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Abstract: Recent advances in autostereoscopic three-dimensional (3D) display systems have led to
innovations in consumer electronics and vehicle systems (e.g., head-up displays). However, medical
images with stereoscopic depth provided by 3D displays have yet to be developed sufficiently for
widespread adoption in diagnostics. Indeed, many stereoscopic 3D displays necessitate special 3D
glasses that are unsuitable for clinical environments. This paper proposes a novel glasses-free 3D
autostereoscopic display system based on an eye tracking algorithm and explores its viability as a 3D
navigator for cardiac computed tomography (CT) images. The proposed method uses a slit-barrier
with a backlight unit, which is combined with an eye tracking method that exploits multiple machine
learning techniques to display 3D images. To obtain high-quality 3D images with minimal crosstalk,
the light field 3D directional subpixel rendering method combined with the eye tracking module
is applied using a user’s 3D eye positions. Three-dimensional coronary CT angiography images
were volume rendered to investigate the performance of the autostereoscopic 3D display systems.
The proposed system was trialed by expert readers, who identified key artery structures faster than
with a conventional two-dimensional display without reporting any discomfort or 3D fatigue. With
the proposed autostereoscopic 3D display systems, the 3D medical image navigator system has the
potential to facilitate faster diagnoses with improved accuracy.

Keywords: medical 3D displays; medical images; coronary CT angiography; 3D heart; autostereoscopic
3D display; eye tracking; light field subpixel rendering

1. Introduction

Medical imaging is an invaluable tool for the diagnosis and treatment of various
abnormalities. Three-dimensional (3D) volumetric medical images composed of multiple
two-dimensional (2D) images are being increasingly utilized for identifying complex organ
structures and diagnosing abnormalities. Recent developments of 3D imaging techniques,
such as computed tomography (CT), ultrasonography (US), positron emission tomography
(PET), single photon emission computed tomography (SPECT), and magnetic resonance
imaging (MRI) have heightened the demand for 3D medical imaging displaying systems.
Furthermore, the rapid evolution of 3D graphics techniques has increased the availability
of high-quality 3D medical volume rendering and offers a better look at detailed anatomic
and pathologic information, which can be missed by 2D techniques such as multiplanar
reformations (MPR) [1–4]. However, at present, medical images with complex 3D struc-
tures are displayed on two-dimensional (2D) screens, with 3D contents projected onto the
2D plane.

Three-dimensional displays provide realistic visual experiences with an enhanced
sense of image depth [5–7]. Presently, 3D displays are readily and widely available in many
industries to show visual contents, such as 3D movies at cinema facilities and 3D head-up
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displays (HUDs) at assistive driving systems to create a more engaging viewing experience.
In particular, augmented reality (AR) 3D HUDs via stereoscopic displays are an emerging
technology for next-generation vehicles, which can overlay 3D virtual information directly
on top of the physical road ahead via combiners placed on the windshield, to reduce
the visual disparities between virtual contents and real-world objects [8,9]. Exsoscope in
surgery also offers stereoscopic 3D visualization for shared viewing using special 3D glasses
and a 3D monitor. Exoscope has been introduced as an alternative to conventional operating
microscopes by providing shared high resolution 3D displays, which shows magnified and
illuminated surgical fields. The benefits of 3D exoscope usage in the operating room in
surgery compared to conventional microscopes has increased interests rapidly in recent
years [10,11]. However, many stereoscopic displays require the viewer to wear special 3D
glasses that are unsuitable for clinical environments.

The past decade has witnessed several advances in the development of 3D autostereo-
scopic 3D displays. Glasses-free 3D autostereoscopic displays have provided immersive
visual experiences with quality depth of various image applications, which almost matches
the 3D quality exhibited by 3D displays requiring 3D glasses (≤10% 3D crosstalk) [12–16].
Multiview autostereoscopic 3D displays can offer natural 3D images using directional
pixels with optical layers such as parallax barriers or lenticular lenses [12–16]. However,
Multiview 3D displays have some limitations such as a decrease in image resolution owing
to the number of 3D viewpoints and limited 3D viewing zones. The autostereoscopic 3D
display technique based on eye tracking, which overcomes these limitations by focusing
pixel resources on a single user, provides higher 3D image resolution contents and seamless
3D experiences without restricted positions to avoid 3D crosstalk artifacts [17–19]. The
eye tracking-based autostereoscopic 3D displays can be obtained by the same form factors
as flat panel displays and provide motion parallax by tracking the user’s eye positions.
From the user’s eye position by real-time pupil localization and tracking algorithms, the
directional subpixel rendering method [17–19] not only optimizes pixel resources to reduce
crosstalk but also enables real-time rendering based on eye position.

Various consumer applications utilize eye tracking-based 3D autostereoscopic display
techniques, such as game consoles [20], smartphones [21], tablets [17], HUDs [22], and per-
sonal computer monitors [17] including medical image diagnosis displays [23]. In previous
studies, we published several attractive applications of eye tracking-based autostereoscopic
3D displays such as personal computer monitors, tablets, and HUDs [17,24–30]. In contrast,
processes for diagnosing medical images that utilize the 3D depth perception provided by
stereoscopic 3D displays remain a rarity and require further research and development. To
date, only a few studies have attempted to create 3D medical display systems [31,32].

In this paper, we interviewed physicians across various medical departments of the
Samsung Medical Center (SMC) to ascertain their requirements for autostereoscopic 3D
display technology. By analyzing the collected opinion samples, we developed an au-
tostereoscopic medical 3D display system based on eye tracking. We have previously
described a preliminary study of glasses-free autostereoscopic 3D display systems in the
medical research community and discuss its feasibility as a 3D display for clinical applica-
tions [31], validated on a few cases. In this work, we describe an improved autostereoscopic
3D display method based on eye tracking for medical images, which were validated on
more various medical images. The proposed system seeks to deliver improved diagnostic
accuracy and enable faster diagnoses for physicians handling cardiac CT data (Figure 1) as
well as other medical image modalities and applications.
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Figure 1. (a) Eye tracking-based light-field 3D display concept, showing the generation and model-
ing of directional light rays. (b) 3D display prototype for medical applications: 3D cardiac CT navi-
gator. 

2. Methods 
Our new glasses-free display system utilizes eye tracking and a slit-barrier system 

with a backlight unit (BLU). The performance of the proposed glasses-free cardiac CT 3D 
navigator system was evaluated using 3D cardiac CT data. 

2.1. Autostereoscopic 3D Display System 
The proposed 3D display consists of a 2D display panel, an optical unit for processing 

3D images, and a RGB stereo camera. Additionally, the liquid crystal display (LCD) panel 
is displayed in 4K resolution. The optical unit controls the light direction passing through 
the panel, and the display system is built on the slit-barrier technology. Through the slits 
in the barrier, there can only be pixels from the left image passing to the left eye position 
and pixels from the right image passing to the right eye position. Figure 2 shows where 
the slit barrier is located: in front of the BLU and behind the LCD panel. 

 
Figure 2. Autostereoscopic 3D display concept: (1) Directional light is generated by liquid crystal 
display (LCD) panels; (2) the 3D light field is modeled; and (3) 3D light rendering is performed 
according to user eye position, as determined by eye tracking algorithms. 

Figure 1. (a) Eye tracking-based light-field 3D display concept, showing the generation and modeling
of directional light rays. (b) 3D display prototype for medical applications: 3D cardiac CT navigator.

2. Methods

Our new glasses-free display system utilizes eye tracking and a slit-barrier system
with a backlight unit (BLU). The performance of the proposed glasses-free cardiac CT 3D
navigator system was evaluated using 3D cardiac CT data.

2.1. Autostereoscopic 3D Display System

The proposed 3D display consists of a 2D display panel, an optical unit for processing
3D images, and a RGB stereo camera. Additionally, the liquid crystal display (LCD) panel
is displayed in 4K resolution. The optical unit controls the light direction passing through
the panel, and the display system is built on the slit-barrier technology. Through the slits in
the barrier, there can only be pixels from the left image passing to the left eye position and
pixels from the right image passing to the right eye position. Figure 2 shows where the slit
barrier is located: in front of the BLU and behind the LCD panel.
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The camera performs eye tracking, with eye movements processed by an eye tracking
algorithm based on multiple machine learning techniques. With this eye tracking algorithm,
the viewer is not limited to an optimal viewing position for 3D images and can view the
images from any position within the range of the tracking capabilities. In the display panel,
the subpixel values for left and right views are adjusted according to the 3D coordinates for
the viewer’s pupil.

2.2. Light Field 3D Subpixel Rendering

A 3D light-ray image is created by applying a 3D rendering algorithm, which utilizes
information on the global parameters of the 3D display and eye positions. Many prior
works have been investigated to achieve 3D rendering [33–35]. Most of these methods
assumed a fixed viewpoint, which is not suitable to support changing eye positions in real
time. Therefore, our method employs a direct rendering method based on lumigraph [28].
The basic idea of this method is as follows.

• All light rays passing through the slit (lens) are represented as lines in ray space.
• All light rays passing through the eye pupil are also represented as lines in ray space.
• The light ray we see is the intersection of these two straight lines.

We can reconstruct light fields sampled by 3D display on ray space using global
parameters of the device. A setM = {m1, m2, . . . , mN} of lines on the ray spaces which
pass the slits (lens) and each line mn can be represented as:

u =

(
1− d

pz
n

)
s +

d
pz

n
px

n, n = 1, . . . , N, (1)

where pn = (px
n, pz

n) means the world coordinate of n-th slit (lens), and d is the distance
of s–t and u–v planes (Figure 3). Likewise, A set N = {n1, nK} consists of lines on the ray
space that shows the rays passing through the eyes and nk is defined as:

u =

(
1− d

qz
k

)
s +

d
qz

k
qx

k , k = 1, 2 (2)

where, qk =
(
qx

k , qz
k
)

means the world coordinate of the eyes. In this study, we assigned k

values of 1 and 2 for the left and right eyes, respectively. We also define Tij =
(

tij
u , tij

s

)
as

the intersected point of line mi and nj on ray space (Figure 4), where i and j are an index
of lines passing through slits and eyes, respectively. The 3D light-ray image is rendering
a 2D image, of which pixels are from the same location of either the left or right image.
This problem can be simplified as whether to select each pixel value of the rendering image
from the left or the right image. We can determine which eye is closest to the pixel that
passed the slit by finding the nearest intersected points as:

I3D(u, v) =

{
Ile f t(u, v), min‖u− ti1

u ‖
2 < min‖u− ti2

u ‖
2

Iright(u, v), otherwise
, (3)

where I(u, v) means the value of the pixel at (u, v) on the left, right, and 3D rendering image.
The advantage of our method is that each pixel value is independently calculated through a
simple operation, which can be processed in parallel, thereby ensuring real-time rendering.
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and blue lines represent light rays passing through the left and right eye respectively. Square boxes
are intersected points.

2.3. Eye Tracking

The 3D image quality and 3D crosstalk of the proposed 3D medical display system
depend on the precision and speed of the eye tracker [17]. With faster and more accurate
eye center position tracking, 3D images with higher 3D resolution and lower 3D crosstalk
can be displayed in real-time in our autostereoscopic 3D display system. The develop-
ment of accurate and fast eye tracking systems using RGB cameras remains a challenge
due to various light conditions including low light in medical investigation rooms, eye
occlusion, eyeglasses reflection, fast head movements, head poses, and limited system
computing resources.
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Our real-time machine learning-based eye tracking systems aims to provide fast,
accurate, robust, and small model sized methods for medical display commercial use. Our
proposed eye tracking system classifies human faces into faces with clear eyes and eye-
occluded faces such as thick eyeglasses with reflection, wearing hats, sunglasses, and hair
occlusion. Depending on user eye shape clearness conditions, corresponding eye landmark
point detection methods are applied based on image classification. The eye tracking system
switches model designs between two tracking modes. Each eye tracking mode has different
machine learning models, and the basic components can be divided into three main stages:
(1) eye-nose region detection from RGB webcam images, (2) eye center position tracking
from the detected eye-nose region with eye position refinement, and (3) tracker-checker for
fast tracking (Figure 5). Our eye-nose region detection was developed by the error-based
learning (EBL) method [25], where the cascaded Adaboost classifier [36] with local binary
features (LBP) [37] is simple and practical with the use of a conventional CPU in a PC or
mobile tablets with limited GPU resources. The EBL method trains only a small part of
training face image DBs with a large size. The EBL offers higher accuracy in much shorter
training times through multiple stages to find the most difficult training image DB subsets.
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Figure 5. Illustration of the proposed eye tracking method, which includes pupil segmentation
modules. The left image shows an extracted subregion (red box) including the eyes and nose of the
subject. The middle image shows the 11 landmark points (green dots) used to inform the Supervised
Descent Method (SDM)-based shape alignments. In the right image, the green circles around the
red points on the eyes indicate the pupil segmentation modules, which increase the accuracy of the
eye tracking.

If eye-nose region detection is successful, the eye center position tracking mode runs
depending on the user eye image condition classification, until tracking mode fails with
the tracker-checker module. For clear eye faces, a coarse-to-fine strategy was developed
to infer pupil center location using the Supervised Descent Method (SDM) [38] with
Scale-Invariant Feature Transform (SIFT) [39] with pupil position refinement by pupil
segmentation module [26]. Specifically, 11 landmark points encompassing the eyes, nose,
and mouth are used to perform the SDM-based shape alignments [22,23]. The pupil
segmentation method was developed as an iris regression module, where pupil boundaries
are regressed to refine pupil center positions [25,26].

For eye occluded faces due to wearing thick eyeglasses, sunglasses, and hair occlusion,
we adopted a Convolutional Neural Network (CNN)-based facial keypoint alignment
method, the Practical Facial Landmark Detector (PFLD) network [40], which uses Mo-
bileNet v2 [41] to improve the alignment speed when using only CPU resources. We
revised the PFLD network by adding a re-weight network module to handle eye occlusion
problems [26,27]. To infer the eye pupil position, we utilized 98 whole face feature points,
which can handle the eye occlusion cases. While the original PFLD method has the same
importance in whole face points, our revised PFLD method with the re-weight sub-network
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module revises the importance of different feature map positions and then the occluded
part can be inferred by non-occluded parts. The proposed re-weight method infers the
pixel confidence on the feature map using both the landmark appearance and the graphical
structure between landmarks, and the network can be trained end-to-end. The proposed
revised PFLD network is shown in Figure 6.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 
Figure 6. Eye center positions are refined with our proposed re-weight algorithm for eye occluded 
faces. From the MobileNet v2 based PFLD method (the upper row), the re-weight subnet infers the 
pixel confidence on the feature map from both the structure between landmarks and landmark ap-
pearance as shown in the bottom row. 

D Autostereoscopy Visualization Feasibility for 3D Medical Imaging: 3D Cardiac CT 
Navigator 

We visualized 3D coronary CT angiography (CTA) images using the proposed 3D 
autostereoscopic display system based on the eye tracking algorithm. In collaboration 
with SMC medical doctors, we developed 3D navigator software for cardiac CT to support 
the system. SMC provided anonymized 3D CTA image data. The 3D CTA dataset, which 
had excellent image quality, was acquired using a dual-source 64-slice CT scanner (Defi-
nition, Siemens Medical Solutions, Germany) with a gantry rotation time of 330 ms and 
standard collimation of 0.6 mm. The CTA dataset comprised 412 slices that measured 512 
× 512 pixels, with a voxel size of 0.38 m × 0.38 m × 0.3 m. In addition, the slices were for a 
patient who had no plaque or luminal stenosis in coronary arteries. 

As our navigator software must be able to identify the 3D structure of complex or-
gans with ease, a 3D cardiac CT navigator prototype was developed as a case study to 
illustrate the concept. We have created a 3D display that helps viewers examine 3D struc-
tures in greater detail thanks to enhanced depth perception. 

To enable 3D visualization, we followed a standard procedure to process the images 
from the coronary CTA images. We segmented the whole heart, coronary arteries from 
the original CTA dataset, and rendered the 3D volume of the original CTA images as well 
as segmented whole heart and coronary arteries. The rendered 3D volumes can be cus-
tomized in terms of color and transparency. Moreover, 3D volume rendering is accompa-
nied by multi-planar reconstruction (MPR) as shown in Figure 7. Furthermore, our 
method can be used to convert the volume to a 3D mesh. One possible usage scenario is 
presented in Figure 8: the 3D display serves as a 3D navigator that allows potential coro-
nary lesions to be identified easily within complex coronary artery structures. These lesion 
candidates can then be examined in detail using 2D modes with 2D cardiac CT images. 

Figure 6. Eye center positions are refined with our proposed re-weight algorithm for eye occluded
faces. From the MobileNet v2 based PFLD method (the upper row), the re-weight subnet infers
the pixel confidence on the feature map from both the structure between landmarks and landmark
appearance as shown in the bottom row.

D Autostereoscopy Visualization Feasibility for 3D Medical Imaging: 3D Cardiac
CT Navigator

We visualized 3D coronary CT angiography (CTA) images using the proposed 3D
autostereoscopic display system based on the eye tracking algorithm. In collaboration
with SMC medical doctors, we developed 3D navigator software for cardiac CT to sup-
port the system. SMC provided anonymized 3D CTA image data. The 3D CTA dataset,
which had excellent image quality, was acquired using a dual-source 64-slice CT scanner
(Definition, Siemens Medical Solutions, Germany) with a gantry rotation time of 330 ms
and standard collimation of 0.6 mm. The CTA dataset comprised 412 slices that measured
512 × 512 pixels, with a voxel size of 0.38 m × 0.38 m × 0.3 m. In addition, the slices were
for a patient who had no plaque or luminal stenosis in coronary arteries.

As our navigator software must be able to identify the 3D structure of complex organs
with ease, a 3D cardiac CT navigator prototype was developed as a case study to illustrate
the concept. We have created a 3D display that helps viewers examine 3D structures in
greater detail thanks to enhanced depth perception.

To enable 3D visualization, we followed a standard procedure to process the images
from the coronary CTA images. We segmented the whole heart, coronary arteries from the
original CTA dataset, and rendered the 3D volume of the original CTA images as well as
segmented whole heart and coronary arteries. The rendered 3D volumes can be customized
in terms of color and transparency. Moreover, 3D volume rendering is accompanied by
multi-planar reconstruction (MPR) as shown in Figure 7. Furthermore, our method can
be used to convert the volume to a 3D mesh. One possible usage scenario is presented in
Figure 8: the 3D display serves as a 3D navigator that allows potential coronary lesions to
be identified easily within complex coronary artery structures. These lesion candidates can
then be examined in detail using 2D modes with 2D cardiac CT images.
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Figure 8. Three-dimensional cardiac CT navigator usage examples. The 3D display serves as a 3D
navigator for identifying coronary lesion candidates within complex coronary artery structures. The
candidates can then be examined in detail using 2D modes with 2D cardiac CT images.

An expert reader from SMC was asked to identify various heart structures using our
autostereoscopic 3D display prototype.

From a segmented 3D volume of a heart, the expert reader could identify the heart’s
main organs, including its major coronary artery structures, namely the left anterior de-
scending (LAD), left circumflex artery (LCX), and right coronary artery (RCA).

3. Results and Discussion

The proposed 3D cardiac CT navigator software and the autostereoscopic 3D display
system were used to analyze a coronary CTA image dataset. The complete specifications of
the proposed system and prototype are summarized in Table 1 and Figure 9.

Table 1. Complete specifications of the proposed autostereoscopic 3D display system prototype based
on eye tracking for medical 3D image applications.

Monitor Mobile Tablet 1 Mobile Tablet 2

Screen Size 31.5” 18.4” 10.1”

3D Optical Module Barrier-type BLU (3D) Dual-layer BLU
(2D/3D)

Single-layer BLU
(2D/3D)

3D Processing Light Field Subpixel
Rendering

Light Field Subpixel
Rendering

Light Field Subpixel
Rendering

3D Viewing Angle H60◦, V40◦ H60◦, V40◦ H60◦, V40◦

3D Resolution FHD QHD QHD
Total Viewing

Number Continuous Parallax Continuous Parallax Continuous Parallax

Display Driving HW PC, Windows FPGA, Androids FPGA, Androids
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prototypes, the light field 3D subpixel rendering and eye tracking are processed in the FPGA board. 
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not. Figure 10 shows the left and right captured image at different camera positions. When 
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Figure 9. Proposed implemented prototypes of an autostereoscopic 3D display system for 3D medical
images ((left) 31.5”, (middle) 18.4”, (right) 10.1”). In the 31.5” monitory prototype (left), the light
field 3D subpixel rendering is processed with a GPU and the eye tracking algorithm is processed with
only CPU computations in Windows PC. In the 18.4” (middle) and the 10.1” (right) tablet display
prototypes, the light field 3D subpixel rendering and eye tracking are processed in the FPGA board.

3.1. Experimental Results on Light Field 3D Subpixel Rendering

We performed a visual quality evaluation using light field 3D subpixel rendering with
eye positions. To validate the visual quality of a human, we set up a stereo camera for
quantitative validation and attached a printed image of a human face to make the camera
lens look like the iris of the eyes. We then moved the stereo camera to different positions
within a distance range of 300 to 600 mm.

In this experiment, we use extrinsic crosstalk as the metric of visual quality. We
encoded each view using colors, e.g., red to the left and blue to the right image. If rendered
ideally, only red pixels are visible on the left eye and blue pixels are visible on the right eye.
In contrast, the users see an image of each color being mixed; the image with this effect is
referred to as extrinsic crosstalk, defined as:

Extrinsic crosstalk(%) =
Incorrect view luminance
Correct view luminance

× 100 (4)

We captured 100 images at four positions of different distances with the 3D rendered
image displayed in two ways, one that takes eye position into account and one that does
not. Figure 10 shows the left and right captured image at different camera positions. When
using the proposed rendering method, the left and right views are obviously separated.
The visual quality evaluation results are summarized in Table 2. The average external
crosstalk value of the proposed rendering method was 8.32%, which is within an acceptable
range for a two-view autostereoscopic display [42].
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Figure 10. Examples of the two-view image captured at different distances: (a) captured images of
rendering without eye positions, (b) captured images using the proposed 3D light field rendering
method with eye positions.

Table 2. Extrinsic crosstalk evaluation results.

Distance (mm) 3D Crosstalk by 3D Rendering W/O Eye Positions 3D Crosstalk (Ours)

300 77.59 7.90
400 85.79 8.07
500 91.10 8.52
600 88.20 8.79

average 85.67 8.32

3.2. Experimental Results on Eye Tracking

The proposed eye tracker show that our method achieves high accuracy and speed,
approximately 1.5 mm and 6.5 mm error for clean and occluded faces, respectively, at
more than 100 fps speed on an Intel Core i7-10700, 2.90 GHz CPU (Figure 11). The mean
precision error was calculated as the pixel distance between the ground truth pupil centers
by manual annotations and the pupil centers tracked by the algorithm. The physical pixel
distances were obtained from pixel distances with an assumption of 65 mm inter-pupil
distance (IPD). A RGB stereo camera with an image resolution of 640 × 480 pixels with
a capturing frame speed of 60 fps was utilized for the real-time proposed eye tracking
algorithm. We evaluated on our own captured image datasets, where annotations were
labeled by ourselves. The evaluation datasets were recorded with the stereo RGB camera
located in front of the users at a distance of 1 m on average inside a normal lighting
conditioned office environment (300–400 lux). The test image datasets consist of 20,000
clean faces and 5000 eye-occluded faces by thick eyeglasses with reflection, wearing hats,
sunglasses, and hair. The eye tracking algorithm evaluation results are summarized in
Table 3. The evaluation results demonstrated that our eye tracking method is capable of
handling clean faces as well as eye-occluded faces in real time (<10 ms) with only CPU
consumption. Eye tracking modes for occluded faces had reduced precision (5 mm more
error from 1.5 mm) and slower speed (6 ms down from 4 ms) compared to one for clean
faces due to adoption of the CNN based facial keypoint alignment method, PFLD [40].
However, our modified re-weight network method outperformed (precision 6.5 mm) the
original PFLD algorithm (precision 8 mm). Furthermore, our method achieved a higher
speed (<10 ms) and comparable accuracy to state-of-the-art neural network methods such
as CFSS [43] (40 ms), DVLN (15 ms) [44], and LAB (2.6 s) [45].
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Figure 11. Illustration of the proposed eye tracking method with pupil segmentation modules.
The green circles around the red points on the eyes indicate the pupil segmentation modules,
which increase the accuracy of the eye tracking. The left side shows the left camera image from a
stereo webcam, while the right side shows the image captured by the right camera. The left and
right images were combined to calculate the 3D eye position via stereo image matching based on
triangular interpolation.

Table 3. Evaluation results of the proposed eye tracking algorithm.

Performance on Clean Faces Performance on Occluded
Faces

Illumination condition 300~400 lux
Distance to users from camera 1 m

Detection accuracy 99.80% 99.80%
Tracking precision (mm) 1.5 mm 6.5 mm

Speed (fps) 250 fps 100 fps
Testing DB number 20,000 5000

3.3. Experimental Results on Autostereoscopy Visualization Systems for 3D Cardiac CT

For running the cardiac software, we used a Windows 10 personal computer equipped
with a 2.90 GHz Intel Core i7-10700 CPU and a NVIDIA GeForce RTX 2060 GPU. Three-
dimensional light-field rendering of the cardiac CT 3D volume was performed using the
light field 3D subpixel rendering method. All processes ran in real time without suffering
delays. The proposed autostereoscopic 3D display system’s crosstalk averaged 8.32%,
comparable to those of 3D displays requiring the viewer to wear glasses. By adjusting the
disparity between the stereo images, a depth of 20 cm was achieved using the dynamic
light-field rendering method (Figure 12). If the left and right images are not separated, they
exhibit 3D crosstalk, which results in users seeing double images (Figure 13).

We have received no complaints regarding any discomfort or 3D fatigue from the
expert reader after evaluating our 3D autostereoscopy. Using our 3D autostereoscopy sys-
tem, the reader comfortably identified the 3D heart structure, including the four chambers,
aorta, and main coronary arteries (LAD, LCX, and RCA). Assisted by the proposed 3D
autostereoscopic display, the reader could discern more geometric information, such as
overlapping coronary structures, relative to conventional 2D displays. This is because the
proposed 3D display contains two different image views from different angles, allowing
the user to see two distinct sets of information simultaneously (Figure 13). Figure 14 shows
an enlarged region of interest (red box, 1st row), which clearly shows the morphology
of different coronary arteries: the arteries are separated in the left image, while the right
image shows overlapping information.
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3D crosstalk manifests as overlapping double images and 3D fatigue for the user.

Although the performance evaluation by the expert reader was limited to a single
clinical example, they reported that the 3D structure identification process was faster and
easier using the proposed system. Nevertheless, it is clear that our 3D autostereoscopic
display system must undergo further investigation and quantitative evaluation before
being widely adopted in clinical settings. Significantly, our 3D display can function with
any other medical image modality that is compatible with images captured as multiple 3D
slices. Examples of such modalities are shown in Figure 15. In addition, surgical training
and planning can be improved with our eye tracking based autostereoscopic 3D display
method, by providing accurate depth perception without special 3D glasses. From a clinical
standpoint, it is essential for virtual reality and 3D display systems to have adequate
mobility, vision, usability, immersion, and accurate depth of field [46,47]. Our proposed
method fulfills the mobility, vision, and usability in the surgical field by providing a wide
viewing range through the proposed eye tracking algorithm. Our method also reconstructs
low 3D crosstalk images without special 3D glasses, which provides a comforTable 3D
experience for long periods of time of training and planning use. Furthermore, our light
field 3D subpixel rendering techniques without 3D glasses provide an immersive 3D
experience with accurate depth perception.
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Figure 14. Example of the augmented morphological information provided by the proposed 3D
display system. The 1st row shows the left and right views from the 3D display prototype. The 2nd
row shows an enlarged region of interest (red box, 1st row), and clearly highlights the improvement
provided by the proposed system with respect to deciphering the morphology of coronary arteries:
the left image shows separate arteries, whereas the right image shows overlapping information. The
user receives both images to both eyes; therefore, they experience enhanced 3D depth perception and
access more morphological information compared to 2D displays.
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Figure 15. Examples of the proposed 3D display system being applied to other modalities; namely,
abdomen CT and head CT. The inset camera images show the real-time eye tracking results for the
proposed autostereoscopic 3D display.

4. Conclusions

In conclusion, we proposed a novel 3D heart CT navigator system based on a 3D au-
tostereoscopy method based on an eye tracking algorithm which does not require wearing
special 3D glasses. The proposed system enables enhanced medical image diagnosis via 3D
autostereoscopy and facilitates rapid and accurate visualization of complex 3D anatomical
structures. Our proposed light field 3D subpixel rendering method combined with the
machine learning based eye tracking algorithm provided higher 3D resolution with lower
3D crosstalk (≤10% 3D crosstalk) compared to previous glasses-free medical 3D display
approaches. Importantly, the proposed 3D autostereoscopic system is extremely versatile
and can be applied to any 3D volumetric medical images for not only clinical practice usage
but also medical education and a shared decision between medical doctors and patients.
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