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Abstract: The recognition of human emotions is expected to completely change the mode of human-
computer interaction. In emotion recognition research, we need to focus on accuracy and real-time
performance in order to apply emotional recognition based on physiological signals to solve practical
problems. Considering the timeliness dimension of emotion recognition, we propose a terminal-
edge-cloud system architecture. Compared to traditional sentiment computing architectures, the
proposed architecture in this paper reduces the average time consumption by 15% when running
the same affective computing process. Proposed Joint Mutual Information (JMI) based feature
extraction affective computing model, and we conducted extensive experiments on the AMIGOS
dataset. Through experimental comparison, this feature extraction network has obvious advantages
over the commonly used methods. The model performs sentiment classification, and the average
accuracy of valence and arousal is 71% and 81.8%, compared with recent similar sentiment classifier
research, the average accuracy is improved by 0.85%. In addition, we set up an experiment with
30 people in an online learning scenario to validate the computing system and algorithm model. The
result proved that the accuracy and real-time recognition were satisfactory, and improved the online
learning real-time emotional interaction experience.

Keywords: physiological signals; affective computing; online learning; galvanic skin response;
electrocardiogram; terminal-edge-cloud; feature selection

1. Introduction

Emotions are considered to be human emotional states, it is a response to certain stim-
uli in the external environment or interpersonal interactions. Understanding and quantify-
ing human emotional states, which have major implications for intelligent human-machine
systems. In 1997 Picard and Healey proposed to equip sensors to record physiological sig-
nals, identify the emotional state of the wearer through signals, improve human-computer
interaction experience through affective computing [1], the paper indicates that in the
future, sensors will become small enough, thus, a wearable device for real-time emotion
recognition is designed.

The accessibility, non-fakeability, and continuous detectability of physiological sig-
nals [2] is a hot topic of current research. Physiological signals can be divided into two
categories: signals originating from the peripheral nervous system and signals from the
central nervous system. Compared to Electroencephalogram (EEG) signals, the combina-
tion of Electrocardiogram (ECG) and Galvanic Skin Response (GSR) is less explored in
the literature. Since ECG and GSR are rich in emotional information and can be obtained
by low-cost, non-invasive devices, making them highly significant in terms of affective
computing. Among them, ECG has been shown to be a reliable source of information
for emotion recognition systems [3–5], ECG analysis can identify the emotional state of
the users, such as happiness, sadness, and stress. The GSR signal is a non-smooth signal,
usually measured at the palm of the hand, and is a collection of two different components:
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Tonic and phase components. Tonic indicates the general level of skin conductivity, it’s hor-
izontal value varies slowly with time. Phase components shows a sharper peak on the tidal
drift of the tonic GSR, phase components usually caused by the presence of instantaneous
sympathetic activation of the stimulus causing, and that can reflect changes in cognitive
and emotional processes [6–8]. Several studies [9–12] have shown that an adequate combi-
nation of information extracted from multiple models may improve robustness (for noisy
inputs). Therefore, this paper mainly focuses on GSR and ECG to analyze. In many real-life
scenarios, a key factor in decision-making (e.g., healthcare) is the classification model.
For applications in these areas, affective computing systems must be able to describe the
uncertainty of their emotional state outputs, and arousal and valence dimensions are the
best options [13,14]. Therefore, the binary high/low classification problem is considered
in this study [15]. The affective computing task can be accomplished using two types of
models, one is a deep learning model and the other is a traditional machine learning model.
Deep learning related methods have had great success in the field of pattern recognition.
More and more researchers are using it in affective computing tasks [16]. For example,
new deep learning models [17], and many innovative models have been generated in
machine learning models. Affective Computing has an important role in healthcare [18],
education [19], and entertainment [20], and its deeper value deserves to be explored.

Currently, deep learning, machine learning methods for affective computing has their
own advantages, the deeper reasons for the advantages and disadvantages between the
two models need to be further summarized. The effectiveness of feature selection in
affective computing directly affects the level of accuracy, the joint mutual information (JMI)
dimension of multidimensional features is used as a direct factor for feature validity, can
effectively improve the rationality and effectiveness of the selection of features. Recent
research in affective computing has focused on improving accuracy while ignoring the
importance of the time dimension of affective computing, the time required for affective
computing is an important factor in enhancing the human-computer interaction experience.
In response to the above proposed deficiencies, the following work has been carried out
in this paper. We used deep learning model and a machine learning model to process
the ECG and GSR modalities in the AMIGOS dataset, respectively. Focus on exploring
the advantages and disadvantages of both models, derive a model architecture with high
recognition accuracy. The JMI-based greedy feature selection algorithm is proposed to
feature-level fusion, to analyze which features extracted from ECG and GSR are more
compatible with the affective computing task. In addition, focus on the time dimension of
affective computing, propose a new type of terminal-edge-cloud computing architecture.
Organize realistic scenario experiments based on the proposed computing architecture,
using online education as an experimental scenario, the method proposed above was used
to analyze the experimentally collected physiological database, the more promising results
were obtained.

The paper is organized as follows: Section 2 reviews the literature related to physi-
ological signal-based emotion computing. Section 3 describes the analysis of the feature
selection algorithms proposed in this paper, based on machine learning and deep learning
algorithm for sentiment classification methods, using the AMIGOS dataset to validate their
effectiveness. Section 4, describes the novel computing architecture, verifies its advantages
in the affective computing times dimension, and designs an online learning scenario exper-
iment to build an emotional database to verify the advantages of the proposed method and
computing architecture. Finally, Sections 5 and 6 present the results and conclusions of the
experiments generated during this study.

2. Related Work

Changes in physiological signals can be influenced by human emotions, and since
the proposal of non-invasive devices that can collect human physiological signals in real-
time, many efforts have been made to analyze physiological signals. First, public datasets,
DEAP [21], SEED (2015) [22], AMIGOS [23], etc., are proposed, and then a series of senti-
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ment computation models are proposed to analyze them. Zheng [24] studied the mental
arousal space in four quadrants and solved a four-category task using the graph regulariza-
tion extreme learning machine (GELM) method, these two obtained about 70% accuracy
in the polynomial classification task study. When data are incomplete, semi-supervised
learning methods can be used to integrate Stack Auto-Encoder (SAE) with deep belief
networks (DBN) using a decision fusion method and based on Bayesian inference classifica-
tion [25], yielding 73.1% accuracy in arousal and 78.8% accuracy in valence. Another recent
GSR-based framework ref. [26] proposed temporal and spectral features of SVM (RBF
kernel) under the AMIGOS dataset, reporting 83.9% and 65% arousal and valence recogni-
tion accuracy, respectively. New trends in emotion-evoking computing use deep neural
networks (DNNs) to process physiological signals and improve recognition rates. One of
the earliest attempts was [27], which proposed a multimodal residual LSTM for emotion
recognition (MMResLSTM) yielded encouraging results, with their classification accuracy
of 92.87% for arousal and 92.30% for valence on the DEAP dataset. Ref. [28] processed ECG
and GSR data from the AMIGOS dataset and proposed to use machine learning methods
and DCNN to process the data, obtained better results of 0.76 for valence and 0.75 for
arousal. A recent study Yang [29] presented the fusion of statistical features extracted from
EEG, ECG, and GSR of the AMIGOS dataset. They reported recognition rates of 67% and
68.8% for valence and arousal, respectively, which using the SVM classifier. LSTM-RNN
was recently proposed [30] using an attention-based mechanism for the AMIGOS dataset
and reported recognition rates of 79.4% and 83.3% for binary classification of valence and
arousal. Four-category emotion results also became progressively more common, however,
the reported recognition rates decreased more in the case of four categories of emotions [31].
Granados [32] proposed a one-dimensional convolutional neural network model to analyze
ECG and GSR signals in the AMIGOS dataset with an accuracy of 65.25% for the A-V
four-category emotion recognition task.

The features extracted from physiological signals are the most important aspect in
emotion recognition. The processing is carried out in the time domain, frequency do-
main, or nonlinear domain. Time domain methods include the use of various mathemati-
cal/statistical features such as mean [33], median, etc., or the use of methods such as sample
differences, zero-crossing, etc. In the frequency domain, the Fourier transform (FT) [34]
and the wavelet transform [35] are widely used. The FT allows one to use time-based fea-
tures on the signal (e.g., its mean or DC component and dominant frequency component)
represented in the spectrum. The nonlinear domain approaches require the conversion to
the sensor signals to discrete symbolic strings, and the key to performing this conversion is
the discretization process. Once these signals are mapped to strings, exact or approximate
matches and edit distances [36]. Compared three feature selection algorithms Joint Mutual
Information (JMI), Conditional Mutual Information Maximization (CMIM), and Dual Input
Symmetric Correlation (DISR) on the AMIGOS dataset and concluded that the three feature
selection algorithms are similar, and it is important to have the same number of features to
obtain the best accuracy for arousal recognition and valence recognition. Therefore, which
features are better, need to be further explored.

In order to accelerate the response speed of model systems, and use the resources at
the edge efficiently, it has triggered a boom in edge computing among researchers, and
the use of new computing architectures for sentiment analysis are gradually attracting
attention, Chen [37] designed a medical artificial intelligence framework based on data-
width evolution and self-learning, which aim to provide medical services for skin diseases
that meet the requirements of real-time, scalability and personalization. This computational
framework allows physicians to quickly obtain patient skin conditions. Edge AI technology
to analyze thermal imaging image data of buildings, for rapid analysis of building house
occupancy information [38]. Ref. [39] the authors proposed Smart Edgent, a collaborative
on-demand DNN co-inference framework with device edge synergy, that can split the
network to run the network faster and efficiently use other node resources. Few studies
have proposed methods related to the use of affective computing for education, and in [40],
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a dynamic difficulty adjustment mechanism for computer games is proposed to provide a
tailored gaming experience in individual users by analyzing ECG and GSR.

Our Contribution

We propose to extract features from the ECG and GSR, and use the proposed JMI-Score
algorithm to compute the best set of features that match the current sentiment classification
task. Machine learning models parameters were optimized to obtain the optimal model,
and the CNN model automatically extracted features are compared with extracted manual
features, and the accuracy of sentiment classification results was improved compared with
the state of art. Propose a new computing architecture that leverages both edge-side and
terminal-side computing resources, to speed up the recognition of emotions, and reduce
network bandwidth, recognition latency. We also organize field experiments to verify the
effectiveness of the novel computational architecture and the proposed affective computing
model in the context of online learning.

3. Method
3.1. Experimental Data Description

The following paragraph describes the AMIGOS dataset in a condensed form. In
this paper, the newly released dataset AMIGOS are used to validate the model, not only
because it is widely used in the recent literature on physiological signal-based emotion
elicitation, but also because they use low-cost physiological signal acquisition devices for
data collection and the non-invasive nature of the whole process. AMIGOS applied a
14-channel Emotiv Epoc wireless headset to acquire EEG signals, peripheral physiological
signals (ECG Right, ECG Left and, GSR physiological data pre-processed at a sampling
frequency of 128 Hz) recorded with non-invasive devices such as the ECG Shimmer 2R5,
as well as frontal video (RGB), stimulus material from the MAHNOB-HCI [41] dataset
as emotionally stimulating material. The dataset used both individually and GrOups
scenarios, the first with 40 participants watching 16 short videos (<250 s in length); the
second, with 17 people in an individual setting and 5 groups of 4 people each, where
participants watched long videos (>14 min in length). Each trial first contained a 5 s
baseline signal, with the signal depending on the duration of the video. After viewing the
video, participants rated self-assessments of arousal, potency, liking, and dominance on a
scale of 1 to 9 in the self-assessment of potency (SAM) [42]. A total of 12,580 video clips
were annotated in this way (340 clips from 37 participants in both short and long-video
experiments). The arousal and valence scales used for these annotations are continuous,
ranging from 1 (low arousal or potency) to 9 (high arousal or potency), and there is a
high degree of agreement between annotators. There were 800 records in the dataset and
7 subjects (ID numbers 33, 24, 23, 22, 21, 12, 9) had missed data and were considered invalid.

The dataset can be divided into four classes: low arousal low valence (LALV), high
arousal low valence (HALV), low arousal high valence (LAHV), and high arousal high
valence (HAHV), and the threshold values of the valence and arousal dichotomy is 5. The
kmeans algorithm are applied to cluster the distribution of the data, and Figure 1 shows the
distribution of the sentiment classes in AMIGOS, purple represents LALV, blue represents
HALV, green represents LAHV, yellow represents HAHV in the Figure 1.

3.2. Preprocessing

In this paper, we use deep learning and machine learning to process physiological
signal data separately, and achieve effective emotion detection. GSR is a non-stationary
signal, and in this study, the signal is first decomposed by smoothing through empirical
modal decomposition (EMD) to obtain the effective frequency, and then the low-pass
butterworth filter is used to pre-process the GSR signal since the skin electrical signal
changes slowly, and the effective frequency is between 0–0.3 Hz, the cutoff frequency of
the low-pass filter is set to 0.5 Hz and the sampling frequency is 128 Hz, and then the SCR
and SCL are decomposed. The ECG signal frequency is usually 0.05~100 Hz, firstly, the
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baseline drift is eliminated by discrete wavelet transform, which is to eliminate unnecessary
low-frequency noise in the frequency range of 0.05 and 1 Hz, and then the end frequency
is set to 1 Hz using butterworth high-pass filte which the sampling frequency is 128 Hz.
Then to acquire the denoised ECG signal. The noise-reduced signal is first normalized by
Z-Score (Equation (1)) using a sliding window of 2 s and an offset of 1 s to capture the
subtle changes in emotional motion and derive the feature vectors. Then, the data enters
the display or implicit feature extraction phase. The first one extract implicit features by
convolutional networks through deep learning, and the second one, by machine learning
methods, which extracts time and frequency domain manual features, in three steps of
preprocessing, classification and multimodal fusion, respectively.
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X̃ =
X− µ

σ
, (1)

where X̃ is the standardized data, µ and σ are the mean and standard deviation of the data,
respectively.

3.3. Detailed Analysis
3.3.1. Deep Learning Methods

Deep learning is an algorithm-based, difficult-to-interpret machine learning field,
which used to model high-dimensional features in datasets. In recent research on emotion
recognition based on physiological signals, more and more studies use deep learning
models to process them, and achieved good results [43]. The deep network structure we
used is shown in Figure 2 in this study, CNN is considered as a blur filter, which can
automatically discover SCR peaks or SCLs in GSR signals, specific morphological patterns
of the QRS complex in the ECG. The signal dimension after CNN processing is 2304 * 528.
We believe that the obtained features have noise or invalid features, and SVD is often used
in dimension reduction algorithms in deep learning [44]. SVD processing is performed on
the extracted features [45], and the signal dimension becomes 268 * 528, which is fed into
the fully connected layer.
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Figure 2. Schematic diagram of deep convolutional neural network.

The maxpooling layer alternates between CNNs as a regularization technique to
reduce transition fitting in neural networks, and finally, to evaluate sentiment recognition.
A cross-entropy loss function is set in the fully connected layer, which determines how
well the target output vector yi correspond to the predicted output vector cj, as shown in
Equation (2).

E =
1
2

N

∑
j=1

(
yi − cj

)2, (2)

Our multi-task signals conversion recognition network consists of 3 convolutional
blocks and 3 pooling layers. The convolutional layers are shared among different tasks,
while the dense layers are task-specific, as shown in Figure 3. Each convolutional block
consists of 2 × 1 D convolutional layers with ReLu activation function, and followed by a
maximum pooling layer of size 8. In the convolutional layers, we gradually increase the
number of filters from 32 to 64 and 128. After each convolution blocks, the kernel size
decreases from 32 to 16 and 8, respectively. Finally, at the end of the convolutional layer,
global maximum pooling is performed. The dense layer immediately following consists of
2 fully connected layers and 128 hidden nodes, followed by a sigmoid layer.

3.3.2. Machine Learning Methods

In order to design reliable emotion recognition systems, it is particularly important
to select appropriate and effective signal features. When designing affective computing
systems, one of the most important considerations for application functionality are their
simplicity and acceptable computational speed, thus making them suitable for real-time
applications. Therefore, we use simple time-domain and frequency-domain features that
do not require complex transformations and heavy computations.

Most of the characteristics of the ECG signal are based on the analysis of the P, Q, R, S
and T waves of the recorded signal, including several statistical features calculated from the
amplitude and width of the P, Q, R, S and T wavelets. Subsequently, heart rate variability
(HRV) is calculated based on the detected R peak, and further features are extracted from
the resulting signal, including the mean and root-mean-square deviation from HRV. In
addition, the slope of the linear regression fitted to the appearance of the R-peak was
calculated IBI. Based on [46], wavelet transformed decomposition coefficients were also
extracted, using 8th order Daubechies wavelets applied to detect and align the R-peaks.
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For GSR, include features such as signal mean, standard deviation, kurtosis, or skew-
ness (e.g., [47,48]). In other cases, researchers focused on event-related features of GSR.
Event-related features refer to the properties of short-term responses, such as the presence
or absence of an SCR, when seconds after the presence of a stimulus (such as an image or
sound). In this sense, SCR can be automatically detected and features extracted from longer
time windows. Phases skin conductance response (SCR) and the sum of SCR amplitude,
SCR peak count, mean SCR rise time [49,50]. Furthermore, tonic skin conductance level
(SCL). Power Spectral Density (PSD) estimation in the frequency domain using Welch’s
method, which is the most commonly used algorithms to obtain a frequency domain repre-
sentation of the signal. Previous studies have considered the statistical aspects (variance,
range, signal amplitude region, skewness, kurtosis, harmonic summation) and spectral
power of the five frequency bands, as well as their minimum, maximum, and variance [51].

The physiological signal changes without a specific pattern and is highly random.
Much of the information cannot be judged on the time domain, so it is also analyzed in the
frequency domain. The signal frequency band is generally divided into very low frequency
band (VLF = [0.0022–0.04] Hz), low frequency band (LF = [0.04–0.15] Hz) and high frequency
band (HF = [0.15–0.40] Hz). The PSD method extracts the spectral power of each frequency
band as the spectral characteristics of the original signal with the following equation.

Power =
∫ f2

f1

PSD( f )d f , (3)

Power calculated in the VLF, LF and HF band, total power in the entire frequency
range (TP), power calculated in the power range LF band as a proportion of that calculated
in the HF band (LF/HF). The proportion of power LF band calculated in the power range
to that calculated in the whole band (LF/TF), LF power normalized to the sum of LF and
HF power (nLF), and HF normalized to the sum of LF and HF power (nHF).

The nonlinear entropy domain feature, which can reflect the complexity and uncer-
tainty of physiological signals, and has a wide range for applications in computational
studies of emotions based on physiological signals. The extracted entropy values help to
quantify the regularity of the signal, which can be applied to emotion recognition. This
section applies three types of entropy domain features, including information entropy,
multi scale entropy, and refined composite multi scale dispersion entropy (RCMDE) [52].
The extracted features are shown in the Table 1.
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Table 1. Summary of extracted features.

Signal Feature Group Description of the Extracted Features

ECG

Time Domain R, P, Q, S, T (mean, max, min, std), IBI (mean, max, min, Peaks, std, kurtosis,
skewness), HRV (mean, std, kurtosis, skewness), RR interval mean, RR interval std

Frequency Domain PSD-VLF, PSD-LF, PSD-HF, TP, pLF, pHF, LFHF, LFHF, nHF, nLF
for all values above(mean, min, max, range, median, std)

NonLinear Shannon Entropy, RCMDE, MSE

GSR

Time Domain

Mean, Max, Min, Std, 1Diff (abs, mean, std), 2Diff (abs, Mean, std), kurtosis,
skewness, SCR RiseTime, SCR Width (mean, max, min, std),

Skin Conductance (Mean, Max, Min, Std, 1Diff, 2Diff),
SCSR, SCVSR (mean, std, 1Diff, 2Diff)

Frequency Domain PSD-VLF, PSD-LF, PSD-HF, TP, pLF, pHF, LFHF, LFHF, nHF, nLF
for all values above (mean, min, max, range, median, std)

NonLinear Shannon Entropy, RCMDE, MSE

To sum up, there are 33 time domains, 60 frequency domains, and 3 nonlinear ECG
signal features, 32 time domains, 60 frequency domains, and 3 nonlinear GSR signal features.
The total number of physiological signal features per window are 191.

3.4. JMI-Based Greedy Feature Selection Algorithm (JMI-Score)

In the task of emotional feature classification and recognition, it is necessary to perform
feature dimensional reduction processing on the obtained high-dimensional features, and
to avoid overfitting caused by too high dimensional. Therefore, a greedy feature selection
algorithm based on JMI is proposed here to select features, as shown in the Algorithm 1,
the specific steps of the Joint Mutual Information (JMI)-based greedy feature selection
algorithm proposed in this paper are shown below.

JMI Introduction

The mutual information is a measure X and Y between two (possibly multidimen-
sional) random variables, which quantifies the amount of information about one random
variable obtained through another random variable. The mutual information is given by
the following equation:

I(x, y) =
N

∑
j=1

M

∑
j=1

p
(
xi, yj

)
log

p
(
xi, yj

)
p(xi)p

(
yj
) , (4)

xi, yj are the X, Y components, and with N and M values, respectively.
JMI provides the best trade-offs in terms of accuracy, stability, and flexibility based on

two assumptions:

(1) After removing a feature given the removed feature itself, any unselected feature is
conditionally independent of the union of the selected features:

p(xk; xs/i | xi) = p(xk | xi)p
(
xs/i | xj

)
, (5)

(2) Any unselected feature is conditionally independent of the union of selected features
after removing any feature of a given class label and the removed feature itself:

p(xk; xs/i |, xi, y) = p(xk | xi, y)p(xs/i | xi, y), (6)

Assuming the above two, the JMI score of the feature xk is obtained according to the
mutual information formula,

JJMI(Xk) = argmax

 ∑
Xj∈S

I
(
XkXj; Y

), (7)
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This is the information between the target Y and the joint random variables XkXj,
defined by pairing the candidate Xk with each of the previously selected features Xj. The
candidate feature Xk that maximizes this mutual information is selected and added to the
feature subset S.

The maximum joint mutual information is defined as: Let F = { f1, f2, . . . . . . , fN} be
the full feature set, let S is a subset of the selected features. Let fi ∈ F− S, fs ∈ S .MaxJMI
is the maximum value of the joint mutual information shared with the class label C by the
candidate feature fi when each feature in the subset S is individually connected, therefore

max
s=1,2,...,k

I( fi, fs; C).

Algorithm 1 JMI-Score

Input:
All feature sets F = { f1, f2, . . . . . . , fN}, Classification Tags C, Number of features D, Simple
classification model model
Selected feature set subscript: S.
JMI-Socre (F, C, model, S, D):
1. Score = []
2. maxJMI = 0
3. for i from 1 to D
4. S[i] = [ f1]
5. Temp = S[i]
6. for j from 1 to D
7. S[i]. add ( f j)
8. Score[i] = model.fit(tmp, C)
9. If Score[i] > Score[i − 1]
10. S[i] = S[i]. add( f j)
11. else
12. S[i] = Temp
13. End for
14. End for
15. Sort the Score, select the top ten largest, and record all subscript IDX
16. for i from 1 to 10
17. If MI < JMI(S[IDX[i]], C) :
18. maxJMI = JMI(S[IDX[i]], C)
19. Ans = IDX[i]
20. S = S[Ans]
Output: S.

The algorithm first iterates through each feature, using a single feature as the starting
set, and iterates through the features, other than the original features. Feeding the selected
set of features into the pre-trained model, if the model score improves on this feature set,
the newly traversed features are added to the feature set, otherwise they are not added.
Therefore, all features are traversed, the set of features with the highest model score is
selected, assuming that these feature combinations are most relevant to the labels and the
features in each feature combination are complementary information. The ten features that
make the highest model score are combined with the labels, and then to calculate the joint
mutual information. Since JMI indicates the selection of the candidate selection features
that maximize the cumulative sum of the joint mutual information, and the selected subset
of features add them to the subset. The method performs well in terms of classification
accuracy and stability. Therefore, the final optimal subset with the largest joint mutual
information is selected and the algorithm ends.

The feature types proposed in the previous section are selected to help reduce the
features used for feature processing. The final size of manual features is 123 × 528.
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3.5. Results and Verification
3.5.1. Feature Selection Algorithm Verification

All the extracted multimodal physiological features are subjected to Principal Compo-
nent Analysis (PCA) feature dimension reduction, and then input to XGBoost for feature
classification. A total of 10 folds of independent experiments are carried out, and the
samples are randomly scrambled in each fold. Taking Valence as the classification label, the
recognition accuracy of the two feature dimension reduction methods is

It can be seen from the Figure 3 that at the beginning of dimension reduction, the
recognition effects of the two algorithms are not much different. With the decline in later
features, the recognition rates of both have increased. For the PCA algorithm, the best
recognition effect is when the feature dimension is 150, the recognition rate is 75.3%; for
the JMI-Score feature selection algorithm. The best recognition effect is when the feature
dimension is only 120, the recognition rate is 81.8%.

3.5.2. Model Validation

Table 2 illustrates the computational results of the AMIGOS dataset. In the second
method, after comparison, it is concluded that the accuracy obtained by using the XGBoost
algorithm is 81.8%, which is higher than other algorithms because XGBoost uses multi-
classifier stacking, which can achieve a better classification effect.

Table 2. Classification accuracy of each model.

Model CNN SVC XGBoost Naive Bays

Modality Arousal Valence Arousal Valence Arousal Valence Arousal Valence
Accuracy 81.3% 73.2% 70.2% 78.7% 71.0% 81.8% 54.7% 64.1%

From the Table 2, it can be concluded that, use of deep neural networks takes longer
than machine learning methods, but due to its model characteristics, the accuracy is better
than machine learning. Using the computing framework proposed in this paper has obvious
advantages in reducing the running time of the model and determining the response delay
rate, decentralization, and rational use of edge resources.

3.6. Accuracy Description

Table 3 shows the comparative results of studies similar to this study. The types of
features, feature selection algorithms, and optimal model parameters proposed in this paper
are extracted from physiological data, and their results are compared with other studies:

Table 3. Accuracy comparison with other similar studies.

Research Model Signal Type Emotion Classification Accuracy (AMIGOS)

[26] SVM-RBF GSR 2 65%(A) 83.9%(V)
[29] SVM EEG, ECG 2 68.8%(A) 67%(V)
[28] DCNN ECG, GSR 2 75%(A), 76%(V)
[52] XGBoost EEG, ECG, GSR 2 68%(A), 80%(V)

Proposed Model ECG + GSR 2 70.9%(A), 81.8%(V)

4. New Computing Architectures

New computing architecture to accelerate computing: Often when processing data,
we rely too much on cloud servers, which wastes network bandwidth and consumes
time. Thanks to the development of Tensor Processing Unit (TPU), which have become
conveniently portable computing devices, we propose novel computing architectures to
accelerate emotion recognition and shorten recognition time, in contrast with inputting
features directly into the model, we used TPU.

The computing framework of this study includes three layers: terminal-side, edge-side,
and cloud-side, which effectively integrate the computing resources of the terminal-side



Appl. Sci. 2022, 12, 4236 11 of 18

and edge device, to make them work together to complete the computational process of
deep learning. Achieve accelerated processing of data, while ensuring data security, user
experience, and system availability. Reduce the latency of human-computer interaction,
and decentralization. At the same time, effective and reasonable use of terminal-side idle
computing resources, edge-side proximity computing resources.

Terminal-side: When the raw physiological data are obtained, run the pre-processing
decision algorithm, including three values Computing Resource Utilization (CRU) as
equation 8 (local-side computing resources, cloud-side current computing resources, and
cloud-side predicted resource usage), when the terminal-side (CRU) is more than 0.7 then
the raw physiological data will be directly uploaded to the cloud server, the pre-processing
and algorithm decision will be run by the cloud, conversely, when the terminal-side
computing resource is sufficient, the feature extraction in data pre-processing will be
performed by the terminal-side.

CRU =
(CPU Occupancy rate + Memory Occupancy)

2 × 100%
(8)

Terminal-side: On the edge-side, we deploy several feature selection algorithms to
process features from deep learning or machine learning and pass the streamlined features
to the cloud for model decisions

Cloud side: On the cloud side, we need to collect cloud server computing resources in
three seconds, and use machine learning models to predict the resource occupation in the
next time period, then calculate the average CRU, in addition to deploying corresponding
decision models such as CNN, XGBoost.

The data flow is shown in the Figure 4a. When the original data is on the terminal-side,
the data pre-processing process will have two cases: when (computing resources) are
sufficient, the data pre-processing is performed on the terminal-side, and then passed into
the edge-side for feature selection, and finally into the cloud model to produce results;
When (capacity value) is insufficient, the data pre-processing is performed directly on the
cloud side, after feature selection on the edge-side, and finally the decision is made in the
cloud without the participation of the end-side.
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As Figure 4b shows that the edge side is based on the network situation and cloud-
side computing resources to decide whether to participate in affective computing, if the
cloud-side computing capacity is sufficient, it is Faster processing directly on the cloud side
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as opposed to going back and forth between the cloud and the edge, but the cloud side is
often heavily loaded, the edge side is taken into account, so that the cloud side and the
edge side can compute together. The edge side will run the feature selection algorithm and
input the selection results to the cloud side.

The Table 4 shows the time elapsed between data collection and input into the pre-
trained model, when analyze the sentiment results in the same network environment,
and shown based on the proposed computing architecture and in the same hardware
environment (The hardware configuration is shown in Table 5), the time required to
perform the same emotional computing task in. In terms of time consumption, we use
two parameters to measure, (1) Running time: The time it takes to obtain analysis results
from raw data under the same network environment; (2) Determine Response Latency Rate
(DRLR): In the case of the same emotion calculation time and network transmission time.
Sentiment recognition takes up the percentage of time it takes to send from the sensor, send
the sentiment data to the user within the fine edge of the network, and correctly identify it.

Table 4. The response times of our two calculation modes are compared, and the comparison results
are as follows.

Exponential/Time(s) CNN (200 epoch) SVC XGBoost Naïve Bays

Running on the
cloud-edge-device

system
Yes No Yes No Yes No Yes No

Runtime(s) 18.74 21.58 11.31 14.36 17.65 19.36 10.53 13.24
Determine Response

Latency Rate 80.4% 82.6% 60.7% 66.5% 75.6% 79.3% 53.1% 56.2%

Table 5. The experimental equipment is as follows.

Terminal side Inter(R)Core(TM) i7-4790CPU, 3.60 GHz, 4 core, 8 GB RAM, NVIDIA
GeForce GTX 1050Ti (4 GB)

Edge side ARM Coretex A73 1.6 GHz, 2 core, ARM Mail G71@900 MHz (256 K)

Cloud side Inter(R)Core(TM) i7-4790CPU, 3.60 GHz, 8 core, 16 GB RAM, NVIDIA
GeForce GTX 1050Ti (4 GB)

From the data in the Table 4, we can see that the new computing mode can give feed-
back on emotional results faster. Compared with the traditional cloud-centric computing
mode, the advantages of such computing are: 1. Speed up the operation without affecting
the accuracy of the model; 2. It can not only ensure the security of data, but also realize a
decentralized computing model, and make rational use of edge resources; 3. Reduce the
use of network bandwidth, and innovatively integrate and use cloud and edge resources.

Online Learning Experiment

In order to verify the effectiveness of the computing architecture and algorithms,
taking online learning as a scenario, collecting physiological data of students during
online learning, and running with the new computing architecture proposed in this paper,
considerable results were obtained, which is of great significance to the future online
education and medical fields. We invited 30 subjects as shown in Figure 5b (age range
22–26 years), 17 males and 13 females, all of whom had received more than six years of
formal EFL education. The experimental equipment is placed as in Figure 5a (Shimmer3
ECG device, E4 wristband, windows core i5, ASHU 603, Hi3559A TPU, ubuntu 32 G/4 T
Server), before participating in the experiment, sign the required process description and
give informed consent, and the acquisition process complies with the ethical requirements
of the Human Biobanking Educational Exam. Establish the context as offline.
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Figure 5. (a)Equipment distribution; (b) 30 subjects.

The experimental flow is shown in Figure 6, and the detailed procedure is as follows:

1. Make sure the subjects remain calm, take a five-minute baseline test, and fill in the
familiarity of the test questions before the experiment, and evaluate the difficulty level
of the test according to the familiarity;

2. Show multiple-choice questions to the subjects. After each answer, the participants
self-assess their arousal level and valence, and the background selects the difficulty
level of the next question according to the subject’s emotional score;

3. The test paper contains 30 questions, and 30 min of ECG (Shimmer3 ECG equipment)
and GSR (E4 wristband) data are collected;

4. After the experiment, annotators performed annotations based on video clips, first for
valence and then for arousal.
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Figure 6. Experimental flow chart.

The collection frequency of the Shimmer3 ECG device is 256 Hz, the amount of
ECG data collected is (13,824,000) per subject, the E4 wristband is used to collect GSR
frequency of 4 Hz, and the quantity is (216,000) per subject. The emotion annotation
includes user self-assessment Valence and Arousal external annotation. We performed
variable statistical analysis on the collected data. The degree of influence between these
variables was measured using the Pearson correlation coefficient, defined as:

ρX,Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
, (9)
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X carries the ECG or GSR physiological data vector and Y represents emotional
decision making. The correlation between ECG and affective state is usually lower than the
correlation between GSR and affective state, which proves that different subjects stimulates
different control factors for affective state. The system can adjust the difficulty of the
questions according to the emotions fed by different subjects. The scientific validity and
rationality of analyzing affective states from ECG, GSR is illustrated according to Pearson
coefficients in Figure 7.
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We use the optimal model method proposed above to analyze the data. The XGBoost
model has the highest accuracy rate of 80.6% for the second classification of arousal. Under
the new computing architecture’s operating model, Affective computing takes an average
of 5 s less time than under the usual cloud-centric architecture.

5. Discussion

After analyzing the results, it was observed that the method using XGBoost performed
better compared to the other method, for one reason: EEG, ECG and, GSR are continuous
time signals with large memory content, manual feature engineering and, the better features
can be obtained by using JMI-Score algorithm. The second reason are: machine learning can
remove irrelevant features from feature sets, which deep learning cannot do. In this study,
machine learning has great advantages. In addition to basic interpretability, the combined
use of user device and edge device resources can accelerate computing, while affecting
accuracy, reduce processing time, and achieve decentralization processing methods. The
time reduction is not very significant. The reason for the analysis is that, the main purpose
of the new computing architecture are to reduce the load on the cloud center, and effectively
use the computing resources on the edge and the terminal, while the overall computing
resources have not increased significantly. Of course, the advantages of deep learning
are also obvious, which can avoid complex feature extraction, extract high-dimensional
features, and obtain better results. In order to seek the choice of better features, this paper
extracts many features, including time domain, frequency domain, and nonlinear features.
According to the Spearman correlation coefficient, it is more stable in GSR. The ECG signal



Appl. Sci. 2022, 12, 4236 15 of 18

has higher inter-class variability. According to the correlation coefficient, some features are
low and the jump is serious, so it is very necessary for the feature selection of ECG.

Compare with other studies, in this experiment, the amount of data collected has
increased, and the uniqueness of the decision labels needs to be further verified. The
proposed method and framework are used to obtain promising results, which are expected
to solve the problem in the epidemic era. The majority of teachers and students encounter
the problem of interaction channels in distance education.

It is an experiment to move Affective computing based on physiological signals
towards life. Of course, in this study, the research method was applied to the actual scene,
and subjective factors such as subjects’ different educational backgrounds, and different
answering backgrounds were not considered. It is an important factor, but because it is
difficult to express mathematically, it is not considered in training data and needs to be
studied in the future.

The model selection of machine learning is also very critical. This article selects several
representative models. JMI-Score is an iterative version of JMI, which is relatively new.
XGBoost is a widely used stacking ensemble algorithm, which can solve the limitations of a
single model. Naïve Bayes is a traditional basic algorithm model and the origin of machine
learning, which is very representative. In this study, XGBoost performed better, indicating
that it is more appropriate to use traditional optimized machine learning when the amount
of data is not large.

6. Conclusions

This work shows that emotion recognition can be performed with high accuracy
from ECG and GSR signals. In addition, using a new MSE-based feature RCMDE, we
found that the derived features of GSR along with the energy, and zero-crossing rate of its
EMD patterns, allows for the correct classification of target emotional states. For the GSR
signal, its stability characteristics can be used to predict the stress value, while the ECG
has a strong mutation, and its frequency characteristics are more important to emotion
recognition. Several classification models are trained in the machine learning method
to select the model that maximizes the accuracy. In practical applications, the emotion
recognition model should not only focus on accuracy, but also on timeliness. Only faster
feedback can improve the human interaction experience.

In this paper, the public multi-physiological signal database AMIGOS is used as the
experimental data to perform preprocessing, feature extraction, and feature selection to
verify the effectiveness of the method proposed in this paper. The stimulation materials
and acquisition processed of the physiological signal dataset proposed in this paper are
briefly introduced. The acquired dataset is used to verify the effectiveness of the proposed
method in real scenarios. When analyzing physiological data, it is first proposed to use
discrete wavelet analysis, butterworth filter and empirical mode decomposition method to
denoise the data. The feature engineering is divided into two categories: manual feature
extraction and deep network automatic extraction. Machine learning uses time domain,
frequency domain and nonlinear feature analysis to perform traditional feature extraction
for two physiological signals: ECG signal and GSR signal. With a 3 s sliding window. Deep
network methods are automatically extracted with convolutional neural networks, but
their interpretability is not high. The shallow emotional features extracted by machine
learning and the deep emotional features obtained by deep learning are, respectively.

We present a novel computational framework for affective computing, and the pro-
posed system helps make affective computing applicable to solve problems in our lives, and
helps bridge the gap between the representation of low-level physiological signal sensors
and high-level contextually relevant interpretations of human emotions. The experimental
results obtained from the two optimal algorithms using public datasets show that our
feature selection processes use the JMI-Scores algorithm proposed in this paper for feature
selection, and the dimension reduction effects is obvious. Feature sets, model parameter are
set better than outperform state-of-the-art recognition rates. In fact, we observed an average
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0.85% improvement in accuracy. There is also an extensive analysis of feature selection,
model selection, time dimensions. Physiology is processed separately with deep learning
and machine learning. It turns out that after feature selection and parameter tuning, the
two architectures based on new computing systems are effective in emotion recognition,
that is, better than previous methods, and in time dimension, the computational space
dimension has been optimized.

Future work includes optimizing protocols in cloud-side computing systems, taking
more into account security, and coordination. Applying more intelligent algorithms to new
computing architectures, and developing real-time sentiments detection of wearable systems.
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