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Abstract: The Polish Air Force operates more than one hundred helicopters of the Mi family (man-
ufactured by Mil Helicopters), equipped with metal main rotor blades. The main rotor blades are
among the most stressed components of these structures. For this reason, they are subject to more
frequent inspections during operation than other components. One type of damage detected during
inspections is the local disbonding of fragments of the anti-erosion layer from the leading edge. This
harmless-looking damage is very dangerous, since it quickly leads to the complete detachment of
the layer. The leading edge, unprotected by the metal cover, erodes rapidly. The detached layer,
when thrown away at high speed, endangers other parts of the helicopter, such as the tail rotor,
and may cause damage to other helicopters if flying in formation. The technology supplied by the
manufacturer to date has not encompassed the field repair of this type of damage. Therefore, efforts
were made to develop repair technology for rapid repairs of blades in field conditions during missions
of the Task Force White Eagle in Afghanistan. This article presents the concept of repair technology
feasible in field conditions and presents the results of post-repair edge tests. Test results to identify
the materials used in the construction of the trailing edge are also presented. The results of materials
testing facilitated the development of technological processes, and, in the future, will aid the selection
of a substitute bonding paste system with similar parameters that are essential for repairs.

Keywords: bonding; composite repair; aviation; rotor blades; helicopter

1. Introduction

While the rotor blades of Mi helicopters differ in profile and dimensions, their general
design is similar for every type of helicopter (Figure 1) used by the Polish Armed Forces.
The aluminum alloy spar is the rotor blade component responsible for transferring the
main loads. The leading edge of the blade is equipped with an electric anti-icing device.
A rubber cover and metal shield protect the electric anti-icing device. The trailing section is
composed of a honeycomb metal sandwich structure. The trailing sections are bonded to
the spar.
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Figure 1. Structural baseline model of a Mi helicopter rotor blade. 

During maintenance work on the main rotor blades, damage is detected in the form of 
a piece of the metal shield peeling off the leading edge (Figure 2). The detection of the 
damage makes it necessary to decide whether to repair the blade or to withdraw it from 
use. 

The lack of repair technology for this type of damage can lead to the interruption of 
operational activities during military missions. Therefore, research was undertaken to 
develop a repair technology to quickly return the blades to service. 
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Figure 2. Damage to the leading edge—debonding shield from the leading edge: (a) Diagram; (b) 
Damage to a Mi-2 helicopter rotor blade (series 22-2700-3000). 

The high progressive velocity of the leading edge of the main rotor blade causes it to 
flap around at high speed. Dust, droplets of water, and ice in the air hit the leading edge at 
speeds of up to 200 m/s. Therefore, a metal shield protects the leading edge. The loss of the 
shield can cause damage to the blade. Local peeling quickly leads to the complete 
detachment of the shield. The leading edge unprotected by the metal cap is then rapidly 
eroded. 

The available scientific publications on leading edges mainly focus on composite 
structures. Repairs of main rotors concern damage in the form of delamination or 
puncture [1]. Bonded joints are common in aerospace technology [2]. The problem of the 
erosion of unprotected metal shield blades of helicopter and wind turbine rotors 
composed of composite material was well illustrated in [3]. Repairs of damage to this type 
of blade are presented in publications [4,5]. The repair in both cases consists of the removal 
of the damaged composite layers and reconstructing the structure from new composite 
layers. Depending on the blade manufacturing technology, repair is performed with the 
use of wet or prepreg technology. 

No publications were found on damage formation and the repair of shields 
debonding from the leading edge. Therefore, during the research presented in this paper, 

Figure 1. Structural baseline model of a Mi helicopter rotor blade.

During maintenance work on the main rotor blades, damage is detected in the form
of a piece of the metal shield peeling off the leading edge (Figure 2). The detection of
the damage makes it necessary to decide whether to repair the blade or to withdraw it
from use.
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Figure 2. Damage to the leading edge—debonding shield from the leading edge: (a) Diagram;
(b) Damage to a Mi-2 helicopter rotor blade (series 22-2700-3000).

The lack of repair technology for this type of damage can lead to the interruption
of operational activities during military missions. Therefore, research was undertaken to
develop a repair technology to quickly return the blades to service.

The high progressive velocity of the leading edge of the main rotor blade causes it
to flap around at high speed. Dust, droplets of water, and ice in the air hit the leading
edge at speeds of up to 200 m/s. Therefore, a metal shield protects the leading edge.
The loss of the shield can cause damage to the blade. Local peeling quickly leads to the
complete detachment of the shield. The leading edge unprotected by the metal cap is then
rapidly eroded.

The available scientific publications on leading edges mainly focus on composite
structures. Repairs of main rotors concern damage in the form of delamination or punc-
ture [1]. Bonded joints are common in aerospace technology [2]. The problem of the erosion
of unprotected metal shield blades of helicopter and wind turbine rotors composed of
composite material was well illustrated in [3]. Repairs of damage to this type of blade
are presented in publications [4,5]. The repair in both cases consists of the removal of the
damaged composite layers and reconstructing the structure from new composite layers.
Depending on the blade manufacturing technology, repair is performed with the use of
wet or prepreg technology.

No publications were found on damage formation and the repair of shields debonding
from the leading edge. Therefore, during the research presented in this paper, use was
made of publications on bonding ply, surface preparation for bonding metals and rubber,
and thermo-physical research on polymeric materials.
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With respect to technological development, useful information was obtained from
websites on helicopter blade repairs [6,7], which presented repair techniques for other
typical damage to metal blades.

In addition, experience gained during other studies related to repairs to the metal
blades of main rotors [8] was used. The phenomenon of the negative effects of temperature
on polymeric materials was also addressed.

The aim of the paper is to present the validation/qualification of a developed repair
technology for the leading edge of main helicopter rotor blades in field conditions.

2. Causes of Damage to and Conditions of Use of Main Helicopter Blades

The analysis of helicopter documentation (internal materials of the Polish Air Force)
revealed that damage (Figure 2) is most frequently found on the blades of helicopters flown
aggressively during real military missions. Damage is particularly common during mis-
sions such as cargo transport, maritime search and rescue missions, and assault operations.
Damage is less frequently detected on helicopters used for training and routine flights.
Damage of this type is only very rarely detected on blades with a short service history. It
is therefore concluded that the damage is influenced by the intensity of operation, which
consists of mechanical loads and environmental conditions.

2.1. Mechanical Loads

The main rotor blades are one of the most stressed components of a helicopter. Even
when the helicopter is in a static condition, the blades are subjected to high static loads
due to their mass. However, during flight, the blades are subjected to dynamically varying
complex loading conditions, resulting in longitudinal and torsional loading (Figure 3).

Appl. Sci. 2022, 12, 4249 3 of 20 
 

use was made of publications on bonding ply, surface preparation for bonding metals and 
rubber, and thermo-physical research on polymeric materials. 

With respect to technological development, useful information was obtained from 
websites on helicopter blade repairs [6,7], which presented repair techniques for other 
typical damage to metal blades. 

In addition, experience gained during other studies related to repairs to the metal 
blades of main rotors [8] was used. The phenomenon of the negative effects of temperature 
on polymeric materials was also addressed. 

The aim of the paper is to present the validation/qualification of a developed repair 
technology for the leading edge of main helicopter rotor blades in field conditions. 

2. Causes of Damage to and Conditions of Use of Main Helicopter Blades 
The analysis of helicopter documentation (internal materials of the Polish Air Force) 

revealed that damage (Figure 2) is most frequently found on the blades of helicopters 
flown aggressively during real military missions. Damage is particularly common during 
missions such as cargo transport, maritime search and rescue missions, and assault 
operations. Damage is less frequently detected on helicopters used for training and 
routine flights. Damage of this type is only very rarely detected on blades with a short 
service history. It is therefore concluded that the damage is influenced by the intensity of 
operation, which consists of mechanical loads and environmental conditions. 

2.1. Mechanical Loads 
The main rotor blades are one of the most stressed components of a helicopter. Even 

when the helicopter is in a static condition, the blades are subjected to high static loads 
due to their mass. However, during flight, the blades are subjected to dynamically varying 
complex loading conditions, resulting in longitudinal and torsional loading (Figure 3). 

 
 

(a) (b) 

 

 

(c) (d) 

Figure 3. Diagram of loads on helicopter rotor blades: (a) Tensile force—centrifugal P1, moment 
bending the blade in the direction of flow Mg1; (b) Lift force Pz, bending moment related to the 
induced drag—Mg2; aerodynamic moment Mg3; (c) Loads related to the change in position of the 
blades during flight; (d) One vibration mode. 
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the blade, a stress concentration occurs in the bonding ply between the shield and the 
rubber. At the maximum deflection of the spar, the stress in the bonding ply approaches 

Figure 3. Diagram of loads on helicopter rotor blades: (a) Tensile force—centrifugal P1, moment
bending the blade in the direction of flow Mg1; (b) Lift force Pz, bending moment related to the
induced drag—Mg2; aerodynamic moment Mg3; (c) Loads related to the change in position of the
blades during flight; (d) One vibration mode.

The numerical calculations presented in [9–11] show that, due to the deformation of
the blade, a stress concentration occurs in the bonding ply between the shield and the
rubber. At the maximum deflection of the spar, the stress in the bonding ply approaches
the maximum permitted stress [12]. Therefore, it can be assumed that stress concentration
may cause damage.
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2.2. Environmental Factors

Temperature is one of the environmental factors affecting the durability of an adhesive
bond [13]. Even small changes in the temperature of bonded elements with different
coefficients of thermal expansion can cause microcracking in the bonding ply [14], accelerate
the diffusion of contaminants, and accelerate creep [15]. Thermo-physical transformations
occurring in polymer adhesives are equally dangerous for bonded structures. Thermo-
physical transformations occur at particular temperatures and change the mechanical
properties of the material [16,17].

The manufacturer has not set up a strictly defined operating temperature range for
Mi helicopters.

The Certification Specifications for Large Rotorcraft CS-29 [18] do not explicitly define
the maximum operating temperature of main rotor blades. However, since temperature can
play a part in the occurrence of damage in factory-made adhesive joints both during opera-
tion and during the process of repair of damaged parts, it was decided to take temperature
into account in the testing of bonds during the development of repair technology. The range
of operating temperature for the research was adopted based on the helicopter flight profile
in the Polish Armed Forces (flight altitude and places of operation—environment) and the
results of temperature measurements of the leading edge anti-icing device heating system.

The ceiling for Mi helicopters is 4.5 km above sea level, which, according to the ISA [19],
translates into a minimum temperature of approx. −20 ◦C. The locations where the Polish
Armed Forces helicopters fly is classified information, but the users of the helicopters stated
that they operate within the ambient temperature range of −40 ÷ +50 ◦C.

Publication [20] presents the results of thermal imaging tests of the Mi-8 helicopter
rotor blade with the leading edge anti-icing device system activated. According to the
measurements, the anti-icing device system can heat the leading edge up to 40 ◦C. This
is, therefore, lower than the maximum operating temperature resulting from environmen-
tal effects.

Therefore, it can be assumed that the operating temperature of the blades is within the
range of −40 ÷ +50 ◦C.

The second environmental factor that particularly negatively impacts adhesive joints
is moisture, as was shown by the research presented in [21]. As in the case of temperature,
the manufacturer did not indicate the permissible level of ambient humidity during the
operation and storage of the blades. Therefore, the Certification Specifications for Large
Rotorcraft CS-29 were used [19]. Subsection CS29.45 states that the maximum ambient
relative humidity during operation is 80%. Based on the aforementioned study [21], it is
surmised that prolonged exposure to 80% humidity can significantly contribute to adhesive
bond failures. Therefore, the effect of humidity on adhesive bonds should be considered in
qualification tests.

3. Materials

The blade performance records held by the Polish Air Force do not contain full detailed
information about the materials used in the design of main rotor blades. In order to obtain
the relevant properties of the materials used in the leading edge, which are required for the
purpose of formulating an appropriate repair process, it was decided to conduct a study to
identify the necessary data.

With regard to a metal shield, an important piece of information when designing the
repair process is the composition of the alloy out of which it is made. With this information,
an appropriate surface preparation method can be developed. On the other hand, with
polymer materials—rubber and adhesives—the thermo-physical properties constitute vital
data. The thermo-physical properties will determine both the properties of the replacement
bonding ply and the parameters of the thermal processes during repair.

Helicopter blades can stay in service for seven years from the date of manufacture.
Samples for the study were taken from the blade just after it was taken out of service.
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Therefore, it was assumed that the materials had not degraded and the properties of the
materials out of which they were produced did not differ from blades in service.

3.1. Shield Material

The chemical composition of the metal shield was analyzed using an Olympus Delta
Professional handheld XRF X-ray spectrometer. A sample taken from the blade shield
(Figure 4), was tested at three randomly selected positions. The metal was identified as
titanium alloy (Table 1).
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Table 1. XRF-identified composition of the sheath material.

Test 1 Test 2 Test 3 Average Standard Deviation

Ti Ti Ti Ti Ti
96.60% 97.74% 97.55% 97.96% 0.60%

Mn Mn Mn Mn Mn
1.29% 1.06% 1.15% 1.16% 0.11%

Al Al Al Al Al
- 1.12% 1.18% 0.76% 0.04%

Fe Fe Fe Fe Fe
- 0.07% 0.07% 0.05% 0%
Si Si Si Si Si

0.11% - 0.05% 0.13% 0.05%

3.2. Polymer Materials

Leading edge repair technology involves the local heating of the structure, both for
the complete detachment of the shield from the rubber, which is necessary to prepare the
bonding surface, and for the subsequent post-curing of the new epoxy resin-based adhesive.
Both processes take place at temperatures as high as 110 ◦C. Consequently, it is essential for
the rubber and adhesive that the polymer components of the blade remain thermally stable
after the annealing operations performed during the repair process. Thermal stability is a
general term used to describe the changes (or lack of changes) in material properties as a
function of temperature [16].

A differential scanning calorimetry (DSC) study was conducted to verify the behavior
of the leading edge rubber and the bonding ply that connects the rubber to the shield.

The study of the thermo-physical properties was carried out on one sample of each
material. According to [20], one sample of a given material is sufficient to estimate the
properties associated with thermo-physical transformations.

The bonding ply sample was taken from the rubber surface after the shield has
detached from the rubber, as per Figure 5a. The rubber sample was cut out from the top
of the leading edge, as shown in Figure 5b. The samples were cut to fit a standard 146.33
mg aluminum DSC crucible. The bonding ply sample weight was 75.82 mg and the rubber
sample weight was 92.45 mg.
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Figure 5. Sampling site and samples for DSC testing: (a) Bonding ply; (b) Rubber.

DSC was performed using a TA Instrument DSC Q1000. The samples were tested in
the temperature range of −90 ÷ 110 ◦C.

The lower limit of −90 ◦C was adopted for DSC testing to check whether the materials
crystallize—enter a brittle state—which is unacceptable for materials used in aviation.
This study was based on the conclusion of [22,23], where the author of the work showed
that transformations at temperatures below the aircraft operating limit can impinge on
the material properties in the operating range of the tested material, despite the presence
of a reversible phase transition. The DSC test included four thermal cycles carried out
consecutively on one specimen:

1. Cycle 20 ◦C→−90 ◦C→ 50 ◦C→ 20 ◦C—fly simulation I;
2. Cycle 20 ◦C→−90 ◦C→ 50 ◦C→ 20 ◦C—fly simulation II;
3. Cycle 20 ◦C→ 110 ◦C→ 20 ◦C—process repair simulation;
4. Cycle 20 ◦C→−90 ◦C→ 50 ◦C→ 20 ◦C cycle—fly simulation III.

The rate of temperature change for each cycle was 5 ◦C/min. The sample was in a
helium atmosphere during the test. The DSC results are shown in Figure 6.
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The glass transition temperatures were determined for both the rubber and bonding
ply. They were −26 ◦C for rubber and −11 ◦C for bonding ply. Moreover, the DSC curves
for the rubber showed an endothermic peak at 65 ◦C with low enthalpy. It can be supposed
that this peak is related to the moisture content of the rubber. For bonding ply in the
temperature range of −20 ◦C to 110 ◦C, no permanent transformations were observed
due to the action of both the simulated temperature changes alone during service and
those resulting from the thermal cycle during curing. This indicates that both materials are
thermally stable over the studied temperature range.

4. Repair Technology

The concept of the repair of the detachment of the shield fragment from the leading
edge of the main rotor blade consists of the separation and bending of the shield fragment
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from the rubber, proper drying and preparation of the surface for bonding (mechanical and
chemical), application of properly selected adhesive, pressing the shield fragment to the
edge, and conducting the appropriate thermal cycle of curing the adhesive. The process is
shown step-by-step in Figure 7.
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In order to properly prepare the surface for bonding, the faulty shield must be sepa-
rated from the rubber (Figure 7a). Based on the DSC analysis (Figure 6) and a number of
tests, it was found that heating the shield to 110 ◦C softened the bonding paste so that it
could be peeled off with a medical wooden spatula.

It was tentatively assumed that an epoxy resin-based adhesive system, containing
fillers to increase the viscosity of the bonding paste, would be used for bonding the shield
during repair.

When bonding, especially using epoxy resin-based systems, surface preparation is one
of the most important parts of the bonding process. According to [24], a titanium surface
before bonding can be prepared using various mechanical, chemical, and electrochemical
methods. However, the most important issue is to create appropriate roughness on the
prepared surface.

In [24], an illustrative classification of bond strength and durability, from poor to
excellent, was presented. Degreasing and then scrubbing with sandpaper affords irregular
macroporosity to the surface [25]. According to the classification presented, roughening
with sandpaper produces “poor strength” and “poor durability”. In contrast, sandblasting
yields uniform macro roughness, which translates to “increased strength” and “adequate
durability” of the joint. “Excellent properties” are achieved by chromic acid anodizing [26]
and other chemical treatments, such as sol-gel [9,21,27] or modified phosphate fluoride
processes [28]. These methods produce a microporous surface coated with titanium com-
pounds that is supersaturated with adhesive. Unfortunately, it is not feasible to use these
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methods in field workshop conditions. These methods require the use of toxic and chem-
ically aggressive reagents (chromic acid VI) in appropriate proportions, and specialized
apparatus in the case of anodizing. The use of aggressive chemicals, which, in an uncon-
trolled manner would penetrate the gaps created by a partially detached shield, could lead
to the degradation of components during subsequent operation. In addition, in the case
of selected fragments of partially detached shield, the use of electrochemical methods is
technically very difficult.

Therefore, the decision was made to treat the titanium surface in a way that is feasible
in field workshop conditions, consisting of surface degreasing and sandblasting (Figure 7b).
Sandblasting using a 6 mm-diameter nozzle, 0.4 mm-grade corundum sand, and 10 bar
working pressure at 2 m3/min, resulted in a roughness of Ra = 1.05 µm. Before this opera-
tion, the rubber was protected by isolation tape, which was removed after sandblasting.

The surface after sandblasting should be washed with acetone to remove sand dust
and oil residues (Figure 7c). Despite the use of oil separators in the pressure supply system
of the sandblasting gun, there is a risk that trace amounts of oil mist from the compressor
lubrication system may be present in the compressed air.

The pieces of old bonding ply remain on the rubber after the separation of the metal
shield from the rubber. There are two ways to remove them: mechanically or chemically.
The mechanical attempts with sandpaper caused damage to the rubber. Therefore, the
chemical method was applied. According to the manual [12] for the cleaning of the rubber
on the leading edge, gasoline or isopropyl alcohol can be used. The tests showed that
gasoline was not effective for the removal of the old bonding ply residue, so isopropyl
alcohol was chosen. Cleaning was conducted by wiping the rubber surface with a cotton
cloth slightly dampened in isopropyl alcohol. Isopropyl alcohol evaporates quickly after
cleaning, so it does not pose a further threat to the rubber and to the new joint.

The development of the surface preparation method was laboratory-tested using the
water-break test method, using distilled water in accordance with [29–31]. During the repair
of an actual main rotor blade, this test will not be possible because it would significantly
complicate the bonding process—it is difficult to dry the water in the slots, as well as
check that the drying was conducted correctly. It was assumed that surface preparation
and cleaning must be performed according to the developed method. This guarantees a
properly prepared surface for bonding.

The surfaces have to be dried by a heat gun (Figure 7d) after chemical cleaning (shield
with acetone and rubber with isopropyl alcohol). Although the fact that the solvents
used evaporated easily, drying requires quite a long time to remove them from porous
structures—sandblasted metal and rubber. Based on experience, 10 min at 35 ◦C was
assumed to be sufficient. After the cooling of the surfaces, the primer is applied by a brush
(Figure 7e). The primer is cured in ambient conditions for 8 h [32,33].

Contrary to appearance, the application of adhesive paste is a complicated process.
The paste applied to the target surfaces should be as shown in Figure 7f, with the thickest
layer being about 3 mm. In this way, when the elements are pressed together, the excess
adhesive paste will flow out, leaving an even layer between them. Applying the paste
in the same thickness on the entire surface (without the characteristic bulges) or leaving
a layer containing air bubbles will cause the adhesive to be uneven when pressed, or air
bubbles will form in the center (Figure 8).

The shield is composed of a titanium alloy characterized by a high modulus of elasticity.
Therefore, clamping the shield during bonding requires significant force evenly distributed
over the surface of the shield (Figure 7g). In order to achieve this, an assembly tool was
designed and manufactured to press the shield properly against the edge, allowing the
blade profile to be reproduced (Figure 9).
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The composite back parts of the assembly tool (Figure 9a) were installed on the trailing
edge of the blade first. Next, the bonded shield was compressed to the leading edge using
the composite front part of the assembly tool by hand after applying adhesive paste to the
bonded surfaces of the leading edge under repair. Then, the front part of the assembly tool
was joined to the back part of the assembly tool using a fastener (M6). Therefore, the shield
was pressed to the leading edge. In order to additionally pressed the shield to the top and
bottom of the leading edge, bar clamps were installed as the last step. The excess adhesive
paste squeezed out was removed by a wooden spatula.
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The last step was the curing process—hardening (Figure 7g) and post-curing process—
improvement properties (Figure 7h). For typical epoxy adhesive paste, the curing tem-
perature is 24 ◦C for 24 h and the post-curing temperature is 80 ◦C for 1 h. Epoxides are
cross-linked polymers. The first crosslinking step occurs during curing through the action
of the curing agent. The temperature treatment causes the bonds to strengthen, which
translates into increased strength and durability of the bonding ply. The repaired leading
edge area is shown in Figure 9d.

5. Repair Qualification Study

Two 3M epoxy adhesive pastes and three methods of metal surface preparation were
selected based on the identification of the materials used in the construction of the rotor
blade and the data sheets of materials intended for aviation purposes.

The adhesive pastes were DP490 [34] and 2216B/A [35]. The methods of metal surface
preparation were as follows: without a primer; with the use of Rafil chemically resistant
epoxy primer paint [32], and Cytec primer BR-127 [33].

According to the data sheets, the selected adhesive pastes can be used for bonding
metals and rubber. They are characterized by high strength and flexibility, which is crucial
in the case of bonding rubber to metal. DCS tests were not included in the qualification
study because the selected materials are approved for use in aviation.

5.1. First Stage—Preliminary Selection of Bonding

The first and simplest selection of a bonding system consists of verification of the
nature of the damage (which components of the bonding layer were damaged) during the
static tearing off of the shield (Figure 10). It was assumed that further, more advanced
testing is feasible only in those bonding systems with the decohesive fracture type in
the bonding layer or rubber. It would indicate that the surface preparation and primer
were correctly selected and that the maximum transferring load was via the bonding layer
or rubber.
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The test results were as follows:

1. Bonding 2216B/A—deadhesive fracture surfaces between the metal and bonding layer;
2. Bonding 2216B/A + Rafil primer—decohesive fracture surfaces of the primer;
3. Bonding 2216B/A + BR-127 primer—decohesive fracture surfaces of the bonding layer;
4. Bonding DP490—no damage to the bonding layer, decohesive fracture surface of

the rubber;
5. Bonding DP490 + Rafil primer—decohesive fracture surfaces of the primer;
6. Bonding DP490 + BR-127 primer—deadhesive fracture surfaces between the metal

and bonding layer.

According to the above criterion, only the following systems were further tested:

• Bonding 2216B/A + BR-127 primer;
• Bonding DP490.
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5.2. Second Stage—Strength Test of the Bonding Systems

A strength test of the bonding system between the metal shield and rubber was carried
out by two methods:

1. Shear strength test;
2. Comparative study of the tearing off the shield from the fragment of the rotor blade.

During the test, the originally manufactured bonding system was compared to the
bonding systems produced according to the proposed technology.

The mechanical properties of materials depend on their temperature and moisture
content. At higher temperatures and humidities, moisture may be absorbed, which may
lead to the material swelling [36,37]. In a cold climate, the influence of water and tempera-
ture on materials is associated with the freeze–thaw cycle [38,39]. Therefore, in order to
study the influence of the operating/usage environment’s parameters on the performed
repair, some of the samples were aged in a climatic chamber.

The aging program was developed on the basis of information on the operating
conditions of aircraft and military equipment, military regulations, and International
Standard Atmosphere (ISA) [39–48]. During the program, the samples were aged in four
cycles for a total of 30 h and 45 min. One cycle of exposure in a climatic chamber consisted
of four segments: increase in temperature and humidity; maintaining temperatures at
50 ◦C and relative humidity at 80% for 3 h; decrease in temperature and humidity; and
maintaining temperatures at −40 ◦C for 3 h. The cycle was repeated four times (Figure 11).
The aging of the samples was performed using a DM 340 SR climatic chamber (Angelantoni
Test Technologies).
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5.2.1. Shear Strength Test

It was assumed that, if the strength is greater than the value of the allowable stress in
the bonding or if the fracture of the rubber is decohesive in nature, the adhesive system
will be considered correct. The strength criterion results from the fact that the tests carried
out during the development of this technology concern the connection of a fragment of the
rotor blade covered with a layer of rubber and a sheet composed of Ti-6Al-4V alloy [49],
the properties of which are similar to those of the alloy of the shield (Figure 12). The
allowable stress value of the bonding layer is τult = 3.92 MPa, which was taken from the
repair instructions developed by the rotor blade manufacturer and published by the Polish
Air Force [12]. The description of the tests contained in the instructions pointed out that
the value of the allowable stress in the bonding layer τult = 3.92 MPa obtained during
laboratory tests was equivalent to that in single-lap joint tests [50], and it concerned only
the strength of the bonding layer. Therefore, the tests presented in this article and the
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test by which the limit value was obtained differ from one another. Focusing only on one
criterion, consisting of comparing the obtained results and the limit values, was considered
insufficient. A fragment of the sample with rubber was taken from the lower part of the
leading edge of the rotor blade (Figure 13).
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blades after collecting samples.

The surfaces for the bonding process were treated according to the proposed repair
technology. The limited possibilities of obtaining spar fragments resulted in only eight
samples being produced for each variant:

1. Bonding 2216B/A + BR-127 primer;
2. Bonding DP490.

Four samples after aging and four samples without aging were strength-tested.
The shear strength test of bonding was carried out on an Instron Fatigue system.

A constant speed of actuator movement equal to 2 mm/min was applied. Force was
recorded as a function of displacement, on the basis of which the shear stresses were
determined. The damage caused by the shearing of bonding 2216B/A + BR 127 primer
after aging, was characterized by adhesive fracture surfaces between the bonding layer and
rubber (Figure 14a). The rest of the samples were characterized by the cohesive fracture
surface of the rubber (Figure 14b–d).
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The results of the bonding 2216B/A + BR primer samples without aging and after
aging obtained during the shear strength test are given in Figure 15. In the case of the
samples after aging, the spread of the results was considerable, and, for this reason, the
average value and standard deviation were not calculated.
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The reason for the large discrepancy in the strength test results of the joint (Figure 15b)
may be the degradation of the polymeric materials in the joint. Degradation is referred to as
the partial disintegration of a polymer—not into low-molecular-weight products, but into
fragments of high but lower molecular weight than the initial polymer. Factors initiating
degradation may be physical or chemical interactions, such as radiation, temperature, or
exposure to chemicals, including water [51–54].

The shear stresses of the joints of samples without aging were calculated. Despite the
fact that the results were less than τult = 3.92 MPa, the rubber was damaged instead of the
bonding. Therefore, it should be assumed that the strength condition was met. A very
large dispersion of the results after the aging of the samples and adhesive fracture surfaces
between the rubber and bonding layers testify to the high influence of the environmental
conditions on bonding.

The average values of the shear stresses and standard deviation of the bonding DP490
samples are given in Figure 16. Despite the fact that the shear strength was less than
τult = 3.92 MPa, the rubber was damaged instead of the bonding. Therefore, it should be
assumed that the strength criteria were met for samples after aging and without aging. It
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should be noted that the strength of the bonding after aging was lower in relation to the
strength of the bonding without aging. Moreover, the standard deviation of the samples
after aging was greater.
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Based on the research, it was found that the bonding 2216B/A + BR-127 primer could
not be used to repair the leading edge. This was mainly due to the too large deviation of the
strength test results for the samples after aging. Material with unstable properties should
not be used in aviation. Therefore, it was decided to terminate the research with the use of
this adhesive system.

5.2.2. Comparative Tests of the Tearing Off the Shield from the Leading Edge

The test consisted of a comparison of the tearing force F (Figure 17) of the shield parts
with the factory bonding and the bonding created according to the proposed technology
(Bonding DP490). The test was also carried out on an Instron Fatigue system. The constant
speed of actuator movement equal to 2 mm/min was applied. Force was recorded as a
function of displacement. Five samples from each series were tested. Distinctive fractures
of bonding are given in Figure 18. All the fractures were cohesive; therefore, the rubber
was damaged.
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Figure 18. Characteristics of fractures during tests of the tearing off of the shield from the leading
edge: (a) Factory bonding sample without aging, (b) Factory bonding sample after aging, (c) Bonding
DP490 sample without aging, (d) Bonding DP490 sample after aging.

The results of test of the tearing off of the shield from the leading edge are given
in Figure 19.
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Figure 19. Results of the comparative tests of the tearing off of the shield from the leading edge:
(a) Factory-bonded sample without aging; (b) Factory-bonded sample after aging; (c) DP490 bonding
sample without aging; (d) DP490 bonding sample after aging.

The strength of the DP490 bonding was lower by about 30% in comparison to the
factory bonding. The determined standard deviation indicated that the dispersion of the
results was greater in the case of the DP490 bonding. The exposure in the climatic chamber
did not affect the strength of the bond, both in the case of the factory bonding and the
DP490 bonding.

The differences in strength between the factory-bonded samples and samples after the
proposed repair technology may be due to the fact that, during preparation for repair, the
shield must be folded back, and thus residual stresses are introduced. Due to these stresses,
the tearing force is lower than that in the case of factory bonding.

The test samples were taken from a main rotor blade operated on a helicopter. There-
fore, the factory bonding was exposed to actual atmospheric conditions. Similarly, the aged
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DP490 bonded samples were exposed to variable climatic chamber conditions. In these
cases, the maximum force occurred at a displacement of about 2.5 mm during the tearing
off of the shield from the leading edge.

The maximum force occurred at a displacement of approximately 5 mm during the
test of the bonding DP490 samples without aging.

It was assumed that the faster force increase was due to internal stresses in the bonding
ply and at the rubber–bonding ply border as the result of aging processes under environ-
mental conditions.

6. Checking the Condition of the Shield after Repair

The tap-test method was used to check the adhesive bond [55,56]. The test showed
that the difference in sound frequency between the undamaged and damaged bonding
ply was 780 Hz and the difference in amplitude was 16 dB. Such large differences in
parameters allow assessing the condition of the bonded joins. The test was conducted with
an environment noise level of about 40 dB (Figure 20).
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Figure 20. Tap-test of a reference sample with sound intensity and frequency measurement: (a) Shield
bonded; (b) Shield disbonded.

The tap-test of the edge after repair was applied according to Figure 21 starting
approximately 1 mm from the edge of the shield.

Tap-tests were carried out on the repaired structure (Figure 9d) as described above.
The tests showed 100% adhesion over the entire area to be repaired—four sections of the
shield. This means that the adhesive layer was evenly spread and the designed mounting
tool applied the correct pressure.



Appl. Sci. 2022, 12, 4249 17 of 20Appl. Sci. 2022, 12, 4249 17 of 20 
 

 

 

(a) (b) 

Figure 21. Non-destructive testing: (a) Method of tap-test with an inspection hammer; (b) Trajectory 
of the tap-test. 

Tap-tests were carried out on the repaired structure (Figure 9d) as described above. 
The tests showed 100% adhesion over the entire area to be repaired—four sections of the 
shield. This means that the adhesive layer was evenly spread and the designed mounting 
tool applied the correct pressure. 

7. Conclusions 
To date, the technology supplied by the manufacturer of Mi helicopter blades has not 

included instructions for the repair of leading edge deformations in field conditions. 
Therefore, a technology was developed and described in this paper, which presented the 
leading edge design of Mi helicopters. A number of factors may contribute to blade dam-
age, as the frequency of damage is related to the intensity of operation. Based on an anal-
ysis of literature, operation, and technical documentation, the mechanical loads of blades 
were characterized and the environmental conditions affecting blades were determined: 
temperature range −40 ÷ 50 °C and maximum humidity of 80%. Due to the lack of data on 
the materials used in production, tests were carried out to identify the material properties 
relevant to the operation and repair technology. Spectroscopy was used to determine that 
a titanium alloy was used for the shield. This affected the selection of appropriate sand-
blasting parameters for surface treatment prior to bonding. 

DCS analysis was performed to check the thermal stability of the polymer materials 
used on the leading edge. This information was useful in the development of the techno-
logical process related to detaching the damaged section of the leading edge. Knowledge 
of the thermo-physical properties was essential for initially selecting the bonding systems 
for further research. 

Using the designed assembly device, a repair demonstrator and the samples for test-
ing were produced. 

The reference samples produced for non-destructive testing were used for the vali-
dation of the tap-test method as a service diagnostic method. The verification confirmed 
that the repair was carried out correctly. 

The strength tests showed that the repaired bonded join was 30% weaker in compar-
ison to the factory-made join. 

Differences in strength between the factory bonding samples and samples after the 
proposed repair technology may be due to the residual stresses, introduced during the 
repair process. This phenomenon requires further research and will be studied in the fu-
ture. The environmental impact on the strength properties of the repair was negligible. 
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7. Conclusions

To date, the technology supplied by the manufacturer of Mi helicopter blades has
not included instructions for the repair of leading edge deformations in field conditions.
Therefore, a technology was developed and described in this paper, which presented the
leading edge design of Mi helicopters. A number of factors may contribute to blade damage,
as the frequency of damage is related to the intensity of operation. Based on an analysis
of literature, operation, and technical documentation, the mechanical loads of blades
were characterized and the environmental conditions affecting blades were determined:
temperature range −40 ÷ 50 ◦C and maximum humidity of 80%. Due to the lack of data on
the materials used in production, tests were carried out to identify the material properties
relevant to the operation and repair technology. Spectroscopy was used to determine
that a titanium alloy was used for the shield. This affected the selection of appropriate
sandblasting parameters for surface treatment prior to bonding.

DCS analysis was performed to check the thermal stability of the polymer materials
used on the leading edge. This information was useful in the development of the techno-
logical process related to detaching the damaged section of the leading edge. Knowledge
of the thermo-physical properties was essential for initially selecting the bonding systems
for further research.

Using the designed assembly device, a repair demonstrator and the samples for testing
were produced.

The reference samples produced for non-destructive testing were used for the valida-
tion of the tap-test method as a service diagnostic method. The verification confirmed that
the repair was carried out correctly.

The strength tests showed that the repaired bonded join was 30% weaker in compari-
son to the factory-made join.

Differences in strength between the factory bonding samples and samples after the
proposed repair technology may be due to the residual stresses, introduced during the
repair process. This phenomenon requires further research and will be studied in the future.
The environmental impact on the strength properties of the repair was negligible.

The Polish Air Force approved the considered technology for supervised operation at
the end of 2019. Within two years, the Air Force has not reported any problems with the
repaired rotor blades.
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