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Abstract: Co-doped Zinc selenide (ZnSe) is a promising material because of a high photoluminescence
efficiency and wide spectral range emission in the visible region. In this work, ZnSe and Eu3+/Yb3+

co-doped ZnSe crystals were grown by the chemical vapour transport method. Photoluminescence
and optical measurements revealed the effect of trivalent rare earth Eu3+/Yb3+ ions on the emission of
new lines with enhancement intensity. In the photoluminescence spectrum, some sharp and intense
lines were observed that allow for the possibility of covering a broad emission range. Moreover,
the optical measurement showed a lower bandgap compared to that of pure ZnSe bulk crystal. This
material is suitable for developing optoelectronic devices, which can emit light in the visible and near
infrared range with an improved emission efficiency and wide tunability.

Keywords: ZnSe; co-doped ZnSe; rare earths; Eu3+/Yb3+

1. Introduction

New materials, hetero-structures, hetero-junctions, and doped single crystal have been
the subject of numerous studies to produce optoelectronics devices emitting from blue to
near-IR region [1]. Recent applications such as high-density optical memories, display de-
vices, and biological applications require solid-state semiconductor laser and light emitting
diodes (LED) emitting in the blue and green wavelengths. Others, for example, the LED
of high efficiency for illumination, require high as well as low wavelengths to illuminate
inner spaces. The possible semiconductors that emit light in these wavelengths are the ones
of the II–VI semiconductor family. These materials have direct gap edge of energy capable
of emitting photons with a wavelength less than 500 nm.

Investigations for laser devices with materials such as GaN and ZnSe have had a
tremendous progress in the last thirty years. In 1991, a ZnCdSe/ZnSe quantum well laser
diode successfully demonstrated a pulsed operation at room temperature [2]. The first
solid-state semiconductor blue-green laser and light emitting diode (LED) were built in
1991–1992 using wide band gap II–VI semiconductors with a ZnSe-based single quantum
well structure [3,4]. A GaN/AlGaN double-heterostructure has shown optically a pumped
lasing in the UV region at room temperature [5]. High efficiency InGaN/GaN double-
heterostructure LEDs have also been obtained [6]. Other materials and technologies to
produce compact diode-pumped Nd: LuVO4 solid state lasers have been studied [7] as
well as the high-efficiency nitride semiconductor blue lasers and light emitting diodes [8].

ZnSe is chemically stable metal chalcogenide, which possesses many advantages,
making it an important optoelectronic material. It has useful electronic properties such as
a wide and direct bandgap, low electrical resistivity, and n-type conductivity. Regarding
optical properties, it has a broad transparency from visible to mid infrared wavelengths,
high refractive index, low dispersion, and high photosensitivity. From the other side,
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the trivalent rare earth ions are particularly useful because they produce additional lines
and enhance the intensity of the emission spectra because f-electron absorption transi-
tions are much weaker than those of the d electrons. This allows for the use of much
higher active ion concentrations without complications from extensive self-absorption or
excitation depletion.

Recently several papers have reported on the luminescence of II–VI semiconduc-
tors doped with Tb3+, Sm2+, Eu3+/Eu2+, or Er [8,9] particularly on the luminescence of
ZnSe:Eu3+ and ZnSe:Yb [10,11]. Moreover, the co-doping with two rare earths gives the
possibility of optical pumping between the f electron quantum levels of one rare earth to
the other. Additionally, Yb3+ has a relatively simple energy diagram presented by one
excited state 2F5/2 and a ground 2F7/2 state lying ≈ 1.2 eV below, absence of the line widen-
ing, and absorption on the excited state [12]. Therefore, the energy level configuration of
ZnSe: Eu3+/Yb3+ may generate transitions, which allow for a wider range of wavelengths
in the photoluminescence spectrum. However, there have not been any reports on the
photoluminescence properties of ZnSe co-doped with Eu3+ and Yb3+.

In this work, high quality single crystals were doped and co-doped with Eu3+/Yb3+

rare earths in order to obtain semiconductors with very high photoluminescence in the
visible and near infrared region. The luminescence spectra of these materials give multiple
intense and sharp emission lines. The material was characterized using photoluminescence
and UV–Vis techniques in order to obtain their photoluminescence and absorption proper-
ties. This material exhibited new and more intense emission lines in the visible and near
infrared spectral region, thus giving the possibility of developing high efficacy and tunable
light emitting devices.

2. Materials and Methods

The samples were prepared by chemical vapour transport method using iodine as a
transporting agent following the procedure reported elsewhere [13]. Pure ZnSe (purity was
99.99%) single crystal and the other samples doped with a single rare earth and co-doped
with two rare earths Eu3+/Yb3+ were grown by this method. The binary compounds
were synthesized first from the high purity elements by direct flame heating in quartz
ampoules under vacuum. Then, the very high quality samples were produced after mixing
in appropriate proportions with the concentration of the doping impurity. ZnSe crystals
were doped with 1 mol % Eu3+ or co-doped with 1 mol % Eu3+ and 1 mol % Yb3+.

X-ray diffraction (XRD, Rigaku, Tokyo, Japan) with a monochromatic Cu kα target in
2 theta geometry was used to determine the crystal structure of the samples.

The crystallinity of the pure ZnSe single crystal was confirmed using grazing incidence
X-ray diffraction with a grazing angle of 1◦ and 2θ in the range of 10◦–80◦, as shown in
Figure 1. The results show a polycrystalline structure and a cubic zinc blende crystal
structure with orientation mainly toward the (111) axis perpendicular to the surface.
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Figure 1. XRD pattern of pure ZnSe.

The absorption spectra were taken for each sample as a function of temperature
between 20 K to room temperature from 350 nm to 1100 nm. The experimental setup
consisted of a closed cycle helium cooling system, with controlled temperature using a
Cary 17D spectrophotometer.
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Photoluminescence (PL) measurement is crucial for the registration of the emission
spectra of new materials in order to calculate their efficiency and tunability [14,15]. In this
direction, the spectra were recorded using a one-meter Spex monochromator equipped
with a GaAs photomultiplier and the excitation source from an argon ion laser (Innova
300C series, Coherent USA) at 488 nm or 457.9 nm wavelengths operated at 10 mW power.
The photoluminescence spectra were recorded using Labview data acquisition software as
a function of temperature from 20 K to room temperature.

The basic algorithm procedure for the fitted experimental data is as follows. First,
the data were normalized to minimize the computational processing time. Second, an error
function based on a square mean error between the experimental data and the physical
model was defined. Third, the parameters of the error function were optimized by genetic
algorithms adapted to each particular situation. Finally, the parameters of the fitting
function were obtained. The experimental data were fitted to theoretical models using the
genetic algorithm routines briefly described above.

3. Results and Discussion
3.1. Absorption Measurement Energy Band Gap Determination

Theoretical analysis of the absorption coefficients α for the ZnSe pure materials and
the doped ones show that they obey the following relations [16]:

α =
A
hν

√
hν− Eg (1)

where A is a parameter; Eg is the band gap of allowed transitions (eV); h is Planck’s constant
(6.63 × 10−34 Js); and υ is the frequency of the light (s−1). The values of band gaps were
obtained from the absorption spectra at room temperature using a UV–Vis spectropho-
tometer (Figure 2). In all samples, the absorption edge was very sharp and was located
at about 465 nm, 496 nm, and 563 nm for ZnSe, ZnSe:Eu3+Yb3+, and ZnSe:Eu3+, respec-
tively. The obtained values were in quite good agreement with the literature reports [17,18].
In order to determine the values of the band gaps for the examined samples, we plotted the
graph of [αhυ]2 as a function of photon energy E = hυ. Extrapolation of the linear part of
the graph gives the values of the band gap as the intercept with the abscissa axis, for which
[αhυ]2 = 0. The determined values of band gaps for all examined samples are presented in
Table 1 and the procedure is shown for the ZnSe:Eu3+ sample in Figure 3.
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line) at 300 K.
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Table 1. Values of the direct band gaps of samples at different temperatures by UV–Vis spectropho-
tometry and Kubelka–Munk theory.

Temperature, K Zn:Se:Eu3+, eV Zn:Se:Eu3+/Yb3+, eV

15 2.225 2.562
25 2.216 2.554
50 2.228 2.562
75 2.250 2.551

100 2.249 2.549
150 2.234 2.548
200 2.211 2.515
300 2.201 2.492
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From the results presented in Table 1, it is clear that the bandgap energy of the doped
and co-doped semiconductors decreased compared with the host matrix ZnSe (2.67 eV).
It is well known that impurities generate additional donor and acceptor levels in the
host material, which can produce drastic changes in the optical behaviour and reduce the
band-gap energy.

The Varshni semi empirical relation [19] describes the energy band gap variation as a
function of temperature for a doped semiconductor with different rare earths:

E(T) = E0(0)−
γT2

β + T
(2)

where E0(0) is the energy band gap value at T = 0 K; γ is a parameter related to the electron-
phonon interaction; T is the absolute temperature; and β is a parameter related to the Debye
temperature. A routine to fit the experimental data to the Varshni semi empirical relation
was developed using a genetic algorithm. All Varshni semi empirical relation parameters
were obtained using the developed routine, and are listed in Table 2. The energy band gap
dependence with the temperature for ZnSe:Eu3+ and ZnSe:Eu3+/Yb3+ is shown in Figure 4.
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Table 2. Values of the Varshni parameters obtained from the fitting of Equation (2).

Sample E0(0), eV γ (×10−6), eV/K β, K

ZnSe:Eu3+ 2.25 264 160.89
Zn:Se:Eu3+/Yb3+ 2.56 260 82.75
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3.2. Photoluminescence Measurements

The photoluminescence emission spectrum for pure ZnSe is shown in Figure 5.
Two bands A and B are seen in the figure. The B band was centred around 610 nm at
low temperatures and showed a slight shift to the lower wavelengths decreasing with
temperature, as shown in Table 3. The band A was centred at 637 nm at low temperature.
The theoretical fitting of these curves as a function of temperature for the two bands gives
the following equations, respectively:

λA = 610.6− 0.0247T (nm) (3)

λB = 636 + 0.09T − 0.001T2 (nm)

Table 3. Temperature dependence of the bands for ZnSe.

Temperature

18 K 25 K 50 K 75 K 100 K 150 K 200 K
Band

λ (nm)

610 B 609 609 609 613 608 B
637 A 638 636 627 626 625 A
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Figure 6 shows the photoluminescence emission when the ZnSe semiconductor was
doped with a single rare earth Eu3+. The emission spectrum was the same as pure ZnSe
(Figure 5), but band B was more intense. Moreover, the temperature at which the photolu-
minescence was detectable was higher (250 K), as shown in Table 4. This is an expected
result because of the additional photon energy supplied by donor–acceptor levels created
with the inclusion of Eu3+ ions in the crystal, which enables more efficient pumping.
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Table 4. Temperature dependence of the bands for ZnSe:Eu3+.

Temperature

18 K 25 K 50 K 75 K 100 K 150 K 200 K 250 K
Band

λ (nm)

613.5 612.7 612.5 612.4 612.3 612.3 612.3 B
625.2 624.5 624.0 623.7 623.4 623.1 623.0 622.1 A

Eu shows two valence states, trivalent (Eu3+) and divalent (Eu2+), in certain com-
pounds. However, the co-existence of (Eu3+) and (Eu2+) is hard to deduce from the ab-
sorption measurements directly. In fact, the conduction band absorption edge was much
more intense than the Eu absorption peaks, which makes the identification of Eu bands a
very difficult task. Nevertheless, the variation in the valence states of the Eu ions tends to
influence the emission properties. In this regard, the photoluminescence spectrum carries
useful information on the valence state of Eu ions. In general, the emission spectrum should
include a broad emission band and several sharp emission lines throughout the visible
light region if the sample is excited at 310 nm. We observed only the sharp emission lines
that peaked around 622 nm, which were attributed to the 5D0→ 7F2 transition emissions of
Eu3 ions incorporated in the ZnSe lattice. The samples were excited at 488 nm, and because
of that, we did not observe the broad emission band positioned at 445 nm, which can be
assigned to the 5d–4f transition emission of Eu2+ ions. Therefore, we cannot completely
discard the eventual presence of Eu2+ in addition to Eu3+.

Interestingly, when this semiconductor was co-doped with the two rare earths (Eu3+

and Yb3+), the spectrum presented new narrow emissions (b, c, d) and more intense lines,
as shown in Figures 7–9.

The emission spectrum of ZnSe co-doped Eu3+/Yb3 at 20 K is shown in Figure 7, which
had characteristic bands belonging to the ZnSe and superimposed the narrow emission
bands of the rare earths. Eliminating the ZnSe bands from the emission spectrum, the pure
emission spectra of co-doped rare earths at the temperature of 20 K is shown in Figure 8 and
at 200 K in Figure 9, respectively. The temperature dependence of the photoluminescence
peak emission is shown in Table 5.
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It is clear from the figures and Table 5 that the position of the bands remained fixed with
temperature; however, their intensity was a function of temperature. The spectra exhibited
narrow emission bands assigned according to Table 5. It can be seen from the results
presented in this table that co-doping of the ZnSe semiconductor led to an enrichment
of the photoluminescence spectrum. Moreover, the spectrum at low temperature clearly
showed more emission peaks and at 20 K, was shifted to longer wavelengths (peak d in
Figure 8). The peak b intensity increased with temperature, while in contrast, the peak c
intensity decreased with temperature, as can be noted from Figures 8 and 9.
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Table 5. Photoluminescence spectra and transition assignment for the ZnSe:Eu3+/Yb3+ semiconductor.
*, ** cubic crystal field splitting.

Temperature Transition

20 K 50 K 75 K 100 K 150 K 300 K

λ (nm) ν (cm−1)

743.9 13.443 5D0 → 7F5 *
739.6 13.521 *
733.9 13.626 *
720.6 720.7 720.9 720.9 720.9 13.872 *
711.7 710.4 711.4 711.5 711.2 711.1 14.061
707.3 708.8 709.3 709.2 708.9 708.9 14.106 5D1 → 7F6

705.1 705.7 705.7 705.7 705.8 14.170 5D1 → 7F6
700.0 699.9 699.9 700.5 700.0 700.2 14.286
695.7 696.4 696.2 695.9 696 14.370 **
689.7 689.6 690.0 689.9 689.8 690 14.496 5D0 → 7F4 **
672.3 678.1 680.2 680.0 680.2 14.706 **
666.9 668.5 668.5 668.7 668.8 14.957
660.4 661.9 661.8 661.8 661.7 661.5 15.113 5D0 → 7F3
657.6 657.5 657.6 657.6 657.7 657.8 15.205 5D1 → 7F5
610.3 610.3 610.4 610.0 610.2 610.2 16.388 5D0 → 7F2
604.8 604.7 604.3 604.8 604.7 604.7 16.537 5D0 → 7F1

595.9 599.2 16.781 5D2 → 7F6
544.4 544.0 18.368
534.5 534.6 18.705 5D1 → 7F1

The energy value for the theoretical transitions shown in the photoluminescence spec-
trum can be described by the Hamiltonian equation for electrons with the 4fN configuration.
Two important assumptions were made: first, the electronic states were well separated from
the other electronic states of the matrix; and second, the non-spherical crystal field contri-
bution due to the matrix that surrounds the rare earth ion can be treated as a perturbation
of the 4fN ion configuration. Then, we can use the following Hamiltonian [20]:

H = HF + HCF = ∑
i=2,4,6

Fi fi + ξi Aso + ηL(L + 1) + βG(G2) + γG(G7)

+ ∑
i=2,3,4,6,8

Titi + ∑
i=0,2,4

Mimi + ∑
i=2,4,6

Pi pi + HCF
(4)

The first part of the Hamiltonian HF contains the contribution of the electrostatic
repulsion between the 4fN electrons in the trivalent ion configuration and the spin orbit
couplings. This term represents the atomic (or free ion) contribution and HCF the crystal
field interactions. Fi and ξi are the electrostatic and spin–orbit integrals; fi and ASO are the
angular parts of the electrostatic and spin–orbit interactions. η, β, and γ are parameters
associated with the two body correction terms. G(G2) and G(G7) are Casimir’s operators
for the G2 and G7 groups, and L is the total orbital angular momentum [20].

Judd proposed the three particle configuration interaction terms [21], which arose
from the perturbation effects of those configurations that differed from fN in the quantum
numbers of a simple electron. These terms can be represented as tiTi, where Ti are the
parameters and ti are three particle operators, and Mi represents the spin–spin and spin–
other–orbit relativistic corrections. The parameters Pi represent electrostatically correlated
spin–orbit perturbation, which involves the excitation of an f electron into a higher-lying
f shell. The operators mi and pi are associated with the magnetically correlated corrections.

The corrections of the free ion including the crystal field were conducted using the
crystal field theory [22]. The theoretical results and transition assignment, along with the
experimental values, are given in Table 5. A good correlation between the experimental
and theoretical values was found.



Appl. Sci. 2022, 12, 4248 10 of 12

The rare earth ion Eu+3 has a regular 7F (7F0–7F6) multiplet as the ground level,
followed by a 5D multiplet 5D0–5D2. The ground level was split in seven levels 7F0–7F6
by the crystal field, as shown in Figure 10. The 5D was also split into four levels by the
crystal field and only three levels were observed due to the wavelength of the excitation
laser. These splitting levels have new splitting levels, as reported in Figure 10. Dieke [23]
provides a complete list of levels for known Stark levels for the anhydrous chloride and
ethylsulfate crystals. The values reported in this work were in good agreement with the
values reported by Dieke using a different matrix, but the same rare earth ions.
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The values assigned with asterisks (Table 5) correspond to the excited ion level to
crystal field splitting levels of the ground state. Figure 10 shows that the experimental
values corresponded to the exited ion levels to the eight-splitted 3H ground state.

Our results demonstrated that because of the Yb3+ co-doping, the semiconductor was
able to generate emission lines with higher intensity. The mechanism involved in the energy
transfer between Yb3+ and Eu3+ ions is still unclear and needs further theoretical analysis
and calculations. However, one possible emission mechanism in the Eu3+/Yb3+ doped
ZnSe semiconductor is presented in Figure 10. Yb3+ is often used as a co-doping ion since
it has a single excited state 2F5/2 with an energy difference to the ground state 2F7/2 of
10,000 cm−1 (1000 nm), which matched the phonon energy of the Eu3+ ion (>10,000 cm−1)
(Figure 10). In the so-called cross-relaxation process (I), Eu3+ ion, after being excited
by 488 nm radiation, in the 5D0 excited state, can transfer its energy to two Yb3+ ions
mediated by phonons, as indicated in the Figure 10 [24]. However, the population of
Eu3+ excited levels can be recovered again because of the cooperative energy transfer
process (II) mediated by the pair of previously excited Yb3+ ions [25] according to the
following relation:

2 × Yb3+(2F5/2) + Eu3+(7F0) = 2 × Yb3+(2F5/2) + Eu3+(5D1) (5)

The probability of this mechanism is very low; therefore, a second most probable
enhancement emission mechanism could be related to the charge transferring between the
Yb3+ and Eu3+ ions. In addition, the excitation wavelength (488 nm-2.54 eV) may also give
rise to interband transitions (Eg~2.5 eV). Thus, energy transfer from the matrix itself should
not be discarded. Collectively our results suggest that co-doping with Yb3+ enables one to
enhance the emission efficiency, thus representing an important advantage if we compare
it with other similar compounds that only contain Eu3+ [26–28].
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4. Conclusions

In this study, we prepared and characterized a co-doped II–VI semiconductor ZnSe
with one and two rare earths simultaneously. The values of optical band gaps and photolu-
minescence spectra were measured at different temperatures. The correlation between the
theory and the experimental results was in good agreement. One important experimental
fact is that the power of the laser used in the photoluminescence measurements was 10 mw,
which indicated the quality of the single crystals, good quantum efficiency and show po-
tential applications in the future. According to the presented results, the emission spectra
of these materials give new narrow and very intense lines in the visible and near infrared
region, and this fact could be used for the future development of efficient diode lasers and
LEDs. The energy transfer mechanism from the Yb3+ to the Eu3+ ion in the ZnSe matrix is
unclear and needs further analysis.
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