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Abstract: The Historic Center of Florence, a UNESCO World Heritage Site, includes many examples
of architecture characterized by rough-hewn rusticated block facades—a very common masonry
technique in the Florentine Renaissance—made in Pietraforte sandstone. The latter features numerous
criticalities related to its intrinsic characteristics and to decay phenomena that are due to weath-
ering and pollution. A multidisciplinary methodology has been developed starting from historic
analysis and architectural survey to a complete optometric, mechanical, physical, mineralogical,
and petrographic characterization of rough-hewn rusticated blocks, applied to the case study of the
Palazzo Medici Riccardi facades. The studies performed in this work cover several research fields,
from architecture to geology, going through material diagnostics, and aim at improving knowledge
and designing new restoration solutions for Pietraforte building-material criticalities. The research
proposes an operative protocol aimed at supporting restoration projects and monitoring plans, with
the aim to protect historical, architectural, and artistic cultural heritage and to safeguard the people
who visit the city of Florence every year.

Keywords: built cultural heritage; diagnostics; architectural survey; NDT; pietraforte

1. Introduction

Historic buildings are complex structures that are the result of a layering of materials
and techniques that occurred over the centuries. Assessing the state of conservation and the
characteristics of these artefacts requires the integration of several disciplines. Moreover,
comprehensive and precise knowledge about built cultural heritage, their functionality,
location, environment, and any sudden disturbance needs to be involved in uniform
interpretation for long-lasting preservation of the resource. Discrepancy or scarcity of
information can lead to errors and even irrecoverable damage [1].

The need to develop a methodology for documentation, diagnostics, and monitoring
of built heritage has been the subject of many recent studies [2–5]. The approach of
these studies is for a digital documentation of the conservation state of buildings [2,3],
including 3D modelling and GIS mapping, and the integration of diagnostics data through a
knowledge-based information system [4] or within building information modeling (BIM) [5]
for documenting damages to built heritage. Nevertheless, there are still challenging research
topics to address: in particular, the multidisciplinary integration of tools and methods
used in different fields and/or with different purposes, and the multi-level correlation of
data by different analytical and experimental documents and sources aimed at a complete
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characterization of stone weakness. This work proposes the application of an integrated
methodology for a complete characterization of the stone materials of the architectural
heritage, from the architectural survey and mapping of decay phenomena to physical-
mechanical and mineralogical investigations. The aim was to associate the competences
acquired for setting a diagnostic program based on measurements with both experimental
and traditional techniques, and on the collection, analysis, and interpretation of the results
associated to these measurements.

In the Historic Center of Florence, a UNESCO World Heritage Site, historic buildings
with facades made of Pietraforte sandstone—a building material traditionally used in
Florentine monuments—contribute to determine the outstanding universal value of the
site [6]. Therefore, their protection and monitoring are essential actions to preserve their
historical, identity, and cultural values.

The proposed method has been applied to the Palazzo Medici Riccardi, one of the most
important Florentine monuments whose facades are built with Pietraforte. Investigations
on the palace were performed both on site and in laboratory as part of the experimental
work sites, settling on two main facades of the building, on Via Gori and Via Cavour.

The diagnostic project involved first the historic analysis and architectural survey, the
latter carried out with a 3D laser-scanner and digital photogrammetry, then the investiga-
tion on site through an ultrasonic pulse velocity test and a Schmidt hammer test—both
nondestructive techniques (NDT)—were performed [7,8]. In addition to the NDT tests, a
few destructive tests (DT), with the aim of validating the NDT results through the petro-
graphic and mineralogical features of the investigated rocks, were carried out.

This multidisciplinary integration of tools and methods was aimed at a specific pur-
pose: the diagnosis of the vulnerability of the stone material to decohesion and detachments
that can represent a danger for people, as well as damage to the monument.

Given the historical importance of this building, this integrated approach can improve
the knowledge of conservation and help to prevent the decay caused by weathering and
pollution, and from the stone’s lithological features.

The research was conceived to provide a methodological guide that, from the diagnos-
tic investigations, leads to the definition of the restoration project and a plan for monitoring
criticalities. These actions are useful to stop the effect of decay, represented by the fall of
scales and fragments that, in addition to the loss of the original material to the building,
could cause damage to things and people.

The proposed work is also useful to consolidate the applied methods compared
to previous experiences in the field of diagnostics of stone materials used in the built
cultural heritage.

2. Diagnostic Project

Although in recent years there has been a profound evolution of the concept of conser-
vation of built cultural heritage [9–11], in some cases, to reduce the time and cost, the phases
of diagnostics and restoration are carried out in parallel, without a temporal separation.
Diagnostics, however, should be a preliminary phase to the restoration to deepen the knowl-
edge of the material aspects and the decay phenomena and to provide information that
will allow restorers to develop the best operational techniques for conservation, monitoring
the effectiveness of the materials used. Moreover, diagnostics is an essential step to prevent
the decay of stone materials caused by atmospheric agents, pollution, and the intrinsic
lithological characteristics.

In a diagnostic project of historic stone buildings, it is necessary to integrate the
scientific survey with other studies such as historical research, architectural survey, analysis
of the mechanisms of decay, etc. Each of these aspects allow us to improve the knowledge of
the building, for the purpose of both conservation and the monitoring of criticalities [4,12].
Indeed, the decay effect involves the fall of scales and fragments, which in addition to the
loss of the original material of the palace, could cause damage to things and people.
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The first step of the proposed methodology, the survey campaign, aims to provide
an architectural survey to create the perspective drawing, useful for integrating the data
and for identifying all the individual elements of the study areas selection. These entities
correspond to the stone elements that will be analyzed, during the investigations phase,
through optometric surveys, NDT, and DT investigations. In the final step, results, data
analyses will give a framework of the state of conservation and critical issues of the stone
elements, providing support for a restoration and monitoring plan (Figure 1).
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To optimize the data integration—from geometric information to diagnostic investi-
gation results—which aims at monitoring over time the conservation status of the build-
ing [13], a data management and analysis system must be set up. This system, set on
the SQL database, provides for the assignment of a unique ID to each investigated stone
element, corresponding to a geometric entity [14].
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3. The Case Study: Palazzo Medici Riccardi in Florence
3.1. Historical Notes

The Palazzo Medici Riccardi is one of the most significant monuments of the city
of Florence for its historical, architectural, and identity values (Figure 2). The history
of its construction and subsequent transformations is mainly connected to the events of
the Medici dynasty and the subsequent owners, the Riccardi family. The Medici had
already settled on Via Larga (now Via Cavour) starting from the 12th century, buying some
buildings on the site of the current Palazzo Pinucci, then incorporating them in the first
Medici residence (13th century) [15]. The decision to build a sumptuous new palace in
that area was consolidated at the behest of Cosimo il Vecchio, who entrusted the project
to Michelozzo in 1444. In the following decade, the first volume of the building was
completed, developed around a central courtyard, with universally known architectural
characteristics, which would have a very strong impact on the stylistic language of the
early Florentine and Italian Renaissance age. The building was the residence of Cosimo,
his son Piero il Gottoso, and Lorenzo il Magnifico, constituting the center of the political
events of the city (Figure 3).
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After the popular revolt that led to the expulsion of the family in 1494, the Medici were
able to repossess the palace [17]. The sale of the palace by Ferdinand II to Gabriello and
Francesco Riccardi in 1659 determined the most consistent transformations in the history
of the building. In the following decades, the Riccardi family carried out an expansion of
the building by incorporating some houses owned by the Ughi adjacent to the northern
side [18]. In addition to the growth and readaptation of the interior spaces, the works
led to the extension of the facade on Via Larga with the identical architectural language
of Michelozzo’s building [19]. The connection between the old and the new factory is
imperceptible to the point that today’s building has been perceived as a whole ever since.
In 1874 the palace was purchased by the Province of Florence. On that occasion, some
restoration work was carried out to restore the original appearance, which marginally
involved the facades [20]. During the 20th century, several conservative interventions were
undertaken aimed at preserving the stone apparatus [21]. Currently, the building is home
to the Metropolitan City of Florence, the Museum of Palazzo Medici, and the Biblioteca
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Riccardiana. In the chronological sequence of the construction events involving the stone
facades, if we exclude punctual substitutions of individual isolated architectural elements,
the two crucial moments are the phase of the first Medici construction and that of the
Riccardian extension.
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3.2. Pietraforte Facade

The facade of the Palazzo Medici Riccardi is set on three overlapping registers, sep-
arated by string-course cornices. The lower one consists of large, rusticated blocks. The
second register is characterized by a smooth-faced rustication, with less pronounced and
more regular volumes, with which the mullioned windows are also made [22]. In the third
register, with another set of windows identical to the lower one, the facing is flat.

The facade ends above with a large cornice with sandstone shelves, composed of a
sequence of classic moldings [23] (Figure 4).

The rough-hewn rustication of the lower register, which gives the building its typical
naturally massive aspect, is the most representative from an architectural point of view,
especially for the influence that the concept of mass degrading upward would have had on
Western architecture in the following centuries.

The skill of the stonemasons made it possible to create parallelepiped blocks with a
perfectly regular geometry (the anatirosis has very precise traces of working tools) and at
the same time to model the blocks to obtain a natural appearance.

On the convex volume of each block, the traces of the blows are gradually distributed
according to the impact power (from the perimeter parts towards the center). Often this
working process has followed the natural structure of the stone, such as lamination plans
and, above all, secondary calcite veins. The latter are often exposed parallel to the facade
plan and hammered to reduce the visual impact of the white calcite (Figure 5).

The main material of the facade is Pietraforte, a sandstone used as a building material,
with a typical color ranging from grey to yellow-ochreous, employed in many historic
Florentine buildings. From a geological point of view, Pietraforte is a sedimentary rock
of the Upper Cretaceus, belonging to the turbiditic formation present in the allochthons
External Ligurid units (Calvana Supergroup or Calvana tectonic unit), which thrust on the
Sub-Ligurian (Canetolo unit) and Tuscan Nappes (Tuscan Nappe and Cervarola-Falterona
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unit) [24–27]. The Pietraforte macroscopic characteristics are convolute laminations and
calcite veins [28,29] that represent zones of weakness, where preferential detachments
of blocks or scales can occur. Water represents the most effective weathering agent and
causes damage starting from the surface of the material, through calcite veins down to
the stone matrix. The dissolution of the calcium carbonate occurs in calcite veins causing
a decrease of the “weld” with a progressive reopening of the pre-existing fractures and
consequent detachment and loss of blocks (even of considerable size). The stone matrix is
affected by the dissolution of the stone’s carbonate cement and the expansion of the clay
minerals [25,28], giving rise to intense intergranular decohesion, superficial disintegration,
and exfoliation. In this case, the detachments involve the shallowest rock layers of a
significantly lower thickness.
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The rough-hewn rusticated blocks in Pietraforte, for their geometric and morphological
characteristics, represent the most critical and are subject to the degradation elements of
the Palazzo Medici Riccardi facade.

4. Multi-Analytical Methods

To pursue the described diagnostic and monitoring purposes, and to obtain a complete
and exhaustive assessment of the conservation status of the facades, the Pietraforte elements
of the Palazzo Medici Riccardi were investigated following the multi-analytical approach
described in Figure 1.

The main instrument of documentation, general and detail, was the architectural
survey carried out with 3D laser scanner and digital photogrammetry. From this survey,
perspective drawings (CAD file), orthophotos, and point clouds of the facades were ob-
tained. Two instruments were used: a Faro Focus X330 laser scanner and Leica TS02 total
station. The software used to combine the outputs of the laser scanner and obtain a unique
point cloud was Autodesk Recap Pro. The photogrammetric processing was performed
with the Agisoft Metashape software.

Based on the architectural survey, diagnostic investigations were carried out.
First, stone blocks were investigated through a critical optometric survey of the char-

acteristics that may condition their stability, such as overhang, convolute laminations,
detachments, and discontinuities (e.g., calcite veins).

NDT, including an ultrasonic test and the Schmidt hammer test, were carried out with
the aim of assessing the on-site mechanical properties of investigated materials without
the need for sampling. These NDT methods are widely applied to investigate the me-
chanical properties and the state of the conservation of natural and artificial stone and
concrete [7,8,30–37]. NDT methods represent a reliable contribution to the monitoring and
assessing of stone decay if traditional destructive tests cannot be employed.

The ultrasonic pulse velocity test allows for the measurement of the propagation
velocity (Vp, m/s) of high-frequency (elastic) mechanical waves (20–1000 Mhz) between
two probes within materials; this technique is used for the qualitative evaluation of the
compactness and homogeneity of the stone and the detection of cracks, discontinuities, and
cavities inside the material. The ultrasonic test was employed through an IMG 5200 CSD,
with a resonance frequency of 50 kHz.

The Schmidt hammer test, applied for the sclerometric measurements, gives an indi-
cation about the strength of the surface portion of the test sample. The instrument used,
known as a Schmidt hammer, is a steel hammer operated by a spring. The test measures
the rebound of the impact mass on a piston resting directly on the stone surface (Rebound
index, R). Various researchers have correlated the Schmidt hammer rebound index with
compressive strength, relating rock density, tangent modulus, and Young’s modulus. A
thorough list of such correlations was presented by Aydin and Basu [38]. Estimation of
compressive strength is allowed, providing a detailed correlation is developed for the
specific material investigated. This work, which wants to propose an effective, quick, easily
run, and economic method of investigation, was limited to the use of the rebound index
to quickly assess the uniformity in-place of Pietraforte, finding regions of poor quality or
deteriorated. The Schmidt hammer used was the Original Schmidt Live L by Proceq, with
an impact energy level of 0.735 Nm. This L-type hammer was chosen because of its greater
sensitivity in testing weathered rocks [38,39]; moreover, ISRM endorsed the use of the L
hammer for testing rocks [38,40].

The combination of the two techniques, performed according to a scheme tailored
to the object of study, allows us to examine in depth the stone’s properties: an ultrasonic
pulse velocity test makes it possible to detect cracks, discontinuities, or other damage of
the stone matrix in depth, while the Schmidt hammer allows us to evaluate the quality of
the surfaces of stone elements.
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Although the two techniques lead to an estimate of the mechanical characteristics,
the integrated and combined use of these in the same points of the stone allows a satisfy-
ing characterization.

In [7,8], NDT techniques (ultrasonic pulse velocity and Schmidt hammer tests) were
used to obtain accurate and reliable information of the state of conservation and mechanical
characterization of the stone.

NDT measurements and data gathered from optometric surveys, including a detailed
photographic campaign, were attributed to each individual element, and directly on-site
was inserted into a database through a custom mobile app.

Instrumental data and vector and CAD data, obtained from the architectural survey,
were then processed through GIS software ESRI ArcMap 10.7 using a relative reference
system composed of plane coordinates xy. The processing in GIS allowed us to produce
thematic maps useful for reading the results, upgradeable and integrable over time [3,41];
the GIS project is also prepared for interoperability with building information models (BIM).

In addition to the NDT tests, few destructive tests (DT) involving the sampling of the
most representative block types were carried out to complete the characterization of the
material through the petrographic and mineralogical features of the investigated rocks.
Rock samples were collected with a core drill system (HILTI DD 150-U) with a 2.5 cm
diameter. Drilling was performed on the most representative Pietraforte blocks, selected on
the basis the above-mentioned NDT results, trying to collect the natural rock discontinuities
and their homogeneous neighbors. Core depths varied from 2 to 4 cm depending on
the hardness and the consistencies of the drilled blocks. The samples are described and
prepared to determine the physical properties as water accessible porosity Pw (%), apparent
density d (g/cm3), and imbibition coefficient IC (%) using a hydrostatic balance [7,42].

Core samples were oven dried and cut to obtain the maximum number of slices from
the top to the bottom of the drilled cores, then prepared for scanning electron microscopy
(SEM, EVO-MA15 Carl Zeiss AG, Milan, Italy) coupled with energy dispersion spectroscopy
microanalytical system (EDS, Oxford Instruments, Wiesbaden, Germany) investigation. A
feature identification module included in the image analysis software (AZTEC, Oxford
Instruments, Wiesbaden, Germany) was used to map the distribution (and for the calcu-
lation) of the sample porosity over a representative portion of each sample. Elemental
maps were also produced through EDS on the same areas to highlight their geochemical
distribution. After SEM-EDS analysis, thin sections of the obtained slices were prepared for
petrographic investigation (ZEISS Axio Scope.A1 polarized light optical microscope, OM,
with software AxioVision).

Multi-analytical procedures have been selected with the aim of gathering the advan-
tages of each technique: an architectural survey, critical optometric survey of the stone
characteristics, and NDT measurements were conducted over the entire surface to monitor
and assess the stone decay. NDT tests and the database collected allowed us to summarize
the characteristics of the individual elements and to select the samples of natural disconti-
nuities to investigate the petrographic, mineralogical, and physical features of rocks and
their contribution to the state of conservation.

5. Results

The discussion of the results focuses on the investigations conducted on rough-hewn
rustication, which represent a peculiar element in terms of the morphology, architectural
style, and characteristics of the Pietraforte sandstone.

5.1. Architectural Investigation, Data Storage and Management

The architectural investigation aims at in-depth knowledge of the facades to identify
the processes of construction, transformation, and degradation that led to the current
condition. With a typological approach, a systematic collection of data was started for
each block, the distribution of which was analyzed, comparing it with the characteristics
recorded by the diagnostic, petrographic, and geomechanical study. The idea was to
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inductively trace systematic concordances of characteristics for each block to identify any
relationships between data of a different nature (e.g., dimensions associated with a certain
batch of stone and its degradation). The adequate treatment of this information could allow
the creation of recurring clusters of characters, favoring their interpolated identification,
even in the absence of a systematic registration of each of them [43]. The accessibility of the
data collected in this research is in fact very diversified: alongside macroscopic characters
that can be quickly detected, there are data that require specific instrumental analysis or
laboratory tests. The investigation of the facades was carried out both at the scale of the
entire building and at the scale of the individual blocks.

The architectural survey was carried out with laser-scanner and digital photogram-
metry on the two sample portions of the Medicean (Via Gori) and the Riccardi phase (Via
Cavour). Current trends see the integration of the two methodologies, especially when the
goal is an in-depth reading of the characteristics of the history of cultural heritage [44].

The scanner has been set with a resolution of 1/4 and a quality of 4×, settings that
allow a good quality of the data acquired in a range between 10 and 15 m. However, to have
a greater definition of detail, scans were made every 5 m. The cloud was also verified with
a partial survey conducted with a total station. The superimposition of the instrumental
outputs has allowed the preparation of a digital model from which to extract orthophotos
of the elevations and vector outputs to obtain detailed data (Figure 6).
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At the same time, the collection of specific data for each block was organized. For this
purpose, it was necessary to proceed with the systematic identification of all the stone blocks
to which a unique alphanumeric code was assigned. For each block, detailed documentation
(survey and photographic documentation) and the recording of data (qualitative and
quantitative) were carried out. For data collection, a single form was developed, which
could allow the creation of an organized database. The form is made up of four sections:
(1) identification and general morphological classification of the block; (2) morphological
(profiles and shapes) and dimensional (general and detailed) data; (3) technological data
(macroscopic aspects of the material, working tools traces, modifications, and additions);
and (4) state of conservation (prevalent phenomena, previous damage). The data collected
were processed on several levels, considering their nature.
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The distribution of single or combined characteristics was analyzed both through
statistical processing (graphs, tables) and through thematic mappings on the facades, drawn
up starting from the architectural survey. At the same time, a process of conversion of the
data into a single evaluation scale was started, in view of the construction of vulnerability
matrices [45]. The analyzed data were represented graphically to obtain a mapping of their
distribution on the portion of the facade under examination (Figure 7A,B). One of the data
clusters considered is the dimension of the bosses’ projection. Once divided into classes,
it was possible to obtain a graphic distribution that highlighted a uniform distribution
attributable to three macro classes (Figure 7B).
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The first results of this survey make it possible to verify the effectiveness of the data
processing (classification, correlation, and representation) and to make any appropriate
changes. Apparently meaningless information, displayed in the general context of the
building, can bring out specific aspects in the distribution of blocks and related vulnera-
bilities. By way of example, a study of some dimensional characters of the rough-hewn
rusticated blocks (height of the rows, width of the blocks, and maximum projection of each
boss) is reported. Aspects of diversification emerge both between the two construction
phases analyzed (Medici, Riccardi), and within the phases themselves.

5.2. Mechanical Analysis

Every element of the rough-hewn rusticated blocks included in the construction site
areas (368) has been verified with an in-depth ultrasonic and sclerometric analysis campaign.
The integration of the two techniques allows one to overcome their respective limits and to
obtain a more complete and thorough evaluation of the mechanical characteristics of the
stone elements.

From the rebound value (R) and the ultrasonic velocity (Vp), it is possible to obtain
the evaluation of the material properties: high Vp and R values indicate a stone in good
condition; on the contrary, low values indicate problems, which can affect the surface
and/or the stone matrix in depth [46].

The measurements were performed on the same points for both techniques, following
a regular grid (Figure 8A), to compare the distribution of values within the case. According
to the input logic provided by the data management system, each measuring point has also
been assigned an ID and the date of the survey.
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The ultrasonic measurements were carried out in indirect mode, meaning that the
transmitter and receiver were placed on the same surface; sclerometric measurements were
performed on the same points, carrying out 10 measurements on each point. This allows us
to interpolate points to estimate the Vp and R distribution in each block and compare the
results obtained with the two techniques. All the values obtained from the surveys were
processed using GIS software to create thematic maps of distribution of the values of Vp
and R, based on the perspective drawing.

In Figure 8, block CL4-21 shows, for example, high R values distribution but the Vp
values are low in the lower portion where the convolute laminations of Pietraforte are very
degraded. Another sample is given by the CL3-10 block, where the low Vp values of the
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right portion are due to the presence of an open calcite vein, while the block surface is in
good condition as shown by the R values distribution.

Considering the average values of Vp and R, it is possible to note that the values
obtained with the ultrasonic test are between 400 and 4965 m/s. Additionally, the Schmidt
hammer test recorded average results, with R values between 19 and 50.

It is possible to observe that the blocks investigated are mostly in a good state of
conservation. Vp values lower than 2000 m/s have a state of medium/high degradation
because of the presence of open fractures, parts in detachment, or even superficial dis-
integration. Twenty-eight have Vp values below 2000 m/s. The average Vp values are
distributed heterogeneously on both facades and indicate that the blocks have different
internal mechanical characteristics (Figure 9).
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Figure 9. Average Vp value maps processed through GIS software, related to blocks on (A) Via Gori
and (B) Via Cavour.

R values lower than 30 indicate that the surface is exfoliated or broken, or that the
element under investigation has portions of loose material. Only 17 elements out of
368 have R values under 30. Although R values show that the investigated blocks are in a
good state of conservation, it is possible to observe that the facade on Via Gori has better
surface characteristics (Figure 10).
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5.3. Physical, Mineralogical, and Petrographic Features

The physical, mineralogical, and petrographic features of the investigated Pietraforte
blocks provide information on the density, porosity, texture, and composition of the sam-
ples, useful to characterize the starting material, as well as to understand and quantify
the changes induced by weathering and aging that occurred after installation as building
materials. They can be carried out by a number of analytical techniques, the combination
of which has been tested in this work to explore the possible relationships between the ob-
tained results and to establish a holistic analytical protocol for the stone building diagnosis.

The various types of Pietraforte blocks selected based on optometric surveys (e.g.,
with parallel or convoluted laminations, white or white/reddish cross-cutting veins)
(Figure 11), were investigated by OM and SEM-EDS, and their physical parameters have
been calculated.

The OM analysis allowed us to identify several textural features of the Pietraforte
sandstones, such as laminations and cross-cutting veins. The former is characterized by a
relatively higher concentration of iso-oriented detrital phyllosilicates such as white and
black mica and subordinate chlorite, whereas the latter by a secondary precipitation of
carbonate and variable proportions of phyllosilicates filling veins (Figure 11B,C). Lami-
nations are variably spaced in the analyzed samples and interbedded with layers mainly
composed of clastic quartz, variably altered feldspars, iron and manganese oxyhydroxides,
accessory rutile and zircon, and polygenic lithic fragments welded by carbonate cement.
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The alignment of detrital phyllosilicates along the laminations also involved neighboring
undetermined secondary clay minerals. The carbonate veins are generally orthogonal to
the laminations and characterized by a significant amount of secondary clay minerals in
samples characterized by red-colored veins.
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Fe, and Al.

SEM-EDS analysis confirmed what was observed by OM and shed light on the identi-
fication and distribution of the primary and secondary phases of the Pietraforte sandstone.
In fact, high-magnification images and EDS data allowed the distinguishing of the pri-
mary and secondary phyllosilicates either for their aspect and textural features or for their
composition. Primary phyllosilicates mainly deal with muscovite, biotite, and chlorite
minerals and show a textural distribution irrespective of the carbonate cement, which is
mainly composed of calcite and minor dolomite. Secondary clay minerals show a wide
range of compositions intermediate among those of primary phyllosilicates, and their
distribution is almost concordant with the sparry cement. Abundant clay minerals in
red-colored carbonate-filling veins are interstitial between calcite grains and characterized
by a significant iron content (Figure 11D). On the contrary, white cross-cutting veins show
a more homogeneous carbonatic (calcite and dolomite) composition.

SEM-EDS analysis has been revealed as a powerful tool for stone-building diagnosis
since it can provide not only direct information on the textural and petrographic features
but also on the quantification and distribution of the porosity in the investigated material.
In fact, the correct use of image analysis software retrieved data in line with those obtained
by routine porosity tests. In the case of the Palazzo Medici Riccardi, the maximum average
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porosity has been detected in the outer layer of the Pietraforte rough-hewn rusticated
blocks, which show values between 5 and 8 % and a pore-size distribution almost equally
distributed among the <100 um and >100 um categories (Figure 12).
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The porosity values obtained by the SEM analyses are in good agreement with the
values retrieved from the physical tests, which show that Pw range between 4.8 and 7.3%,
the average density is d = 2.6 g/cm3, and the average IC is 2.3%.

The porosity maps obtained by reprocessed SEM images highlight that the pore
distribution in the analyzed samples is not homogenous. In particular, laminations are
generally characterized by a higher pore concentration, with respect to inter-lamination
layers (Figure 12A). White carbonate-filling veins show a lower and randomly distributed
porosity with respect to the reddish veins that display a preferential pore concentration
in correspondence of Fe-bearing clay minerals (Figure 11). These features suggest a link
between the presence of clay minerals and the loss of cohesion of the investigated blocks,
which certainly enhances their degradation at the microscale, with potential negative effects
also to the macroscale. Moreover, the vertical distribution of the porosity, evaluated in the
sample cut at a different depth from the surface, highlights that it grows outward, varying
from 4.05% at the bottom (2–2.5 cm depth from the surface) to 4.85% near the top (0.5–1 cm
depth from the surface) of the drilled core. This is also confirmed by the values of Pw, IC
that in the present case are higher than the freshly cut Pietraforte [28,47].

6. Discussion and Conclusions

Based on the authors’ experiences, restoration work on historic stone buildings is often
carried out without a dedicated, preliminary diagnostic stage. In fact, diagnosis is often
not explicated (i.e., a rapid evaluation is conducted simultaneously to the restoration) and,
when it is, it may rely on empirical and subjective evaluations (color changes, different
sounds as results from “knocking” the stone). Regardless of the skills of the operators,
who might deliver state-of-the-art results, such an approach has several limitations. First
of all, the lack of a clearly defined diagnostic project and, therefore, of a list of repeatable
tests, and/or the adoption of qualitative and empirical evaluations, make it difficult if not
impossible to monitor the state of degradation with time. For example, a 10-year restoration
program would have to face issues related to comparing the results obtained by different
people and, likely, different methods, not to mention the increased probability of human
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error related to experience-based methods. Second, difficulties would also arise when
comparing two different buildings or two different facades of the same building, which
would be useful to assess the effects of weathering and restorations.

In other cases, quantitative analyses are indeed performed but they mostly focus on
the chemical and petrographic sides. While these are an important part of a diagnostic
project, some important rock mechanical characteristics can be overlooked, like the role
and conditions of the discontinuities and properties of a rock beneath the first cm from its
surface, features that are prominent in determining the ultimate stability of stone elements.

Therefore, the purpose of this paper is to propose an all-around diagnostic protocol en-
compassing some of the most advanced methods in a multidisciplinary approach. The aim
is to provide a complete characterization of stone materials and their state of conservation,
allowing us to manage multi-scale surveys through a specific investigation protocol. Such
a protocol is intended for heritage operators, restorers, researchers, local administrations,
and building managers, who are pointed toward a number of quantitative, repeatable tests
that can be done, together with indications on how these and the qualitative analyses can
be carried out. However, since there is no such thing as an ultimate diagnostic project that
is suitable for every stone building, every step of the presented protocol is thought to be
customized, removed, or replaced as needed.

In particular, the proposed multidisciplinary methodology for the technological knowl-
edge, characterization, and diagnostics of built cultural heritage was applied to historic
Florentine buildings characterized by stone facades. The diagnostic project workflow first
involved the historical analysis and the architectural survey, then a complete characteriza-
tion of the rough-hewed rusticated blocks was carried out through decay and optometric
surveys, and mechanical, physical, mineralogical, and petrographic analyses. The on-site
mechanical investigation was performed through NDT, specifically using ultrasonic pulse
velocity and sclerometric measurements. In parallel, a few destructive tests (DT) were car-
ried out to characterize the stone material through physical properties and petrographic and
mineralogical features. In addition, to optimize the data integration, a data management
and analysis system has been set up.

The methodology was applied on the Palazzo Medici Riccardi, one of the most impor-
tant Florentine monuments whose facades are built with Pietraforte, selecting as study area
two portions of rough-hewed rustication of the two main facades of the building.

The architectural survey provided the knowledge framework and the graphic elabora-
tions on which the subsequent investigations were based. In addition, during this phase,
all the information related to the construction, technological, and morphological aspects of
the Pietraforte elements was collected.

The investigation through NDT, conducted with an accurate and specific procedure
set up for the analysis of rough-hewed rusticated blocks, allowed us to evaluate in situ the
mechanical characteristics of the stone elements, highlighting the critical aspects both at
the single block scale and, more extensively, at the entire facade.

Sampling and DT tests were aimed at deepening the peculiar characteristics of
Pietraforte that represent the intrinsic weaknesses of the material (laminations, carbonate-
filling veins). The use of SEM-EDS analysis provided direct information on the textural and
petrographic features but also on the quantification and distribution of the porosity of the
investigated material. While the former shows very good agreement with the traditional
physical tests demonstrating that SEM-EDS could represent a reliable methodology for a
fast porosity determination in these matrices, the latter shed light on its distribution and the
relationships with textural and mineralogical analyses, delivering additional information
to the diagnosis of the vulnerability of the material to decohesion and detachments.

The research was conceived to provide a methodological guide that, from the diagnos-
tic investigations, leads to the definition of the restoration project and a plan for a periodical
monitoring of criticalities. The proposed work can also be useful to consolidate the applied
methods compared to previous experiences in the field of diagnostics of stone materials
used in the built cultural heritage.
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Future developments may concern the set-up of a BIM or HBIM [48] to host the
information attributed to and recorded for each stone block. This system offers elements
of great interest for the historical-critical process of knowledge [49]. The advantages of
the BIM model bring out the technological evaluations that can be compared with the
architectural investigation and the laboratory data to generate a fluid process of exchange
and sharing of information, both in the architectural technological dimension and laboratory
investigations. All of this is aimed at integrating the final conservation project and the
maintenance plan.

It is possible to say that BIM is an integrative tool for the design, representation,
production, and management of the built environment [50]. This will not only allow
for the analysis in a single system of the data related to the current state, but also to
evaluate potential future changes of the state of conservation, through risk and intervention
hierarchies (from urgent punctual solutions to a generalized routine maintenance).
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36. Bozdağ, A.; Ince, I.; Bozdağ, A.; Hatır, M.E.; Tosunlar, M.B.; Korkanç, M. An assessment of deterioration in cultural heritage: The
unique case of Eflatunpınar Hittite Water Monument in Konya, Turkey. Bull. Int.Assoc. Eng. Geol. 2019, 79, 1185–1197. [CrossRef]

37. Akoglu, K.G.; Kotoula, E.; Simon, S. Combined use of ultrasonic pulse velocity (UPV) testing and digital technologies: A model
for long-term condition monitoring memorials in historic Grove Street Cemetery, New Haven. J. Cult. Herit. 2020, 41, 84–95.
[CrossRef]

http://doi.org/10.2307/3179804
http://doi.org/10.3390/app8020284
http://doi.org/10.1007/s10588-018-09285-y
http://doi.org/10.1080/15583058.2019.1668985
http://doi.org/10.36253/978-88-6453-905-8
http://doi.org/10.1016/0037-0738(70)90018-7
http://doi.org/10.1111/j.1365-3091.1991.tb00373.x
http://doi.org/10.18814/epiiugs/2020/020087
http://doi.org/10.1016/j.ultras.2008.03.008
http://doi.org/10.1016/j.proche.2013.03.006
http://doi.org/10.1007/s10064-014-0629-1
http://doi.org/10.1007/s10064-015-0815-9
http://doi.org/10.1144/qjegh2016-110
http://doi.org/10.1007/s10064-019-01617-9
http://doi.org/10.1016/j.culher.2019.07.015


Appl. Sci. 2022, 12, 4266 19 of 19

38. Aydin, A.; Basu, A. The Schmidt hammer in rock material characterization. Eng. Geol. 2005, 81, 1–14. [CrossRef]
39. Buyuksagis, I.S.; Goktan, R.M. The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. Int. J.

Rock Mech. Min. Sci. 2007, 44, 299–307. [CrossRef]
40. ISRM. Suggested methods for the quantitative description ofdiscontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech.

Abstr. 1978, 15, 319–368.
41. Iandelli, N.; Coli, M.; Donigaglia, T.; Ciuffreda, A.L. An Unconventional Field Mapping Application: A Complete Opensource

Workflow Solution Applied to Lithological Mapping of the Coatings of Cultural Heritage. ISPRS Int. J. Geo-Inf. 2021, 10, 357.
[CrossRef]

42. Cantisani, E.; Calandra, S.; Barone, S.; Caciagli, S.; Fedi, M.; Garzonio, C.A.; Liccioli, L.; Salvadori, B.; Salvatici, T.; Vettori, S. The
mortars of Giotto’s Bell Tower (Florence, Italy): Raw materials and technologies. Constr. Build. Mater. 2020, 120801. [CrossRef]

43. Coppola, M. Le Indagini Tipologiche in Architettura; Carocci: Roma, Italy, 2018.
44. Tucci, G.; Algostino, F.; Bonora, V. Applicazione del Laser Scanner Alla Simulazione Diacronica del Costruito, Atti del Workshop

“e-Arcom-Tecnologie per Comunicare L’architettura”; CLUA: Ancona, Italy, 2017; pp. 547–552.
45. Coppola, M.; Poli, G.; Tempesta, G. Villa San Marco at Stabia. Dynamics of decay and perspectives for deepening and safeguarding.

Procedia Struct. Integr. 2020, 29, 175–182. [CrossRef]
46. Falchi, L.; Zendri, E.; Driussi, G. NDTs in the monitoring and preservation of historical architectural surfaces. In Emerging

Technologies in Non-Destructive Testing VI, Proceedings of the 6th International Conference on Emerging Technologies in Non-Destructive
Testing, Brussels, Belgium, 27–29 May 2015, 1st ed.; Van Hemelrijck, D., Vanladuit, S., Anastasopoulos, A., Philippidis, T., Eds.; CRC
Press: London, UK, 2015. [CrossRef]

47. Coli, M.; Donigaglia, T.; Cristofaro, M.T.; Tanganelli, M.; Viti, S. Assessments on the material properties of the Pietraforte stone of
Florence (Italy) in conservation, restoration and construction. Case Stud. Constr. Mater. 2022, 16, e00986. [CrossRef]

48. Arayici, Y.; Conusell, J.; Mahdjoubi, L.; Nagy, G.; Hawas, S.; Dewidar, K. Heritage Building Information Modeling; Routledge Taylor
& Francis Group: London, UK, 2017.

49. Brusaporci, S.; Ruggeri, G.; Maiezza, P.; Tata, A.; Trizio, I.; Giannangeli, A. A HBIM per l’analisi stratigrafica dell’architettura
storica. In Restauro Archeologico; FUP: Firenze, Italy, 2018; Volume n.1, pp. 112–131.

50. Gigliarelli, E.; Calcerano, F.; Calvano, M.; Ruperto, F.; Sacco, M.; Cessari, L. Heritage Bim: Methodological reflections and
interoperability with numerical simulations. In Building Information Modeling, Data & Semantics; Dei Tipografia del Genio Civile:
Roma, Italy, 2017; Volume n.1, pp. 19–31.

http://doi.org/10.1016/j.enggeo.2005.06.006
http://doi.org/10.1016/j.ijrmms.2006.07.008
http://doi.org/10.3390/ijgi10060357
http://doi.org/10.1016/j.conbuildmat.2020.120801
http://doi.org/10.1016/j.prostr.2020.11.154
http://doi.org/10.1201/b19381
http://doi.org/10.1016/j.cscm.2022.e00986

	Introduction 
	Diagnostic Project 
	The Case Study: Palazzo Medici Riccardi in Florence 
	Historical Notes 
	Pietraforte Facade 

	Multi-Analytical Methods 
	Results 
	Architectural Investigation, Data Storage and Management 
	Mechanical Analysis 
	Physical, Mineralogical, and Petrographic Features 

	Discussion and Conclusions 
	References

