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Abstract: Session-based recommendation predicts an anonymous user’s next action, whether she or
he is likely to purchase based on the user’s behavior in the current session as sequences. Most recent
research on session-based recommendations makes predictions based on a single-session without
incorporating global relationships between sessions. It does not guarantee a better performance
because item embeddings learned by solely utilizing a single session (inter-session) have less item
transition information than utilizing both intra- and inter-session ones. Some existing methods tried
to enhance recommendation performance by adopting memory modules and global transition graphs;
however, those need more computation cost and time. We propose a novel algorithm called Logit
Averaging (LA), utilizing both (i) local-level logits, which come from intra-sessions item transitions
and (ii) global-level logits, which come from gathered logits of related sessions. The proposed method
shows an improvement in recommendation performance in respect of accuracy and diversity through
extensive experiments.

Keywords: session-based recommendation; global relation; long-tail distribution; Logit Averaging

1. Introduction

With the rapid growth of Internet commerce platforms, recommender systems now
play an imperative role in improving user experience and satisfaction on the platforms [1].
Predicting users’ next behavior from current and previous actions not only alleviates
information overload problems but can also offer a personalized service to targeted users
in various applications [2].

A conventional recommender system [3–8] utilizes a history of user-item interactions
and side information to learn each user’s long-term and static preferences on items. Interest-
aware Message-Passing GCN (IMP-GCN) [8] was a model that plays to the strength of the
Graph Convolution Network in recommender systems by alleviating the over-smoothing
problem. Liu et al. pinpointed the risk of involving higher-order neighboring users with
no common interests with a user and learning their embeddings in the graph convolution
operation. To overcome the addressed problem, IMP-GCN performed high-order graph
convolution inside subgraphs that consist of users with similar features. We found this
model very effective in its ability to avoid the propagation of non-related information
from high-order neighbors into embedding learning. IMP-GCN was designed based on
the user-item bipartite graph datasets, which consist of user and item features. However,
this form of dataset is often invalid in many cases such as numerous anonymous users
interacting with items in a very short period of time or the same account can be shared
with multiple people [9]. Thus, a new system to deal with the problem has emerged,
which is a session-based recommendation [10]. Unlike conventional ones, session-based
recommender systems only utilize the ongoing movement of an anonymous user in one
session to predict the next item, where a session is composed of items that users interacted
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with within a continuous period of time. Owing to its practicality in various e-commerce
platform scenarios, the session-based recommender system has gained much attention.

To predict the users’ next click items, the session-based recommender system utilizes
a deep neural network and has achieved outstanding performances. Recurrent Neural
Networks (RNNs) or attention mechanism models were first applied to a session-based
recommendation task for extracting sequential patterns, which is a straightforward ap-
proach to handling a session as it is the sequence of items user clicked sorted by time [11,12].
NARM [11] utilized gated recurrent unit (GRU) [13], which is the variation of RNN to
extract sequential patterns in sessions. SRSAN [12] took dependencies among items in
sessions by using self-attention networks.

Furthermore, recent studies incorporate Graph Neural Networks (GNNs) [14] to
construct a session-based recommender system due to its effectiveness in representing
session consistency along with item dependencies and shows a competitive performance
comparable to RNNs-based approaches [15–19]. SRGNN [15] was the first GNN-based
framework and has been used as a basic structure in many studies. A session graph was
sent into gated-GNN [20] to obtain the latent representation of nodes, and the session
representation was generated by a soft-attention mechanism based on the node representa-
tions. Gupta et al. [16] normalized representations of items and sessions generated from
GNNs to increase the overall recommendation performances. Chen et al. [17] introduced a
novel GNN model that focuses on aggregating the information passed from neighboring
nodes using a GRU while preserving the item orders in sessions. This layer is called the
Edge-Order Preserving Aggregation (EOPA) layer and shows a promising performance
while minimizing the information loss problems. TAGNN++ [18] adaptively activated the
attention model with respect to varied target items and improved the expressiveness of the
model. Many researchers have tried to capture the accurate preference of an anonymous
user from a short session, but it is still hard. To overcome this, Li et al. [19] applied disen-
tangle representation learning to make better item representation. They assumed that the
chunks of item embeddings represent factors such as categories and colors, and learned
item embeddings with a distance correlation function aiming for the factors to disentangle
each other. It is useful for the session-based recommendation task because of the absence
of additional information in a session dataset.

However, existing GNN-based models only make predictions with items in a single
session and do not consider the global-level contexts that exist between inter-sessions.
They ignore the useful item transition information from other sessions. In [9], the session-
based recommendation has several unique characteristics: Session consistency, Repeated
item consumption, Timeliness of sessions, and Sequential dependency. Here, we mainly
take sequential dependency into consideration. Some items can be explored in a certain
order from the majority of users. For example, we can easily find the item-transition
information, [‘phone’, ‘phone case’] or [‘phone’, ‘wireless earphone’]. This pattern will
appear in multiple sessions. Thus, taking the global-level context of items into consideration
is necessary to improve the prediction accuracy and diversify the recommendation lists.
In addition, the number of items in a session is lower than 10 generally. The short length
of sessions may lead to incorrect predictions when we make a prediction based on a
single session. Therefore, it will be helpful to recommend items with global relations from
multiple sessions which share the same items.

Some studies are trying to model the global relations of sessions. Wang et al. [21]
applied collaborative neighborhood information to recommend items. It consists of an
inner memory encoder and an outer memory encoder that extract the current session’s con-
text and the collaborative information from other sessions which are similar to the current
session, respectively. Wang et al. [22] conducted a similar attempt to infer global context
through the GCE-GNN (Global Context Enhanced Graph Neural Networks) model. It con-
structed a global graph using all the unique items that exist in inter-sessions and extracted
the global-level item embedding. Fei et al. [23] proposed MAN (Memory Augmented
Model) for a session-based recommendation, which augments a base recommender model
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using updated memory, and recommends items with memory components. Zhou et al. [24]
utilized a graph including item relations of each day to capture timely user interests. By
doing this, an item can have different neighborhoods on different days. Huang et al. [25]
tried to model inter- and intra- item transition through multi-task learning. Each ses-
sion went into the self-attention layer to capture intra-sessions item transition, and item
representations which are constructed at this step were set as initialized values of item
representations for learning global item relations. They could improve the recommendation
accuracy by designing different layer architectures depending on whether the item is from
global or local relations. Xia et al. [26] also tried to reflect the global relation among sessions.
They proposed two different graph view augmentations with respect to a session dataset to
adopt the self-supervised co-training method on a session-based recommendation. One is
the item view graph, generally utilized in session-based recommendation, and the other
is the session view graph which represents the inter-session relationship with Jaccard
similarity. By learning from these two views, items and sessions, session representations
became richer. The Heterogeneous Global Graph Neural Network (HG-GNN) [27] was
another model that attempts to extract global item co-occurrence by constructing user-item
interactions and global co-occurrence item graphs. They used heterogeneous global graphs
to learn long-term user preferences and item representations. Even though their work was
to implement the truly personalized session-based recommendation, we found this work
has a limitation on data availability. Most of the existing session datasets do not contain
user information including their user IDs. Since session-based recommender systems are
proposed to make recommendations solely based on the sequence of items anonymous
users interacted with within a limited period of time, HG-GNN can be utilized in very few
circumstances where the user’s ID and historical sessions are available.

However, those attempts rather increase the computation costs in storing memory
and extracting global-level item representation with over a million item nodes and fails to
show drastic performance improvement. We propose a simple and novel algorithm called
Logit Averaging (LA) that reflects global relations among sessions by averaging short-head
item’s logits which are the last representation of the model. There were several preceding
studies using logit to improve representation learning in classification tasks such as logit
adjustment. Adjusting logits encourages a large relative margin between logits of rare labels
versus dominant ones. Menon et al. [28] have conducted extensive studies on classical logit
adjustment techniques and proposed a novel logit adjusted loss function. Even though
the effectiveness of the logit adjustment loss function in balancing the class label during
training, we found this technique hard to apply in session-based recommendation tasks.
Menon et al. utilized image datasets, such as CIFAR-10 and iNaturalist, to examine their
proposed methods, which have only nine to ten classes. However, in session datasets,
the class of each session is thousands of different last-clicked items. If we apply the logit
adjustment loss technique to a session-based recommender system, the training of the
model will not be performed properly.

Thus, we propose a suitable logit training technique for a session-based recommender
system called Logit Averaging. We perform experiments on multiple session-based recom-
mendation models and verify that our algorithm outperforms in prediction accuracy and
diversity. Oour accomplishment in increasing the item diversity is especially important in
recommender systems because increasing the probability of retrieving unusual or novel
items relevant to users highly improves the users’ satisfaction with the system [29–32]. We
summarize our contributions as follows:

• By interpolating logits of the sessions with the same target value, we propose a simple
yet effective method to incorporate global contexts for session-based recommendation
and achieve high accuracy and diversity;

• We conduct extensive experiments on four real-world datasets in six different deep-
learning-based session recommendation models and successfully demonstrate the
effectiveness of our method;
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• We can easily “plug and play” Logit Averaging (LA) in various neural network-based
session recommendation models.

The structure of this paper is as follows. In Section 2, we define the problem and the
corresponding assumption we made. Furthermore, an in-detail description of our proposed
algorithm, Logit Averaging (LA), is mentioned. In Section 3, we describe experimental
settings, including the datasets, baseline models, and evaluation metrics. Then, we make
a detailed analysis of the experimental results. Finally, in Section 4, we summarize our
proposed method and discuss the future works.

2. Proposed Method
2.1. Problem Definition and Notation

The final goal of the session-based recommendations task is the prediction of a last
clicked item based on an anonymous user’s past clicked items. A set I = {i1, . . . , iN}
denotes the set of all unique items in all sessions. An anonymous user’s session can be
represented by s = [i1, i2, i3, . . . , it], ordered by time. The recommendation model predicts
the next clicked item, the t + 1th item given a session s, then we get probabilities ŷ for all
candidate items in I. We split items into short-head and long-tail according to the Pareto
Principle [33]. The items which account for 75% of all item appearances are short-head
items, and the rest are long-tail items, respectively—IH and IT .

2.2. Logit Averaging

We propose a simple module that averages logits from a prediction layer for the
better recommendation, so the other parts of a recommender system, such as an item
encoder, a session encoder and a prediction layer, can be any models. In other words, our
module can easily be plug-and-play for any other existing neural network-based session
recommendation models. As shown in Figure 1, our proposed technique “Logit Averaging
(LA)” is located between the session encoder and the final prediction layer.

Figure 1. General deep-learning-based session-based recommendation models framework with the
proposed methods.

Most neural network-based recommendation models are structured as the white box
in Figure 1. Sessions in a batch go into the model as inputs and an item encoder learns
item embeddings. Session embeddings are generated from a session encoder using item
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embeddings. The final prediction is commonly calculated by the cosine similarity between
all unique item embeddings and session embeddings of the batch.

Logit averaging is a module that performs as augmentation, which can inject global
context at the same time. As mentioned above, recent deep learning-based session rec-
ommendation models recommend items in respect of a single session. It is not enough to
make better embeddings when solely using intra-session transition and not considering
inter-sessions. Sessions have item consequences where several sessions have common
items. This means that the sessions that share the same items have similar item transitions
and can help to supplement the information with each other. Then, it is easier to predict
items than use a single session alone.

GCE-GNN [22] tried to solve the session recommendation task with a global transition
using a global item graph. The graph merges all the items in the entire sessions into a single
global graph. This shadows the hidden global contexts in sessions and cannot distinguish
the predominant or minor trends.

To overcome the problem, we propose a method to average logits of sessions that
share the same target items instead of constructing a large graph. In detail, logits of each
sample are obtained by calculating cosine similarity between session embeddings and item
embeddings, and the logits are replaced by the mean value of logits that have the same
target items. The Logit Averaging and replacing are only performed by sessions that have
short-head items as target items. As shown in Figure 2, all the four public session datasets
have long-tail item distribution, meaning that the majority of sessions share a few numbers
of target items [34]. We assume that sessions with the same target items will have shared a
global context. The short-head items take up seventy-five percent of sessions, so it can inject
global relations into the majority of sessions without adopting all items. In other words,
averaging logits of short-head items easily supplements the global relations information
and increases the recommendation performance.

Figure 2. Long-tail distribution of real-world session datasets. From the left, the datasets are
Diginetica, Yoochoose, Retailrocket, Tmall. The red part represents short-head and the blue part
represents long-tail.

It is not enough to utilize averaged logits only for making better predictions because
averaging can ignore the original item transition characteristics of sessions. Therefore, we
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adopt two loss functions, one is for the original logits and the other for the averaged logits.
We get the final loss by the sum of two losses with λ.

Lorg(y, Zorg) = −
m

∑
i=1

yi log(Zorg
i ) (1)

Lorg(y, ZLA) = −
m

∑
i=1

yi log(ZLA
i ) (2)

L = Lorg + λ · LLA. (3)

The detailed process is shown in Algorithm 1.

Algorithm 1 Logit Averaging.

Input: sessions S, Short-head Items IH , Item Encoder IE(), Session Encoder SE()
Initialize IE and SE
for each iteration do

V ← IE(S)
Semb ← SE(V, S)
Zorg = S>emb ·V
for all IH do

if IH
i in target items of sessions then
ZLA

k = 1
|n| ∑n

k=0 Zk (where the target item of Zk are same as IH
i )

end if
end for
L is calculated by using Equation (3)

end for

3. Results

We conducted extensive experiments to evaluate the performance of our proposed
method. This section discusses the performance comparison between the proposed method
and baseline methods. Before that, we describe the datasets, the baselines, and the evalua-
tion metrics utilized in our experiments.

3.1. Setup
3.1.1. Datasets

We employed four real-world datasets: Yoochoose (https://www.kaggle.com/cha
dgostopp/recsys-challenge-2015, accessed on 22 April 2022), Diginetica (https://comp
etitions.codalab.org/competitions/11161#learn_the_details-data2, accessed on 22 April
2022), RetailRocket (https://www.kaggle.com/retailrocket/ecommerce-dataset, accessed
on 22 April 2022) and Tmall (https://ijcai-15.org/repeat-buyers-prediction-competition/,
accessed on 22 April 2022), which are commonly used in session-based recommendation
methods and the statistics of each dataset are shown in Table 1. Due to the size of the
dataset, we used the recent fraction of 1/64 for the Yoochoose datasets. We keep only items
appearing over five times and sessions whose length is more than one. The latest data
are set to be a test dataset and the previous are set to be a training dataset. The label of
each session is the last clicked item of it. The proposed method, Logit Averaging, works
when the target of the sample is in the short-head items set and we split the items into
short-head items and long-tail items. We sorted items by the number of item appearances
in descending order. Then we chose the items as short-head, which are in the top 75%
cumulative sum.

https://www.kaggle.com/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/chadgostopp/recsys-challenge-2015
https://competitions.codalab.org/competitions/11161#learn_the_details-data2
https://competitions.codalab.org/competitions/11161#learn_the_details-data2
https://www.kaggle.com/retailrocket/ecommerce-dataset
https://ijcai-15.org/repeat-buyers-prediction-competition/


Appl. Sci. 2022, 12, 4256 7 of 16

Table 1. Data Statistics.

Statistics Diginetica Retailrocket Yoochoose1/64 Tmall

# Train Sessions 186,670 113,287 124,472 65,286
# Test Sessions 15,936 71,235 15,324 1027

# Items 43,098 27,413 37,484 40,728
Avg. Length 4.85 3.66 3.97 6.68

3.1.2. Baseline Methods

To compare the recommendation performance of the baseline methods and the pro-
posed method, we employ six different baselines. Those can be categorized into two
groups—attention-based methods and GNN-based methods. We utilize NARM [11] and
SR-SAN [12] for the attention-based methods and SR-GNN [15], NISER [16], EOPA [17]
and TAGNN++ [18] for the GNN-based methods. We set the hyperparameters of each
baseline method as the baseline did. The specific hyperparameters used in the experiments
are described in Table A2. The experimental results are shown in Table 2.

Table 2. The performance result with and without LA (Logit Averaging) method. In column LA, we
mark ’X’ to indicate the baseline without using LA and mark ’O’ to indicate the baseline with using
LA. Gain (%) is the average gain of the baselines with LA on the original baselines.

Dataset Model LA HR@10 MRR@10 Coverage@10 HR@20 MRR@20 Coverage@20

RetailRocket

NARM

X

39.24 20.76 95.52 45.92 21.24 97.63
EOPA 33.74 17.13 81.07 42.51 17.72 86.91
NISER 33.24 22.24 88.66 37.54 22.53 93.42

SR-GNN 31.98 18.81 76.09 37.24 19.17 80.40
SR-SAN 37.96 17.25 93.97 44.91 17.74 96.53

TAGNN++ 34.30 21.54 81.59 39.83 21.92 85.47

NARM

O

39.02 21.07 95.86 45.64 21.53 97.80
EOPA 33.63 17.33 81.28 42.28 17.91 86.98
NISER 33.33 22.09 88.59 37.66 22.39 93.39

SR-GNN 34.40 21.92 85.34 39.45 22.27 89.29
SR-SAN 37.50 17.26 92.44 44.33 17.75 95.45

TAGNN++ 34.10 21.71 82.23 39.61 22.09 86.21

Gain (%) 0.86 3.23 1.97 0.54 3.14 1.84

Tmall

NARM

X

17.14 12.52 17.68 19.18 12.71 28.68
EOPA 19.58 9.70 32.27 24.64 10.02 44.43
NISER 18.89 14.04 18.93 21.03 14.18 31.83

SR-GNN 16.55 11.00 13.79 18.79 11.17 21.52
SR-SAN 18.99 12.74 12.67 21.62 12.92 19.65

TAGNN++ 33.11 16.17 15.88 39.82 16.64 25.01

NARM

O

16.46 12.21 17.28 18.5 12.35 28.17
EOPA 19.43 9.81 31.62 24.14 10.14 43.66
NISER 18.11 13.52 19.21 20.35 13.60 32.43

SR-GNN 16.85 11.92 15.47 19.67 12.11 24.81
SR-SAN 20.55 14.25 12.63 23.17 14.43 19.54

TAGNN++ 30.77 14.55 16.36 36.42 14.96 25.42

Gain (%) -0.98 0.86 2.02 -0.92 0.71 2.46

Yoochoose 1/64

NARM

X

59.95 29.46 29.24 70.67 30.20 35.73
EOPA 51.83 24.91 28.81 62.85 25.68 31.74
NISER 60.25 30.91 29.46 70.55 31.64 34.61

SR-GNN 59.56 29.47 23.19 69.87 30.19 26.54
SR-SAN 53.90 25.96 28.28 64.89 26.73 32.62

TAGNN++ 60.70 30.63 26.48 70.93 31.35 30.72

NARM

O

59.96 29.65 28.88 70.61 30.40 35.37
EOPA 51.54 24.90 29.02 62.64 25.68 31.73
NISER 60.23 30.88 29.40 70.48 31.60 34.73

SR-GNN 60.46 30.90 27.68 70.55 31.61 32.06
SR-SAN 53.75 26.00 28.31 64.91 26.77 32.63

TAGNN++ 60.84 31.11 28.79 71.16 31.83 33.46

Gain (%) 0.15 1.18 4.58 0.14 1.15 4.84
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Table 2. Cont.

Dataset Model LA HR@10 MRR@10 Coverage@10 HR@20 MRR@20 Coverage@20

Diginetica

NARM

X

35.86 18.60 68.78 44.83 19.22 82.60
EOPA 34.25 14.52 62.09 47.09 15.37 75.91
NISER 34.12 17.98 65.02 41.89 18.52 77.34

SR-GNN 32.84 16.83 60.95 41.46 17.43 71.44
SR-SAN 32.54 16.61 67.60 41.50 17.22 78.56

TAGNN++ 33.90 17.34 62.81 42.64 17.95 74.00

NARM

O

35.76 18.51 69.05 44.49 19.12 83.07
EOPA 34.54 14.60 62.33 47.03 15.47 75.81
NISER 33.79 18.02 65.28 41.68 18.57 78.25

SR-GNN 33.85 17.72 64.47 42.03 18.29 76.34
SR-SAN 32.93 16.93 66.68 42.02 17.56 77.34

TAGNN++ 36.42 18.31 68.85 45.41 18.93 79.83

Gain (%) 1.88 2.18 2.53 1.29 2.13 2.47

Total Gain (%) 0.48 1.86 2.78 0.26 1.78 2.90

3.1.3. Evaluation Metrics

To evaluate the performance of all algorithms, we use three metrics—Recall@K, MRR
(Mean Reciprocal Rank)@K, and Coverage@K. We set K to 10 and 20 for all the metrics.

• Recall is the metric to measure recommendation accuracy. It is the proportion of
correct prediction amongst top-k recommendation lists.

Recall =
#hits
|S| × 100, (4)

where #hits is the number of hits that the generated the top-K recommend list contain-
ing the ground truth and |S| is the number of test sessions.

• Mean Reciprocal Rank (MRR) also measures recommendation accuracy taking ranks
into consideration. MRR is the mean of ground truths’ reciprocal rank in the lists.

MRR =
1
|S|

|S|

∑
i=1

1
ranki

× 100, (5)

where ranki is the reciprocal position of the ground truth in the top-K recommenda-
tion list.

• Coverage is the ratio of the unique items that appears in recommendation lists.

Coverage =
|Irec|
|I| × 100, (6)

where |Irec| is the number of unique items included in the top-k recommendation list,
and |I| is the total number of unique items in the test dataset.

3.2. Experiment Result

Table 2 shows the performance of the baseline models with and without Logit Averag-
ing (LA). The rows are the baselines and their combination with LA, and columns are the
evaluation metrics. We evaluate the performance in both top-10 and top-20 recommenda-
tion lists. For each dataset, we calculate the average percentage of the performance gain in
performance in all six baseline models.

At the bottom of Table 2, there is the Total Gain (%) that calculates the average
percent of the gain in all four datasets. For all six metrics, HR@10, MRR@10, Coverage@10,
HR@20, MRR@20, and Coverage@20, applying LA to the baselines improves the average
performance by 0.48%, 1.86%, 2.78%, 0.26%, 1.78%, and 2.90%, respectively. This result
proves the effectiveness of our proposed method in improving prediction accuracy and
item diversity.
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For RetailRocket dataset, HR@10, MRR@10, and Coverage@10 have increased by
0.86%, 3.23%, and 1.97%, respectively. HR@20, MRR@20, and Coverage@20 have increased
by 0.54%, 3.14%, and 1.84%, respectively. Not only does prediction accuracy improve but
also diversify the recommendation list.

In the case of the Tmall dataset, MRR@10 and Coverage@10 have increased by 0.86%
and 2.02% while HR@10 decreases by−0.98%. Even though there has been a slight decrease
in Recall, applying LA helps to make an accurate reciprocal ranking prediction and increases
the item diversity.

For the Yoochoose 1/64 dataset, the performance of all three metrics, HR@10, MRR@10,
and Coverage@10, improves by 0.15%, 1.18%, and 4.58%, respectively. It particularly
increases item coverage more than other metrics. As Isufi et al. [35] pointed out, usually,
recommendation accuracy is tied with diversity in a delicate trade-off. Thus, a great
increase in item coverage along with recommendation accuracy when LA is applied is a
remarkable achievement.

Additionally, for the Diginetica dataset, HR@10, MRR@10, and Coverage@10 increase
by 0.48%, 2.18%, and 2.53% respectively when LA is applied to the original baselines. This
trend can also be observed when K = 20. The performance of HR@20, MRR@20, and
Coverage@20 improves by 1.29%, 2.13%, and 2.47%.

The six baseline models have shown a different tendency to improve recommendation
results depending on whether the model is based on an attention mechanism or GNNs.
Firstly, the attention-based models, NARM and SR-SAN, show a large improvement in
Hit Ratio and MRR after training with LA methods. SR-SAN gains 13.99% on MRR@10,
but drops 3.2% on Coverage@10 on average. The GNN-based models, EOPA, NISER,
SR-GNN, and TAGNN++, show the opposite tendency of attention-based models. The
models applying LA show the steepest rise in coverage. SR-GNN and TAGNN++ gain
49.48% and 22.15% on Coverage@10, respectively.

We compare the performance of HR@20, MRR@20 and Coverage@20 in two different
datasets in the same baseline model, TAGNN++ [18]. The result is shown in Figure 3.
The salmon color bar is the performance of baseline models, and the yellow bar indicates
the performance of baselines with our proposed method LA. Lastly, we applied a data
augmentation technique, GraphMix [36], to further improve the performance, and the
result is shown in the skyblue bar. For the two datasets, LA improves the result of HR@20,
MRR@20, and Coverage@20. When GraphMix is used in addition to LA, it helps to increase
prediction accuracy and item coverage in both datasets.

Figure 3. Comparing performance in two different datasets in the TAGNN++ model. Compare to
baseline model performance, applying LA (Logit Averaging) improves performances in every metrics.
In addition to LA, applying GraphMix, a data augmentation technique, improves performance of
HR@20 and MRR@20.
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3.3. Ablation Study

For the ablation study, we conducted two different experiments. First, we applied
various data augmentation techniques to our proposed method. Second, we compared
the performance of our method and GCE-GNN. The experimental results are shown in
Tables 3 and 4, respectively.

Table 3. The average performance gains (%) of four baseline methods with LA and different data
augmentation methods on the original baseline methods.

Dataset Augmentation LA HR@10 MRR@10 Coverage@10 HR@20 MRR@20 Coverage@20

RetailRocket

X O −0.20 0.09 −0.15 −0.24 0.08 −0.05
GraphMix O −0.44 0.88 −1.73 −0.81 0.85 −1.50

FLAG O 1.18 0.54 2.04 1.20 0.56 2.00
Random deletion O 0.82 −2.07 1.55 1.61 −2.02 1.09
Random Insertion O −1.71 −3.31 −0.03 −1.12 −3.28 −0.05

Tmall

X O −0.56 −0.24 0.08 −0.80 −0.28 0.10
GraphMix O 1.70 0.95 1.46 2.15 0.97 2.72

FLAG O 0.46 −0.32 0.18 1.42 −0.27 0.25
Random deletion O −0.44 −0.66 0.44 −0.73 −0.69 0.76
Random Insertion O −3.31 −2.19 0.16 −3.82 −2.23 0.15

Yoochoose 1/64

X O −0.01 0.17 0.48 0.03 0.17 0.63
GraphMix O −0.73 −0.12 2.48 −0.64 −0.11 3.07

FLAG O 0.28 0.11 0.62 0.26 0.11 0.53
Random deletion O −0.15 −0.82 −1.79 −0.02 −1.06 −1.92
Random Insertion O −1.21 −1.72 −0.69 −0.55 −1.68 −0.54

Diginetica

X O 0.62 0.31 1.41 0.69 0.32 1.50
GraphMix O 0.48 0.32 1.40 0.33 0.31 0.93

FLAG O 0.08 0.01 0.09 −0.05 0.01 0.22
Random deletion O −0.17 −0.83 0.77 0.12 −0.81 1.49
Random Insertion O −0.25 −0.37 −0.27 −0.44 −0.37 0.69

Table 4. The performance comparison on our proposed model with TAGNN++ and GCE-GNN using
Tmall and Yoochoose 1/64 datasets.

Dataset Model HR@10 MRR@10 Coverage@10 HR@20 MRR@20 Coverage@20

Tmall
GCE-GNN 23.76 15.20 16.18 26.29 15.35 25.71
TAGNN++ 30.77 14.55 16.36 36.42 14.96 25.42

TAGNN++ w. GraphMix 34.27 17.11 17.50 43.33 17.76 28.06

Yoochoose 1/64
GCE-GNN 60.32 29.66 29.79 71.02 30.40 34.98
TAGNN++ 60.84 31.11 28.79 71.16 31.83 33.46

TAGNN++ w. GraphMix 60.75 30.86 27.64 71.15 31.59 32.27

3.3.1. Effectiveness of Augmentation

We utilized augmentation methods with four baselines in order to overcome the data
sparsity problem in session datasets. We conduct four different data augmentation methods,
which are GraphMix [36], FLAG [37], Random deletion, and Random insertion.

GraphMix [36] is proposed as a regularization method for GNN based semi-supervised
object classification. It interpolates the hidden states and the corresponding labels to make
a better feature representation. Even though it targets object classification tasks, we find this
technique also applicable to session-based recommendation tasks as well. We interpolate
the feature representations of two random sessions within a batch and let there be two target
values, making it similar to a multi-label classification task. The equation is shown below.

Fmix = λ · Fa + (1− λ) · Fb (7)

Lm = λ · CrossEntropyLoss(pred, ya) + (1− λ) · CrossEntropyLoss(pred, yb) (8)

L = Lo + Lm, (9)

First, we interpolate two random feature representations of sessions a and b, FA and
Fb with respect to λ value. We set λ value as 0.6 in all experiments. Then the pred is
calculated using the session model, and the loss value is calculated using cross entropy
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as in Equation (8). The loss value calculated from mixed logits, Lm, is interpolated with
respect to λ value as well. The final loss value is obtained in addition to the original loss Lo
and the modified one, Lm.

FLAG [37] is introduced as a data augmentation technique, specifically for graph
datasets to enhance the performance of the graph neural network through iteratively
augmented node features with gradient-based adversarial perturbations during training.

Lastly, we execute a random deletion and random selection method, which is a
straightforward data augmentation method widely used in the natural language processing
(NLP) domain. For each session within a batch, we randomly delete or insert the items to
sessions. For random insertion, we use a set of unique items within a batch to randomly
select the one item to insert.

Table 3 shows the average percentage of the performance gain of different data aug-
mentation methods in four baseline models, which are both attention-based (NARM,
SRSAN) and GNN-based (NISER, TAGNN++). The raw result value of this experiment is
shown in Table A1 in Appendix A.

Even though the results differ depending on the datasets, GraphMix and FLAG show
an impressive performance, improving Recall, MRR and item coverage. Especially for the
Tmall datset, GraphMix increases HR@20, MRR@20, and Coverage@20 by 2.15%, 0.97%,
and 2.72%, respectively. However, applying random deletion and random insertion rather
degrades the performance in almost all datasets. Thus, we could infer that GraphMix and
FLAG are effective data augmentation techniques that could alleviate the data sparsity
problem in session datasets, and further diversify the item recommendation lists.

3.3.2. Comparison on GCE-GNN

We compare the performance of our methods with GCE-GNN [22], which injects the
global relation information by employing a global item transition graph. We conducted
experiments using two datasets: Tmall and Yoochoose. GCE-GNN is the performance we
obtain with the official code (https://github.com/CCIIPLab/GCE-GNN, accessed on 22
April 2022). As shown in Table 4, our method outperformed the existing method in overall
performance. Although the coverage of our method was lower than that of GCE-GNN
with Yoochoose datasets, TAGNN++ with LA and GraphMix augmentation improves all
metrics by a large margin. Therefore, we demonstrate that our proposed methods, LA and
the augmentation technique, are effective for improving recommendation performance.

4. Discussion

The recommender system is an essential part of an e-commerce platform to improve
user experience and satisfaction. Most conventional recommendation models utilized user
and item interaction information and side-information such as users’ explicit feedback and
user profiles [3–8]. However, in many cases, users look around internet shopping websites
without logging in and some users share the same account even if they logged in. Thus,
the session-based recommender system, which utilizes anonymous session sequences to
recommend items, has gained much attention.

Session-based recommendation aims to predict an anonymous user’s next action,
whether she or he is likely to purchase based on the user’s clicked-item in the current
session, as sequences. Most recent research on session-based recommendations makes
predictions solely based on a single session without incorporating global relationships
between sessions [15–19,22]. We argue that this method does not guarantee better perfor-
mance because item embeddings learned by utilizing a single session (inter-session) have
less item transition information than utilizing both intra- and inter-session item transitions
simultaneously. Some existing methods [21–27] tried to enhance recommendation perfor-
mance by adopting memory modules and global transition graphs; however, they still
carry limitations in terms of computation cost. We proposed a novel yet simple algorithm
called Logit Averaging (LA), helping to learn both local-level logits which come from
intra-sessions’ item transitions and global-level logits, which come from gathered logits of

https://github.com/CCIIPLab/GCE-GNN
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related sessions. By considering the long-tail item distribution of session datasets, we stored
and aggregated the logits of sessions with target items that the majority of other sessions
shared. Then, we applied the mean value of logits as a global context that a single session
might miss. Extensive experiments verified that the baseline models with our proposed
method, LA (Logit Averaging), outperformed the baseline models. The total gains of LA
with baselines on the baselines are all larger than zero, so we demonstrated that the LA
module helps to increase both recommendation accuracy and diversity. Addtionally, we
conducted additional experiments to confirm the improvement of the proposed methods
with existing augmentation methods. The baseline methods with LA and GraphMix [36]
showed the largest increment for all metrics.

Although we proposed the novel and simple method to overcome the challenges
where session-based recommendation employs global item relations among the sessions,
there are still a few limitations. In [9,24], sessions have temporal features, and user and
items interactions and sessions represent consumption trends. Therefore, considering the
temporal feature of sessions while collecting the global item transitions remains for our
future work. Besides, the complex inter-relationships between sessions are still not entirely
understood, and we think this is a fertile space for future exploration.
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Appendix A

Appendix A.1

Table A1 shows the raw result value of different data augmentation methods in four
different datasets and four different baseline models. For data augmentation experiment, we
use NARM [11], SRSAN [12], NISER [16], and TAGNN++ [18] to evaluate the performance.

https://www.kaggle.com/retailrocket/ecommerce-dataset
https://ijcai-15.org/repeat-buyers-prediction-competition/
https://ijcai-15.org/repeat-buyers-prediction-competition/
https://www.kaggle.com/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/chadgostopp/recsys-challenge-2015
https://competitions.codalab.org/competitions/11161#learn_the_details-data2
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Table A1. The result of different data augmentation methods in four different models. In column
LA, we mark ’X’ to indicate the baseline without using LA and mark ’O’ to indicate the baseline with
using LA.

Dataset Model Aug LA HR@10 MRR@10 Coverage@10 HR@20 MRR@20 Coverage@20

RetailRocket

NARM

X X 39.24 20.76 95.52 45.92 21.24 97.63
X O 39.02 21.07 95.86 45.64 21.53 97.80

GraphMix O 37.89 19.46 95.99 44.76 19.94 98.14
FLAG O 39.94 21.16 95.54 46.21 21.64 97.75

Random deletion O 39.83 19.48 95.18 46.68 19.95 97.50
Random Insertion O 38.97 19.42 94.88 46.41 19.94 97.17

NISER

X X 33.24 22.24 88.66 37.54 22.53 93.42
X O 33.33 22.09 88.59 37.66 22.39 93.39

GraphMix O 33.19 22.37 85.65 37.49 22.66 90.79
FLAG O 33.40 22.45 89.56 37.76 22.75 94.40

Random deletion O 34.71 17.51 96.44 39.45 17.83 98.57
Random Insertion O 32.27 16.35 96.80 36.40 16.64 98.83

SR-SAN

X X 37.96 17.25 93.97 44.91 17.74 96.53
X O 37.50 17.26 92.44 44.33 17.75 95.45

GraphMix O 33.89 20.13 80.22 39.14 20.49 84.66
FLAG O 37.76 17.17 93.32 44.56 17.65 96.26

Random deletion O 37.42 17.01 91.90 45.57 17.58 94.86
Random Insertion O 35.06 15.97 90.53 42.61 16.48 94.10

TAGNN++

X X 34.30 21.54 81.59 39.83 21.92 85.47
X O 34.10 21.71 82.23 39.61 22.09 86.21

GraphMix O 38.00 23.36 90.96 43.58 23.75 93.47
FLAG O 38.35 23.18 89.47 44.47 23.61 92.62

Random deletion O 36.07 19.51 82.40 42.93 19.98 86.46
Random Insertion O 31.59 16.80 77.42 38.29 17.27 82.76

Tmall

NARM

X X 17.14 12.52 17.68 19.18 12.71 28.68
X O 16.46 12.21 17.28 18.50 12.35 28.17

GraphMix O 19.18 13.74 18.56 21.62 13.88 30.85
FLAG O 16.65 12.41 17.81 18.70 12.51 28.84

Random deletion O 18.31 13.25 18.23 19.86 13.38 29.60
Random Insertion O 18.70 12.91 18.50 20.74 13.05 30.28

NISER

X X 18.89 14.04 18.93 21.03 14.18 31.83
X O 18.11 13.52 19.21 20.35 13.60 32.43

GraphMix O 19.08 13.76 18.65 20.45 13.85 31.08
FLAG O 19.18 13.80 19.03 21.13 13.93 32.01

Random deletion O 18.31 13.58 18.82 19.77 13.68 31.97
Random Insertion O 16.46 12.66 18.86 18.21 12.78 31.83

SR-SAN

X X 18.99 12.74 12.67 21.62 12.92 19.65
X O 20.55 14.25 12.63 23.17 14.43 19.54

GraphMix O 22.40 14.65 16.27 24.83 14.83 26.07
FLAG O 19.28 12.62 12.49 22.01 12.81 19.30

Random deletion O 19.28 11.84 13.12 22.59 12.03 20.45
Random Insertion O 17.92 10.55 13.00 20.84 10.76 20.12

TAGNN++

X X 33.11 16.17 15.88 39.82 16.64 25.01
X O 30.77 14.55 16.36 36.42 14.96 25.42

GraphMix O 34.27 17.11 17.50 43.33 17.76 28.06
FLAG O 34.86 15.38 16.56 45.47 16.14 26.01

Random deletion O 30.48 14.17 16.75 36.51 14.60 26.20
Random Insertion O 21.81 10.59 15.44 26.58 10.94 23.52

Yoochoose 1/64

NARM

X X 59.95 29.46 29.24 70.67 30.20 35.73
X O 59.96 29.65 28.88 70.61 30.40 35.37

GraphMix O 55.69 28.08 36.91 66.66 28.85 45.52
FLAG O 60.50 29.57 29.83 71.07 30.33 35.89

Random deletion O 59.99 29.38 29.17 70.54 30.13 35.75
Random Insertion O 60.49 29.68 30.50 71.00 30.42 37.09

NISER

X X 60.25 30.91 29.46 70.55 31.64 34.61
X O 60.23 30.88 29.40 70.48 31.60 34.73

GraphMix O 60.58 31.08 28.65 70.54 31.78 33.29
FLAG O 60.45 30.77 29.91 70.71 31.49 35.34

Random deletion O 60.36 29.04 31.82 70.41 29.74 38.69
Random Insertion O 59.88 29.18 34.17 69.88 29.88 42.22

Yoochoose 1/64

SR-SAN

X X 53.90 25.96 28.28 64.89 26.73 32.62
X O 53.75 26.00 28.31 64.91 26.77 32.63

GraphMix O 54.87 26.48 30.19 66.14 27.27 34.88
FLAG O 54.31 26.10 28.40 65.24 26.86 32.86

Random deletion O 55.54 25.85 28.53 67.21 26.65 32.61
Random Insertion O 52.28 23.36 28.99 65.54 24.27 33.08

TAGNN++

X X 60.70 30.63 26.48 70.93 31.35 30.72
X O 60.84 31.11 28.79 71.16 31.83 33.46

GraphMix O 60.75 30.86 27.64 71.15 31.59 32.27
FLAG O 60.67 30.95 27.82 71.08 31.68 31.72

Random deletion O 58.32 29.43 16.79 68.79 29.17 18.96
Random Insertion O 57.32 27.88 17.03 68.44 28.65 19.12
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Table A1. Cont.

Dataset Model Augmentation LA HR@10 MRR@10 Coverage@10 HR@20 MRR@20 Coverage@20

Diginetica

NARM

X X 35.86 18.60 68.78 44.83 19.22 82.60
X O 35.76 18.51 69.05 44.49 19.12 83.07

GraphMix O 34.76 18.38 69.02 43.39 18.97 83.16
FLAG O 36.30 18.49 69.06 45.40 19.12 82.91

Random deletion O 35.96 18.61 68.95 45.32 19.25 82.66
Random Insertion O 36.59 18.71 68.31 45.59 19.36 82.13

NISER

X X 34.12 17.98 65.02 41.89 18.52 77.34
X O 33.79 18.02 65.28 41.68 18.57 78.25

GraphMix O 34.27 18.06 59.23 42.04 18.59 70.59
FLAG O 34.04 18.10 65.41 41.69 18.63 78.41

Random deletion O 33.55 18.37 64.18 39.95 18.81 77.65
Random Insertion O 33.11 18.28 64.04 39.68 18.74 77.69

SR-SAN

X X 32.54 16.61 67.60 41.50 17.22 78.56
X O 32.93 16.93 66.68 42.02 17.56 77.34

GraphMix O 32.94 16.95 70.66 41.72 17.56 81.55
FLAG O 32.62 16.62 67.57 41.28 17.22 78.39

Random deletion O 32.07 14.85 67.21 42.44 15.58 79.28
Random Insertion O 31.50 14.04 66.78 41.87 14.76 79.36

TAGNN++

X X 33.90 17.34 62.81 42.64 17.95 74.00
X O 36.42 18.31 68.85 45.41 18.93 79.83

GraphMix O 36.36 18.43 70.89 45.02 19.03 80.91
FLAG O 33.77 17.36 62.54 42.29 17.96 73.66

Random deletion O 34.17 15.37 66.93 43.61 16.03 78.87
Random Insertion O 34.20 18.02 63.99 41.97 18.56 76.07

Appendix A.2

Table A2 shows the hyperparameter settings that we executed. All the setting is same
from the original implementation codes that authors of the paper published. For Yoochoose
1/64 and Diginetica which have much larger train sessions, some modification on batch
size in TAGNN++ were necessary. Otherwise, the memory error occurred. Especially when
experimenting Random Deletion and Random Insertion augmentation techniques, batch
size of Yoochoose 1/64 was 8 and 16 for diginetica.

Table A2. The hyperparameter settings of six baseline models.

Hyperparameter
Model

NARM EOPA NISER SRGNN SRSAN TAGNN++

Batch Size 128 128 128 128 128 64
Hidden Size 100 - 100 100 96 100
Epoch 100 30 30 30 30 30
L2 Penalty - 0.0001 0.00001 0.00001 0.00001 0.00001
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Learning rate decay rate 0.1 - 0.1 0.1 0.1 0.1
Number of steps after which the learning rate decay 80 - 3 3 3 3
The dropout ratio for features - 0.2 - - - -
GNN Propagation - - 1 1 1 1
Number of SAN layer - - - - 1 -
Number of heads of multi-head attention - - - - 2 -
Multipler of hidden size - - - - 1 -
Embedding Dimension 50 32 - - -
Number of layers 1 3 - - - -

Appendix A.3

Figure A1 shows the performance differences depending on the various head-tail ratio
setting. We examine the performance using SRGNN model with Diginetica dataset. The
legend in each plot represents the recommendation performance of metrics. We found that
the performance on both HR and MRR depending on the head-tail ratio do not differ very
much. The performance differences were within ±1, meaning that head-tail ratio are not
significant hyperparmeter in Logit Averaging method.
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Figure A1. We compare the performance of LA in various head ratio from 5% to 30%. The legend
shows the metrics. We examine the performance in SRGNN model using Digineitca dataset.
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