious sources that
are randomly scattered within the domain. In this study, we attempted to increase the
accuracy by locating the sources in different ways. For investigating the accuracy, three
different scenarios for locating the source points are considered, as illustrated in Figure 2.
The first scenario is that the sources are randomly located inside the domain shown in
Figure 2a. The second scenario is that the sources are simultaneously located within and
outside the computational domain depicted in Figure 2b. The third scenario is that the
sources are collocated outside the domain demonstrated in Figure 2c. The number of
the source points for three different scenarios, as shown in Figure 2, is actually equal to
investigating the accuracy of the proposed three collocation scenarios.
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In this study, the convergence analysis for the number of source points is conducted to
find the optimal number of source points. The results obtained demonstrate that promising
numerical solutions can be achieved when the number of source points is greater than 300.
Accordingly, the number of source points can then be determined. After determining the
optimal number of source points based on the convergence analysis, another convergence
analysis for the terms of the basis functions is then carried out to find the optimal terms
of the basis functions, as shown in Figure 3. Figure 3 illustrates the RMSE of the three
scenarios for locating the sources. As depicted in Figure 3, the third scenario exhibits higher
accuracy in the order of 10−11 than those of the first and the second scenarios. Accordingly,
we may conclude that the sources collocated outside the domain are suggested for locating
the sources. Figure 4 depicts the error versus the dilation parameter values for the third
scenario. The MAE fluctuates from 10−7 to 10−11, while the dilation parameter ranges
from 1.1 to 5. Figure 5 illustrates the error versus the proportion of the accessible boundary.
From Figure 5, the value of the accessible boundary to be 1 means that the entire set of
boundary values is prescribed. Additionally, the accessible boundary to be 1 represents
that the problem becomes a forward problem. For the forward problem, we found the
solution within the domain similar to the boundary value problem in which the entire
boundary values are given. On the other hand, the accessible boundary value less than
1 represents that the problem becomes an inverse problem. The inverse problems of the
convection–diffusion equation involve the findings of the solution within the domain as
well as missing boundary values. The results obtained show that both MAE and RMSE
decrease with greater accessible boundary values.

Considering the given data polluted by random noise, the noise level is ranged from
10−2 to 10−6. Table 1 lists the error of the proposed method for the inverse problem where
the percentages of the accessible boundary are ω = 75% and ω = 50%. Thus, accurate
results can be achieved even with input data polluted by noise. Figure 6 demonstrates the
comparison of results for solving inverse problems. Results computed using the proposed
method are agreed with the exact solution.
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Table 1. Errors of the proposed method with various noise levels.

Noise Level
ω = 75% ω = 50%

MAE RMSE MAE RMSE

10−6 2.57 × 10−6 5.00 × 10−8 8.43 × 10−6 8.67 × 10−8

10−5 2.58 × 10−6 5.54 × 10−7 3.62 × 10−5 7.77 × 10−7

10−4 4.69 × 10−5 1.01 × 10−6 7.74 × 10−5 1.66 × 10−6

10−3 8.10 × 10−5 1.74 × 10−6 7.67 × 10−5 1.65 × 10−6

0.01 2.40 × 10−3 5.21 × 10−5 3.20 × 10−3 6.91 × 10−5

0.02 2.90 × 10−3 6.28 × 10−5 5.20 × 10−3 1.12 × 10−4

0.03 6.90 × 10−3 1.49 × 10−4 7.20 × 10−5 1.55 × 10−4

5. Numerical Examples
5.1. Example 1

An inverse problem of the stationary convection–diffusion equation with nine cavities
enclosed by a multiply connected domain was considered. Figure 7 shows a hollow circular
domain with eight circular holes with a radius of 0.125. The radii of the outer and inner
circles of the hollow circular domain are 1.0 and 0.5, respectively.

The governing equation is presented in Equation (1), where α = 0, β = 0, γ = −900,
and f (x) = (1 + γ)(ex + ey). The boundary conditions are

B1u(x) = g(x), x ∈ Ω1, (22)

B2u(x) = h(x), x ∈ Ω1. (23)

The boundary data are given using the following exact solution:

u(x) = ex + ey. (24)
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Figure 8 depicts the MAE and RMSE versus the terms of the PPs. The MAE and RMSE
rapidly decrease with an increase in terms, and accurate results may be obtained while the
terms of the PPs are greater than 5. Figure 9 presents the error versus the dilation parameter,
indicating that the value of the dilation parameter is not sensitive to the computed results
and the MAE and RMSE from the proposed method are in 10−11 and 10−13, respectively.
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Additionally, we examine the influence of the location of the inner points. The layouts
of the uniformly and randomly distributed inner points are depicted in Figure 10a,b,
respectively. Furthermore, we consider the specified data to be polluted by random noise
when the noise level is δ = 0.03. Figure 11 depicts the comparison of solutions along
the hole boundary δ = 0.03. It was found that the proposed method generates results
consistent with those of the analytical solution. The MAE values of the uniformly and
randomly distributed inner points are in the order of 10−4.
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Table 2 lists the errors of the proposed method with various wave numbers, and the
percentages of the accessible boundary are set as ω = 50% and ω = 25%. As displayed in
Table 2, the MAEs utilizing the proposed method with ω = 50% and ω = 25% for γ = 1000
are in the order of 10−14 and 10−13, respectively. The results demonstrate that the boundary
data on the inaccessible boundary can be recovered even considering a large wave number.

Table 2. Errors of the proposed method with various wave numbers.

Wave Number
ω = 50% ω = 25%

MAE RMSE MAE RMSE

100 4.30 × 10−11 3.42 × 10−13 1.01 × 10−10 8.04 × 10−13

200 4.41 × 10−11 3.51 × 10−13 9.40 × 10−11 7.47 × 10−13

300 3.56 × 10−11 2.83 × 10−13 1.31 × 10−11 1.04 × 10−13

400 2.04 × 10−11 1.62 × 10−13 5.50 × 10−11 4.38 × 10−13

500 7.81 × 10−12 6.21 × 10−14 1.77 × 10−11 1.41 × 10−13

600 1.71 × 10−11 1.36 × 10−13 3.03 × 10−10 2.41 × 10−12

700 4.59 × 10−12 3.65 × 10−14 3.38 × 10−11 2.69 × 10−13

800 1.52 × 10−11 1.21 × 10−13 4.29 × 10−11 3.41 × 10−13

900 4.94 × 10−12 3.93 × 10−14 1.43 × 10−10 1.14 × 10−12

1000 1.25 × 10−11 9.93 × 10−14 4.70 × 10−11 3.74 × 10−13

5.2. Example 2

The governing equation is presented in Equation (1), where α = 0, β = 0, γ = 0, and
f (x) = − cos x− sin y. The boundary conditions are

∂Ω4 =

{
(x, y)|x = 0.40 + ρ4(θ) cos

(
θ +

1
2

sin(8θ)

)
, y = ρ4(θ) sin

(
θ +

1
2

sin(8θ)

)}
, (25)

B1u(x) = g(x), x ∈ ∂Ω1, (26)
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B2u(x) = h(x), x ∈ ∂Ω1. (27)

Figure 12 depicts the domain for the analysis. The boundaries are defined as follows:

∂Ω1 = {(x, y)|x = ρ1(θ) cos(θ), y = ρ1(θ) sin(θ), 0 ≤ θ ≤ 2πω}, ω = 50% and 75%, (28)

∂Ω2 = { (x, y)|x = −0.40 + ρ2(θ) cos(θ), y = ρ2(θ) sin(θ)}, (29)

∂Ω3 = { (x, y)|x = ρ3(θ) cos(θ), y = ρ3(θ) sin(θ)}, (30)

∂Ω4 =

{
(x, y)|x = 0.40 + ρ4(θ) cos

(
θ +

1
2

sin(8θ)

)
, y = ρ4(θ) sin

(
θ +

1
2

sin(8θ)

)}
, (31)

in which

ρ1(θ) =
1/3

√
cos(4θ) +

√
18
5
− sin2(4θ), (32)

ρ2(θ) = abs[(sec 3 θ)]sin 6θ , (33)

ρ3(θ) =
(

3 + cos
(

θ − π

7

))
sin(4θ)/5 + sin(2θ) , (34)

ρ4(θ) =
1/3

√
cos(3θ) +

√
2− sin2(3θ). (35)
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The analytical solution is described as

u(x) = cos x + sin y + 4. (36)

Two scenarios with different accessible boundaries are investigated. The locations
of the collocation points for cases A and B are depicted in Figure 12a,b, respectively. The



Appl. Sci. 2022, 12, 4294 14 of 21

error of the proposed method with different terms of the PPs is investigated, as shown in
Figure 13a. Highly accurate results are obtained while the terms are greater than 4. The
RMSE is in the order of 10−10 if the terms of the PPs range between 5 and 20. Consequently,
the terms of the PPs are set as 11 in this example. Figure 13b illustrates the error versus the
dilation parameter for case B. Accurate results are obtained for the dilation parameter from
2 to 5.
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The MAE and RMSE versus different noise levels for cases A and B are represented
in Figure 14a,b, respectively. The RMSE values associated with the proposed approach
for cases A and B are in the order of 10−5 and 10−5, respectively. Figure 15 displays the
computed results with different noise levels. Results obtained indicate that our approach
obtains highly accurate results, as shown in Figure 16.
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Figure 16. Computed results with different noise levels: (a) u on ∂Ω3 with δ = 0.01; (b) u on ∂Ω4

with δ = 0.01; (c) u on ∂Ω5 with δ = 0.01; (d) u on ∂Ω3 with δ = 0.03; (e) u on ∂Ω4 with δ = 0.03;
and (f) u on ∂Ω5 with δ = 0.03.

5.3. Example 3

The governing equation is presented in Equation (1), where α = y3 sin x, β = −y2 cos x,
γ = x2y and f (x)= y cos(x) + x cos(y). The following analytical solution is adopted for
validation

u(x, y) = y cos(x) + x cos(y). (37)

The boundary data are expressed as

B1u(x) = g(x), x ∈ ∂Ω1, and (38)

B2u(x) = h(x), x ∈ ∂Ω1. (39)

Figure 17 depicts a multiply connected domain for this example. The boundaries are
defined as follows:

∂Ω1 = { (x, y)|x = ρ1(θ) cos(θ), y = ρ1(θ) sin(θ), 0 ≤ θ ≤ 2πω},ω = 75% and 50%, (40)

∂Ω2 = { (x, y)|x = −0.22 + ρ2(θ) cos(θ), y = ρ2(θ) sin(θ)}, (41)

∂Ω3 = { (x, y)|x = ρ3(θ) cos(θ), y = 0.25 + ρ3(θ) sin(θ)}, (42)

∂Ω4 = { (x, y)|x = 0.25 + ρ4(θ) cos(θ), y = ρ4(θ) sin(θ)}, and (43)

∂Ω5 = { (x, y)|x = ρ5(θ) cos(θ), y = −0.25 + ρ5(θ) sin(θ)}, (44)

in which

ρ1(θ) =
1/3

√
cos(4θ) +

√
18
5
− sin2(4θ), (45)

ρ2(θ) = abs(sec(3θ))sin(6θ), (46)

ρ3(θ) =
(

3 + cos
(

θ − π

7

))
sin(4θ)/5 + sin(2θ) , (47)

ρ4(θ) = 1 +
1
10

tan h(10 sin(2θ)), and (48)

ρ5(θ) =
1/3

√
cos(3θ) +

√
2− sin2(3θ). (49)

In this example, the dilation parameter and the PPs terms are 2 and 11, respectively.
Two scenarios with different accessible boundaries are investigated. The configurations of
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the collocation points for cases C and D are illustrated in Figure 17. The percentages of the
accessible boundary for cases C and D are 75% and 50%, respectively.
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The error of the proposed approach with different terms of the PPs is investigated,
as shown in Figure 18a. Highly accurate results are acquired while the terms are greater
than 4. The RMSE is in the order of 10−9, with the terms ranging from 5 to 20. Figure 18b
illustrates the error versus the terms for case D. Accurate results may be achieved while the
dilation parameter is from 2 to 5. Furthermore, the dilation parameter may be less sensitive
to accuracy.
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The MAE and RMSE versus different noise levels for cases C and D are shown in
Table 3. Figure 19 displays the computed results with the different noise levels. Our method
yields highly accurate results shown in Figure 20. The MAE of our method can reach 10−3

with δ = 0.03, as depicted in Figure 21.
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Table 3. Errors of the proposed method with various noise levels.

Noise Level
Case C Case D

MAE RMSE MAE RMSE

10−6 1.03 × 10−7 2.79 × 10−10 1.37 × 10−6 3.68 × 10−9

10−5 1.07 × 10−6 4.83 × 10−9 1.58 × 10−5 2.91 × 10−8

10−4 1.94 × 10−6 1.98 × 10−8 1.88 × 10−5 3.53 × 10−8

10−3 6.59 × 10−5 2.52 × 10−7 1.14 × 10−4 6.45 × 10−7

0.01 2.80 × 10−3 6.00 × 10−6 2.10 × 10−3 7.27 × 10−6

0.02 1.20 × 10−3 4.08 × 10−6 3.50 × 10−3 1.28 × 10−5

0.03 1.30 × 10−3 6.51 × 10−6 5.20 × 10−3 1.62 × 10−5
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6. Discussion

A linear combination of polyharmonic RBFs plus a polynomial term is the common
way to construct the polyharmonic spline. The polyharmonic splines are often used for
function approximation, which is provided for interpolating and fitting scattered data in
different dimensions. The polyharmonic splines are the combination of many polyharmonic
RBFs at different centers in which a certain order of each polyharmonic RBF is fixed. The
polynomial term may improve fitting accuracy for the polyharmonic spline. However,
the polynomial term is separated from the polyharmonic RBF, which needs to be defined
by the users. Additionally, the certain order of the polyharmonic RBF depends on the
types of problems to be solved; it is often challenging to determine the certain order of the
polyharmonic RBF.

In this study, we proposed a pioneering work to apply the RBF method with polyhar-
monic polynomials in which the polynomial term is not required prior. The polyharmonic
polynomials are a series of polyharmonic RBFs that have many radial polynomials. Since
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the polyharmonic polynomials include only the radial terms, the proposed polyharmonic
polynomials have the advantages of a simple mathematical expression, high precision, and
easy implementation.

We also conducted the parametric analysis in the sections of validation and numerical
examples. It was found that the MAE and RMSE versus the order of the proposed poly-
harmonic polynomials exhibited that accurate solutions can be obtained while the terms
of the polyharmonic polynomials are greater than 5. Additionally, accurate solutions can
be obtained with the terms of the polyharmonic polynomials no greater than 10 for all nu-
merical examples. Finally, we may conclude that the proposed polyharmonic polynomials
may resolve the challenge of determining the certain order of the polyharmonic RBF in the
conventional polyharmonic spline. Additionally, an accurate solution can be obtained with
the increase in terms for polyharmonic polynomials.

7. Conclusions

In this study, a pioneering work applies the RBF method with polyharmonic polynomi-
als to model the movement of contaminants based on the stationary convection–diffusion
equation. The concept of the proposed approach is addressed in detail. Significant findings
are concluded as follows.

(1) In this study, we demonstrated that the radial basis function method with poly-
harmonic polynomials could achieve accurate results for inverse problems of the
stationary convection–diffusion equation. Due to the meshless nature, the proposed
RBF method is superior to solving the inverse problems in groundwater pollution
problems with highly complicated domains such as the multiply-connected domains
containing a finite number of cavities;

(2) The polyharmonic RBFs with a certain order are often used for function approximation.
Because the order of the conventional polyharmonic RBF is fixed and needs to be
given prior to the analysis, it is often challenging to determine the certain order of the
polyharmonic RBF. In this study, we proposed polyharmonic polynomials (PPs). The
PPs are a series of polyharmonic RBFs, including any order of the polyharmonic RBFs.
Accordingly, the order of the polyharmonic RBF is not required to be given prior to
the analysis;

(3) Numerical examples in simply and multiply connected domains such as cavities
with complicated shapes were carried out. We may recover the missing boundary
observations such as concentration on the remaining boundary or those of the cavities
with highly accurate results using more terms of the PPs;

(4) Comparative analysis was conducted for three different scenarios for collocating
sources, such as sources inside the domain randomly, random sources within a circle
containing the domain, and sources outside the domain. It was found that the sources
collocated outside the domain exhibit the best accuracy;

(5) The results depict that the proposed method could recover highly accurate solutions
for inverse problems of the stationary convection–diffusion equation with cavities
even with 5% noisy data. Moreover, the proposed method is a meshfree method and
collocation only such that we can solve the inverse problems with highly complicated
domain shapes easily and efficiently;

(6) In this study, a pioneering work attempted to apply the radial basis function method
with PPs for inverse problems with very complicated domains. We achieved a promis-
ing result for multiply connected domains containing a finite number of cavities.
Further studies to investigate the characteristics of the proposed method to solve
inverse problems in three dimensions are suggested.
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