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Abstract: The spectral response of the periodic antenna structure placed in a dielectric homogeneous
medium depends on the antenna geometry, the parameters of the medium, the angle of incidence,
polarization, and the geometry of the excitation field. Increasing the number of antenna structure
parameters can be achieved by introducing a multilayer dielectric medium with a certain number
of metallized periodic surfaces located on flat boundaries between the dielectric layers. There are
two complementary approaches to the analysis of such structures. In the first, the composite antenna
system is analysed by constructing supermodes of the entire structure. In the second, the system is
considered as a cascade assembly of flat discrete elements, i.e., the boundaries between two dielectrics,
periodic metallized planes, and dielectric layers. The latter approach leads to the definition of the
scattering, transmission, or impedance matrix of the entire structure by cascading the corresponding
matrices associated with the individual discrete elements of the antenna structure. It is particularly
useful in modelling dielectric multilayer antenna walls, where the stored data on one planar antenna
element can be used many times in the analysis of various antenna systems with modified parameters
of other discrete structure elements. Microstrip antennas combine field and peripheral problems and
require the use of analytical methods of a high degree of complexity. Therefore, at present, there are
no standard methods that can be used in engineering practice. This work is a step towards filling
these gaps.

Keywords: harmonics Floquet; periodic antenna multilayer dielectric

1. Introduction

The spectral response of the periodic antenna structure placed in a dielectric homoge-
neous medium depends on the antenna geometry, the parameters of the medium, the angle
of incidence, polarization, and the geometry of the excitation field. However, in many ap-
plications, the above number of parameters determining the operation of the antenna is not
sufficient to be able to model its desired directional characteristics. Increasing the number
of antenna structure parameters can be achieved by introducing a multilayer dielectric
medium with a certain number of metallized periodic surfaces located on flat boundaries
between the dielectric layers [1,2]. The analysis of such a multilayer planar antenna system
is the subject of this work. There are two complementary approaches to the analysis of
such structures. In the first, the composite antenna system is analysed by constructing
supermodes of the entire structure. In the second, the system is considered as a cascade
assembly of flat discrete elements, i.e., the boundaries between two dielectrics, periodic
metallized planes, and dielectric layers [3]. The latter approach leads to the definition of
the scattering, transmission, or impedance matrix of the entire structure by cascading the
corresponding matrices associated with the individual discrete elements of the antenna
structure. It is particularly useful in modelling dielectric multilayer antenna walls, where
the stored data on one planar antenna element can be used many times in the analysis of
various antenna systems with modified parameters of other discrete structure elements.

In practice, antenna arrays most often consist of periodic metal structures placed on or
immersed in a dielectric multilayer medium. Changes in the size and shape of individual
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antenna elements enable efficient modeling of its spectral parameters. These changes
can be additionally modeled by selecting the geometrical and physical parameters of the
dielectric layered substrate and coating. In the case of large transverse dimensions, the
antenna is in the order of 100 wavelengths and several dozen or more individual metal
radiation elements. The radiation properties of the antenna approximately correspond to
those of the unlimited antenna structure. Under the condition of periodicity of such an
antenna and its excitation with linear, homogeneous phase modulation, the problem of
scattering on such a structure comes down to the analysis of one basic antenna cell, usually
in a spectral space spanned by a complete array of corresponding Floquet harmonics.
For structures of smaller sizes and fewer elements, the effects related to their limitations,
especially the edge effects occurring on their outer cells, may affect the antenna performance
characteristics and should be considered in their modeling. So far, there is no known exact
effective method for solving the scattering problem on such periodic constrained structures.
Attempts to solve this problem by directly applying the spectral method of moments are
only formally strict. This is because their accuracy is limited by the constraints imposed
on the size of the matrices used in the procedures for solving them. Nevertheless, for
antenna walls composed of a few or a dozen regular-shaped basic cells, this method gives
good results. Other known methods of solving the scattering problem on larger periodic
structures, such as modifications of the above-mentioned direct method by limiting the
number of base functions and appropriate selection of their waveforms, or the iterative
method imposed on the solution by successive application of the Fast Fourier transform,
are approximate, slow convergent, and can only be used in some simple, easy-to-analyze
cases. Currently, a computer program is being developed that will allow verification of the
adopted assumptions.

The generalized scattering matrix method was originally used in the analysis of waveg-
uide problems, considering both propagating and vanishing [4]. Treating the composite
antenna array as a waveguide with many planar discontinuities, a similar analysis can also
be applied to antenna theory. This method is applied in this work to multilayer periodic
systems in one or two directions.

2. Statement of the Problem

We consider the composite periodic antenna structure shown in Figure 1. The system
consists of many-layered elements bounded at the top and bottom by half-spaces (upper
and lower) of homogeneous dielectric media. The third axis (y) of the orthogonal coordinate
system (x,y,z) is perpendicular to the drawing plane. The basic components of the structure
are: metallized, infinitely periodic in the plane (x,y) antenna surface, the boundary between
two dielectrics, and a homogeneous dielectric layer [5,6].

The periodic flat antenna structure is shown in Figure 1. The geometry of a single
antenna element remains arbitrary. The distance between the individual antenna elements
in the x and y directions is dx and dy, respectively. The inclination angles of the symmetry
axis of the antenna structure with respect to the x axis are respectively 0 and Ω = 90

◦ −Θ.
Let us assume that the designations of the multi-layer antenna system are shown in Figure 2.

The matrix S(j) or T(j) represents the planar discrete element of the antenna in the form
of a flat metallized grid, a boundary between two dielectric media or a dielectric layer [7].
It was assumed that a′j = bj+1, aj = b′j+1.

Vectors, aj =
[

aj1, aj2, . . . ajJj

]
bj =

[
bj1, bj2, bjJj

]
a′j =

[
a′j1, a′j1, . . . a′jJj

]
, b′j =

[
b′j1, b′j1, b′jJj

]
are the complex amplitudes of the normalized incoming

(
aj, a′j

)
and outgoing

(
bj, b′j

)
dis-

crete modes of a single structure, represented by a scattering matrix S(j), or a transmission
matrix T(j). The matrix S(j), binds the outgoing

(
bj, b′j

)
modes with falling modes

(
aj, a′j

)
[

bj
b′j

]
=
[

S(j)
=

][ aj
a′j

]
=

 S
=

(j)
11

S
=

(j)
12

S
=

(j)
21

S
=

(j)
22

[ aj
a′j

]
(1)
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and matrix T connects the field on the “right a(c)j , b(c)j , a(c)N , b(c)N ”, lower side of the structure
with the field on the “left”, upper side of the structure: a(c)j

b(c)j

 =
[

T(j)
][ aj

a(c)j

]
=

[
T(j)

11 T(j)
12

T(j)
21 T(j)

22

][
aj
bj

]
(2)

1 
 

 

Figure 1. Flat periodic antenna structure infinite in the (x,y) plane, multilayer structure.
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Figure 2. Block diagram of a multi-layer antenna. 
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Figure 2. Block diagram of a multi-layer antenna.

Both types of matrices lead to a global description of the operation of the entire antenna
structure [8]. Global transmission matrix T

T
[

a1
b1

]
=

[
a(c)N
b(c)N

]
(3)

has the form of a cascade assembly of individual elements of the antenna structure, which
corresponds to the product of the transmission matrix of individual structure elements:

T
=
= T

=

(J)T
=

(J−1) . . . T
=

(2)T
=

(1) (4)
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Knowing the matrices T(j) and T, it is possible to determine the matrices S(j) and S
according to the formula:

[S] =

[
S(j)

11 S(j)
12

S(j)
21 S(j)

22

]
=

[
−T−1

22 T21 T−1
22

T11 − T12T−1
22 T21 T12T−1

22

]
(5)

Then we determine the global transmission matrix by the product of successive partial
transmission matrices. Thus, for the determination of the scattering matrices it is practically
necessary also to determine the partial and global transmission matrices. Similarly, knowing
the form of the scattering matrices S(j) of individual elements of the structure, the matrices
T(j) can be determined according to the formula:

[
T
=

(j)
]
=

 T
=

(j)
11

T
=

(j)
12

T
=

(j)
21

T
=

(j)
22

 =

 S
=

(j)
21
− S

=

(j)
22

S
=

(j)−1

12
S
=

(j)
11

S
=

(j)
22

S
=

(j)−1

12
−S

=

(j)−1

21
S
=

(j)
11

S
=

(j)−1

12

 (6)

and hence we also obtain the global transmission matrix T as a product of the matrix T(j) [7].
In general, the cut-off numbers Kj of an infinite countable number of modes of a

structure may change from one subsystem of the structure to another, i.e., they may depend
on the number j. For the simplicity of notation and further numerical implementation,
however, assume that Kj = const. for any subsystem j = 1, 2, . . . J, which is also commonly
used in numerical calculations. So we assume that the matrices S(j) and T(j) are square of
the order 2K and the matrices S(j)

kl, T(j)
kl, k, l = 1, 2 are of the order K [9]. Particular antenna

subsystems, as well as the entire antenna system, can also be expressed by impedance
matrices Z(j) or admittance matrices Y(j) according to the following formulas [4,5] ([S] ≡ S):

[Z] =
[1] + [S]
[1]− [S]

[ς0] =
[
Y−1

]
(7)

[S] =
[Z]
[
ς−1

0

]
− [1]

[Z]
[
ς−1

0

]
+ [1]

=
[1]− [ς0][Y]
[1] + [ς0][Y]

(8)

where: [ς0] diagonal matrix of characteristic impedances.
The form of the matrix S, T, Z, or Y depends on the geometry and parameters of the

antenna structure medium, as well as on the adopted complete base of eigenvectors of the
appropriate boundary problem. The electromagnetic field at any point in the structure is
presented in the form of Fourier integrals or series with appropriate, generally complex,
coefficients (amplitudes) of the distribution [10,11]. For infinite periodic structures, the
equivalent of Fourier transforms is the field distributions to Floquet’s harmonics. As a
result, the transverse electric field Et is presented in the form of a series:

Et(x, y, z) = ∑
k

ν±k Ψkexp(±ikzkz) = ∑
k

ν±k Ψkek(x, y)exp(±ikzkz)

= ∑
k

ν±k Ψk

[
ikxkx + ikyky

]
ν±k Ψk

[
ikxkx + ikyky

] (9)

where ν±k denote the coefficients of the field distribution propagating in a positive (+) or
negative (−) direction with a phase factor exp(±ikzkz). The vectorial normalized to the unit
power of Floquet’s harmonics Ψk, defined in the next subsection, have a phase factor ek(x,y)
and vector amplitudes ψk. The index k follows TE or TM polarization and the generally
infinite Floquet harmonics indices in the x(m) and y(n) directions [12]. Similarly, for the
transverse magnetic field we get:

Ht(x, y, z) = ∑
k

v±k
(
±η−1

k

)
(nz ×Ψk)exp(±ikzkz) (10)
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where: ηq denotes the harmonic modal impedance with index q. With the normalization
of the power of individual harmonics adopted below, the total field power flux in the z
direction is expressed by the amplitude modulus vk:

Pz(z) = ∑
k

∣∣v±k ∣∣2exp(∓2Im(kzk)z) (11)

where the summation along the index k runs both the propagating modes (Im(kzk) = 0) and
vanishing modes (Im(kzk) 6= 0) [13].

3. Modes of the Planar Endless Bidinary Periodic Structure Scalar Harmonics
of Floquet

Let us consider the function f (x,y) periodically depending on x and y with the accuracy
to the linear phase factor ϕx + ϕy:

f
(

x + dx, y + dy
)
= f (x, y)exp[−i

(
ϕx + ϕy

)
] (12)

where dx and dy are lattice constants in the plane (x,y) and the function f (x,y) satisfies the
Helmholtz equation in space (x,y) [2]:(

∇2
t + k2

x + k2
y

)
f (x, y) = 0 (13)

Moreover, the longitudinal components kz and the transverse components kx and ky of
the propagation vector satisfy the dispersion equation: k2

x + k2
y + k2

z = k2.
The above definition of the function f (x,y) shows that the function F(x,y) = f (x,y)

exp[i(ϕxx/dx + ϕyy/dy)] is periodic, i.e., it satisfies the condition F(x + dx,y + dy) = F(x,y) and
as such can be represented as a typical Fourier series:

F(x, y) = ∑m,n Amnexp[i2π(mx/dx + ny/dy)]. (14)

Hence the pseudo-periodic function f (x,y) is represented in the form of a distribu-
tion [14]

f (x, y) = F(x, y)exp
[
−i
(

ϕkx/dx − ϕyy/dy
)]

= ∑m,n Am,nexp
[
i
(
kxmx + kymy

)]
= ∑m,n Amnemn(x, y)

(15)

for Floquet harmonics:
emn(x, y) = exp[i

(
kxmx + kyny

)
], (16)

with the coefficients of the Amn. distribution. The form of the components of the propaga-
tion vector k reflects the periodic symmetry of the problem under consideration along the x
and z axes:

kxm = 2πm/dx − ϕx/dx, (17)

kyn = 2πn/dy − ϕy/dy, (18)

kzmn =
[
k2 − k2

xm − k2
ym

]1/2
. (19)

Note that the transverse component (in the x,y plane) of the wave vector is:

krmn =
[
k2 − k2

zmn]
1/2 =[ k2

xmn + k2
ymn]

1/2. (20)

The above distribution is a generalization of the Fourier series of the pseudo-periodic
function f (x,y) with linear phase increment (mϕx + nϕy) for translation (mx + ny) in the
transverse plane (x,y) [15] For a two-dimensional periodic structure with the inclination
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angle Ω of the second symmetry axis with respect to the x axis (the remaining symmetry
axis coincides with the x axis), we get:

kxmn =
2πn
dx
− 2πm

dy
− ϕy/dy. (21)

kymn =
2πn

dysinΩ
− 2πm

dytanΩ
− ϕy/dy. (22)

In the general case, for any position of the axis of symmetry with respect to the axis of
orthogonal coordinates x and y, all three components of the propagation vector kxmn, kymn,
kzmn depend on both m and n. We then make these components dependent on the wave
vector of the zero (m = n = 0) harmonics Floquet of the incident field

kx = kinc
x = ksinΘinc · cosϕinc (23)

ky = kinc
y = ksinΘinc · sinϕinc (24)

where θinc and ϕinc. denote the angles of incidence in the planes (z,y) and (x,y), respectively.
Then the phase shifts ϕx, ϕy for the translation of dx, dy by one periodic cell are respectively:

ϕx = −kinc
x · dx (25)

ϕy = −kinc
y · dy (26)

kxmn =
2πm

dx
+ k sinΘinc · cosϕinc (27)

kymn =
2πn

dysinΩ
− 2πm

dytanΩ
+ k sinΘinc · sinϕinc (28)

Without losing the generality of considerations, let us then assume that all individual
components (j) of the layered antenna structure are defined with respect to the upper
outer center, i.e., the incidence center. Then, for any j, from the continuity of the tangent
components Et = (Ex,Ey), Ht = (Hx,Hy) in the planes of discontinuity z = zj = const. it follows
that the transverse and correspond to the transverse components of the wave vector in the
following form:

kxmn = 2πm
dx

+ k sinΘinc · cosϕinckx00, ky00 components of the Floquet harmonic wave
vector of the zero spectral cell (m = 0, n = 0) remain equal to the corresponding component
in the incidence center:

kx00 = k sinΘinc · cosϕinc, (29)

ky00 = k sinΘinc · sinϕinc. (30)

The above property holds true for any j, i.e., for each individual element of the
composite antenna structure. In other words, the components kx00, ky00 remain independent
of z. Similarly, for any values of m and n, i.e., for harmonics of any order, we get:

kxmn =
2πm

dx
+ kx00, (31)

kymn =
2πn

dy sinΩ
− 2πm

dytanΩ
+ ky00. (32)

Let us then proceed to deriving the representation for the transverse components of
the electromagnetic field in the form of the distribution into Floquet vector harmonics.
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4. Vector Harmonics of Floquet—Electromagnetic Field Representation in the
Plane (x,y)

The electromagnetic field at any point of the previously defined multi-layer antenna
structure can be decomposed into two independent field components distinguished by
their polarization with respect to the antenna plane normal, i.e., TE field with an electric
field vector perpendicular to the z direction: E(x,y,z) = (Et,Ez) and the TM field with the
magnetic field vector perpendicular to the z direction: H(x,y,z) = (Ht,Hz). As part of this
division, we will define the distributions of the transverse electric field into vector Floquet
harmonics, characterizing the mode structure of the electromagnetic field of an unlimited,
multi-layer periodic structure. It should be noted that with the assumed losslessness of the
upper (incident) medium, the above-analyzed tangents (to the (x,y) plane) coordinates of
the propagation vector corresponding to the incident field harmonics remain real in every
element of the antenna structure, both lossy and lossless.

4.1. TE Polarization

For the TE field, let us assume that the longitudinal component of the magnetic field
HzTEmn as a pseudo-periodic function f (x,y) with the appropriate phase factor depending
on z:

HzTEmn(x, y, z) = f (x, y)exp[ikzTEmnz]. (33)

From Maxwell’s equations, the electric transverse field EtTEmn = (ExTEmn, EyTEmn) is
expressed through the field HzTEmn [16] as follows:

EtTEmn =
iωµ

k2
yTEmn

nz ×∇t HzTEmn=
iωµ

k2
xTEmn + k2

yTEmn
nz × i

(
nxkxTEmn + nykyTEmn

)
HzTEmn (34)

where: nx, ny, nz denote the unit vectors along the respective x, y, and z axes. In further
considerations, we will also denote the sequence of TEmn or TMmn pointers with one
symbol from the set {q,p}. Let us introduce the orthogonal and normalized Floquet vector
harmonics Ψq (q = Ψq (q = TEmn)), i.e., satisfying the condition:

± nz ◦
x

S
ψ

TEm′n′ × ψ∗
TEmn

dxdy = δmm′ δnn′ (35)

where integration takes place over a single elementary cell of a periodic structure with the
surface of S. The normalized Floquet harmonics contain, in addition to the phase factor

eTEmn(x, y) = exp[i
(
kxTEmnx + kyTEmny

)
] (36)

also normalizing vector amplitude coefficient:

ψ
q

(
kxq, kyq

)
= nxψxTEmn + nyψxTEmn = (dxdy)

−1/2

 nxkyq − nykxq

(k2
xq + k2

yq)
1/2


.

(37)

Thus, Floquet’s vector harmonics take the following form:

Ψq = ψ
q

(
kxq, kyq

)
eq(x, y) = (dxdy)

−1/2

 nxkyq − nykq

(k2
xq + k2

yq)
1/2

exp[i
(
kxqx + kyqy

) (38)

with coordinates in the x and y directions, respectively:

Ψxq
(
kxq, kyq

)
= +

(
dxdy

)−1/2
(

k2
xq + k2

yq

)−1/2
kyqexp[i

(
kxqx + kyqy

)
] (39)

Ψyq
(
kxq, kyq

)
= −

(
dxdy

)−1/2
(

k2
xq + k2

yq

)−1/2
kxqexp[i

(
kxqx + kyqy

)
] (40)



Appl. Sci. 2022, 12, 4185 8 of 13

Finally, the transverse electric field with a polarization TE Etq (q = TEmn) is defined as
proportional to the transverse vector harmonic Ψtq:

Etq(x, y) = (η∗q )
+1/2Ψq(x, y) (41)

and the longitudinal component Htq of the magnetic field with a polarization TE is deter-
mined from the knowledge of the transverse electric field Etq

nz × Htq = ±η−1
q Etq (42)

nz × Etq = ±ηqHtq (43)

and using the mode impedance ηq of a harmonic with a polarization TE.
The factor (ηq

*)1/2 standing at the normalized vector harmonic Ψq provides the nor-
malization of the power of the harmonic field, which corresponds to the unit power flow
conducted through this harmonic in the direction of the z axis:

± nz ◦
x

S
Etq × H∗tq′ dxdy = nz ◦ (η∗q )

−1
x

S
Etq ×

(
nz × E∗tq′

)
dxdy = δqq′ (44)

4.2. TM Polarization

For the TM field, let us take the longitudinal component of the electric field EzTMmn as
the functions f (x,y) with the appropriate phase factor depending on z:

EzTMmn(x, y, z) = f (x, y)exp[ikzTMmnz] (45)

Transverse fields: magnetic HtTMmn = (HxTMmn, HyTMmn) and electric EtTMmn = (ExTMmn,
EyTMmn) are expressed through the EzTMmn field as follows [6,17]:

HtTEmn = iωε
k2

xTMmn+k2
yTMmn

nz ×∇tHzTMmn

= iωε
k2

xTMmn+k2
yTMmn

nz × i
(

nxkxTMmn + nykyTMmn

)
HzTMmn ,

(46)

EtTMmn =
−ikzTMmn

k2
xTMmn + k2

yTMmn
∇tEzTMmn. (47)

Let us introduce the orthonormal vector harmonics of Floquet [18]: ΨTMmn ≡ Ψp
(p = TMmn) about TM polarization

Ψp = (dxdy)
−1/2

 xkxp + ykyp

(k2
xp + k2

yp)
1/2

exp[i
(
kxpx + kypy

), (48)

that is
ψxTMmn

(
kxk, kyk

)
= +

(
dxdy

)−1/2
(

k2
xk + k2

yk

)−1/2
kxTMmn, (49)

ψyTMmn

(
kxk, kyk

)
= +

(
dxdy

)−1/2
(

k2
xk + k2

yk

)−1/2
kyTMmn. (50)

Then, analogically to the case of TE polarization, the orthogonality relationship
takes place:

± nz ◦
x

S
ΨMm′n′ ×Ψ∗TMmn dxdy = δmm′δnn′ (51)

Additionally, TE modes remain orthogonal to TM modes:
x

S
ΨMm′n′ ×Ψ∗TEmn dxdy = 0 (52)
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which leads to the relationship of orthogonality in the general form (p, q run for any values
from the sets {TE, TM}, {m}, {n}):

± nz ◦
x

S
Ψp ×Ψ∗q dxdy = δpq. (53)

Then, considering the mode impedance for the polarization we finally obtain the form
of the transverse components [19] of the electric field Etp and magnetic Htp with TM polarity
(p = TMmn):

Etp(x, y) = (ηp)
+1/2Ψp(x, y) (54)

± ηpHtp = nz × Etp (55)

± η−1
p Etp = nz × Htp. (56)

Hence the transverse magnetic field Htp is expressed by vector harmonics Htp in the
following way:

Htp(x, y) = ±η−1
p nz × Etp(x, y) = ±η−1/2

p nz ×Ψp(x, y) (57)

The coefficient (ηp)−1/2 at the normalized vector harmonic nz × Ψp ensures the nor-
malization of the harmonic field power with the polarization TM:

± nz

x

S
Etp × H∗tp′ dxdy = nz (ηp)

+1
x

S

(
nz × Htp

)
× H∗tp′) dxdy = nzδpp′ (58)

5. General Dispersion Material for Individual Composite Antenna Structure

Based on the mode structure defined in the previous section, the electromagnetic field
of the composite antenna can, for any of the following, be presented in the form of a series:

Et(x, y, z) = ∑k

{
v+k Ψkexp(+ikzkz) + v−k Ψkexp(−ikzkz)

}
(59)

Ht(x, y, z) = nz ×
[
∑k η−1

k
{
+v+k Ψkexp(+ikzkz)− v−k Ψkexp(−ikzkz)

}]
(60)

with the known vector Floquet harmonics Ψk and the distribution coefficients remaining
to be determined νk [20,21]. Given the known field incident on the antenna, determining
the total field requires deriving the scattering matrix of the entire system. The solution
is obtained by determining the scattering matrix of individual planar system elements,
such as the dielectric boundary, metallized periodic plane, and a layer of a homogeneous
dielectric medium. In each of these cases, the distribution coefficients νk correspond to the
field amplitudes defined in Figure 2.

Let us consider any single element of a composite antenna denoted by the index j. Let
us create a vector Vj

(in) of field amplitudes entering (in) into the system (j), which in turn
consists of a vector Vj

(inup) of amplitudes of type in on the upper (upper) side of the system
(j) and the vector Vj

(inlow) of amplitudes of type in from the lower side of the system (j):

V(in)
j =

 V(inup)
j

V(inlow)
j

 =

[
aj
a′j

]
.

(61)

Similarly, we define the vector Vj
(ou) of field amplitudes coming from the system (j):

V j
(ou) =

 V(ouup)
j

V(oulow)
j

 =

[
bj
b′j

]
.

(62)
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The definition of the relationship between these two vectors is determined by the
scattering matrix S(j): [

V(ou)
j

]
=

[
S(j)

11 S(j)
12

S(j)
21 S(j)

22

] [
V(in)

j

]
(63)

So the vector Vj
(in) consists of an infinite sequence of amplitudes from the top of

the element (j), vk—from the bottom of the element (j), and the vector Vj
(ou)—from the

sequences of the respective amplitudes and

V(in)
j =



v−1
v−2
...

v+1
v+2
...


dla z ≤ zj

dla z ≥ zj

(64)

V(ou)
j =



v+1
v+2
...

v−1
v−2
...


dla z ≤ zj

dla z ≥ zj
.

(65)

Inequalities mean, conventionally, the top and bottom side of a single antenna element.
For example, for the dielectric boundary and the periodic plane, this means limδ→0 (zj ± δ),
respectively. In numerical calculations, the vectors Vj

(in), Vj
(ou) with an infinite number of

parameters are usually cut to 2 (M + N) elements, where the number 2 corresponds to the
two polarizations TE and TM, M—the number of harmonics in the x direction, and N—the
number of harmonics in the y direction. It follows that S (j) kl, k, l = 1.2 are of the order
of 2MN. In order to determine the global matrix S, it is necessary to know the scattering
matrix of individual system elements. These include the metallized periodic plane, the
dielectric boundary, and the homogeneous dielectric layer.

6. Plane with Endlessly Metal Periodic Mesh

The geometry of the periodic plane is presented in Figure 1. The geometry of a single
periodic cell is arbitrary. As a result of the scattering analysis on such a structure (using the
spectral variant of the Galerkin method) [22], we obtain an equation linking the vector of
the scattered field amplitudes Vjs with the field amplitude vector incident on the periodic
structure Vj(inup):

Vs
j = −WU−1M(I + Γ)Vi

j (66)

where Vj
i ≡ Vj (inup), matrix I denotes the identity matrix, Γ—the reflection matrix from

the periodic surface, M—the matrix of conjugate coefficients of the distribution of base
functions into Floquet harmonics, and the W and U matrices are determined by the Fourier
transform of the Green function of the surrounding medium and the base functions used in
the Galerkin method.

For the incident field Vji then we get:[
Vs+

j + ΓVi
j

Vs−
j + (I − Γ)Vi

j

]
=

[
S(j)

11 S(j)
12

S(j)
21 S(j)

22

] [
Vi

j
0

]
(67)
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What from the asymmetry of the reflection coefficient on the dielectric boundary and
the continuity of the field tangent components on the boundary of two dielectrics gives the
following matrix form S(j):

[
S(j)
]
=

[
S(j)

11 S(j)
12

S(j)
21 S(j)

22

]
=

[
+Γ−WU−1M(I + Γ) I − Γ−WU−1M(I − Γ)

I + Γ−WU−1M(I + Γ) −Γ−WU−1M(I − Γ)

]
(68)

6.1. Dielectric Limit

The scattering matrix of the dielectric boundary meets the conditions of anti-reciprocity:

S(j)
11 = −S(j)

22 = R(j) (69)

and it is symmetrical
S(j)

12 = +S(j)
21 = T(j) (70)

and the individual sub-matrices of the scattering matrices correspond to the reflection
matrices R(j) and transmission T(j).[

S(j)
]
=

[
R(j) T(j)

T(j) −R(j)

]
.

(71)

The R(j) and T(j) reflection matrices have zero elements outside the diagonals, which
means that there is no coupling between the different field harmonics (in the isotropic
case considered here). The diagonal elements of these matrices are expressed by the mode
impedances ηk

(up) and ηk
(low) of the harmonics Ψk propagating in the upper and lower

centers, respectively:

Rkk =
η
(low)
k − η

(up)
k

η
(low)
k + η

(up)
k

(72)

Tkk =
2
(

η
(low)
k η

(up)
k

)1/2

η
(low)
k + η

(up)
k

. (73)

6.2. Dielectric Layer

The remaining element of the structure (the dielectric layer) corresponds to the propa-
gation of individual harmonics in the dielectric medium (let’s assume bj) without coupling
between the harmonics. The scattering matrix of such a (homogeneous, isotropic) dielectric
layer also has only non-zero elements on the diagonal and they are expressed by the ap-
propriate field phase change for propagating harmonics or a field amplitude change for
disappearing harmonics:

S(j)
kl = δklexp(ikzklbj) (74)

7. Cascade Assembly of the Individual Elements of the Composite Antenna

Knowing the scattering matrices S(j) of individual elements of the system, the global
matrix S is determined according to the scheme presented in point 2. So for each element of
the antenna structure, we determine the transmission matrix corresponding to this element.

[
T(j)

]
=

[
T(j)

11 T(j)
12

T(j)
21 T(j)

22

]
=

[
S(j)

21 − S(j)
22 S(j)−1

12 S(j)
11 S(j)

22 S(j)−1
12

−S(j)−1
21 S(j)

11 S(j)−1
12

]
(75)

Then we determine the global transmission matrix by the product of successive partial
transmission matrices:

T = T(J)T(J−1) . . . T(2)T(1) (76)
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and then we calculate the global scattering matrix according to the formula:

[S] =
[

S11 S12
S21 S22

]
=

[
−T−1

22 T21 T−1
22

T11 − T12T−1
22 T21 T12T−1

22

]
.

(77)

8. Conclusions

According to the procedure given above, it is practically necessary to determine the
partial and global transmission matrices for the determination of the scattering matrices.
In the case of specific antenna structures, various modifications of the above analysis are
applied in order to obtain faster convergence of the applied numerical procedure and
limitations on the memory capacity requirements used by the numeric program. Extremely
important from the point of view of the effectiveness and accuracy of the procedure
is the selection of the number of truncation K of harmonics included in the numerical
calculations and their order in the series of the field distribution. Usually, the order of
harmonics is determined by the increase in the value of their propagation constants. The
value of the number K depends on the characteristic transverse and longitudinal distances
that are normalized to the refractive index of the medium. The rule is that the smaller
the distances between the individual cells of the periodic plane, the higher the harmonics
should be considered in the field distribution, including also the decaying modes, especially
important at small distances between individual planar antenna elements. The proposed
solution enables the analysis of antenna arrays located on a multilayer dielectric. The
presented procedure for the solution of electromagnetic field scattering on the antenna
array is the original solution. Based on the derived dependencies, a computer program will
be developed to analyze the parameters and characteristics of this type of antenna.
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