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Abstract: Epilepsy is a chronic and recurrent brain dysfunction disease. An acute epileptic attack will
interfere with a patient’s normal behavior and consciousness, having a great impact on their life. The
purpose of this study was to design a seizure prediction model to improve the quality of patients’ lives
and assist doctors in making diagnostic decisions. This paper presents a transformer-based seizure
prediction model. Firstly, the time-frequency characteristics of electroencephalogram (EEG) signals
were extracted by short-time Fourier transform (STFT). Secondly, a three transformer tower model was
used to fuse and classify the features of the EEG signals. Finally, when combined with the attention
mechanism of transformer networks, the EEG signal was processed as a whole, which solves the
problem of length limitations in deep learning models. Experiments were conducted with a Children’s
Hospital Boston and the Massachusetts Institute of Technology database to evaluate the performance
of the model. The experimental results show that, compared with previous EEG classification models,
our model can enhance the ability to use time, frequency, and channel information from EEG signals
to improve the accuracy of seizure prediction.

Keywords: transformer; STFT; epilepsy; electroencephalogram; seizure prediction

1. Introduction

Epilepsy, a common chronic brain disease, is caused by sudden excessive discharge of
brain nerve cells. Nearly 1% of the world’s population is suffering from epilepsy. During
seizures, patients have transient involuntary convulsions in one part of the body (partial
seizures) or the entire body (generalized seizures), sometimes accompanied by a loss of
consciousness and urinary and fecal incontinence [1], greatly affecting the patients’ life
quality. The electroencephalogram (EEG) is a representative signal containing information
on brain electrical activity, which is used as a tool for clinical diagnosis and analysis of
epilepsy [2].

Since the 1970s, researchers have carried out a lot of research on seizure detection and
prediction tasks [3–5]. Automatic epilepsy detection technology can help doctors improve
the accuracy of epilepsy diagnosis, greatly save time, enhance the efficiency of diagnosis,
and strive for more rescue time. Seizure detection comprises mainly two parts: feature
extraction and classification of EEG signals.

In terms of feature extraction, this can be roughly divided into linear analysis methods
and nonlinear analysis methods. Linear analysis methods mainly include time-domain
analysis, frequency-domain analysis, and time-frequency domain analysis. Early EEG
analysis directly extracted features from time-series signals, including time-domain features
such as peak value, rhythm, duration, and sharpness [3]. After that, researchers also
extracted such characteristics as spike rhythm, the relative amplitude of the EEG signal [4],
fractional linear prediction error energy [6], and line length [7] to classify EEG signals.
Although the time-domain waveform contains all EEG signals, this method lacks objectivity
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with large errors. Studies in the literature [8,9] transformed the original EEG signal from
time-domain to frequency-domain and extracted the corresponding spectral components
for frequency domain analysis. The frequency domain is very important when dealing
with epilepsy. In medicine, the brainwaves can be divided into five main bands in the
frequency domain, namely, delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–
30 Hz), and gamma (30–80 Hz). After analyzing the above medical frequency bands,
Perez et al. [10] further divided the beta band into four sub-bands (beta-1, 12–15 Hz;
beta-2, 15–18 Hz; beta-3, 18–25 Hz; and hi-beta, 25–30 Hz), which had a positive effect
on the analysis of EEG signals. Recent studies have shown that the sub-bands are also
useful in the classification of epileptic EEG signals. Tsioura et al. [11] first proposed the
systematic evaluation of frequency sub-bands for the classification accuracy of epileptic
EEG. The results showed that additional frequency band analysis was conducive to the
detection of epileptic EEG. However, EEG signals are non-stationary and time-varying,
and the premise of frequency domain analysis is that the stationary random signals and
the features extracted in the frequency domain do not contain time information. Therefore,
a time-frequency analysis method combining the time domain and frequency domain has
been gradually developed. Truong et al. [12] used short-time Fourier transform (STFT) to
extract time-frequency information from EEG signals and automatically generate optimized
features for each patient. In addition, wavelet transform [13–16] is also an effective tool
for time-frequency feature extraction of EEG signals. Studies show that brain activity has
complex dynamic characteristics, so it can be regarded as a nonlinear dynamic system.
More and more researchers have become interested in nonlinear analysis methods for
EEG signals. Li et al. [17] used a multiscale complexity measure to extract the nonlinear
feature of the scale-related Lyapunov exponent for classification. Brari [18] proposed a
novel EEG feature extraction approach for determining a correlation dimension to analyze
the nonlinear characteristics of epileptic EEG signals.

Traditional machine learning algorithms and deep learning models have been suc-
cessfully applied to the classification of time-series signals, especially EEG signals. In
early research, the seizure detection task for EEG signals mainly used traditional machine
learning algorithms such as decision tree classifier [19,20], support vector machine [21,22],
k-nearest neighbor [23] (KNN), and random forest [24]. Recently, deep learning algorithms
have also achieved remarkable results for EEG seizure detection. Because EEG signals
are variable and long, recurrent neural networks (RNN), which are appropriate for time
series information, have also been gradually applied to EEG signal processing. However,
due to the short-term memory problem of RNN, the long short-term memory network
(LSTM) [25,26], which combines short-term and long-term memory through a gated struc-
ture, has been more widely used in epileptic seizure tasks. In addition, the convolutional
neural network (CNN) [27] has the ability of automatic feature learning, which not only
simplifies the process of artificially constructing features but also significantly improves
the performance of seizure detection.

Now, the frontier research on epilepsy EEG has gradually shifted from epilepsy
detection to seizure prediction. Since seizure activity is unpredictable and drug-resistant
epilepsy patients lack reliable treatment, there is an urgent need to develop an accurate and
reliable seizure prediction model. Truong et al. [12] proposed a generalized retrospective
and patient-specific seizure prediction method based on STFT and CNN. After that, Truong
et al. [28] added the generative adversarial network as a feature extractor to train in an
unsupervised way and connect an external classifier for classification to solve the difficulty
of manual marking of seizure data and make better use of key data. Kostas et al. [29]
introduced the LSTM network into EEG signal prediction of seizures, which significantly
improved its performance. Jee et al. [30] proposed a patient-specific EEG channel selection
optimization method based on permutation entropy, which combined the genetic algorithm
and KNN to predict seizures. Alshebeili et al. [2] designed a seizure prediction framework
based on statistical analysis and digital band-limiting filters, which can make robust
decisions on signal activities and is suitable for long prediction horizons. Aung et al. [31]
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studied the advantages of multivariate multi-scale modified distribution entropy by using
artificial neural networks and proposed an epilepsy prediction system. However, these
deep learning models can only achieve very limited performance in long sequences, and
the attention mechanism can process the signal as a whole without being limited by the
sequence length. Therefore, we consider applying it to our long-term monitoring of EEG
signals. In recent years, the transformer model based on the attention mechanism proposed
by Vaswani et al. [32] has achieved great success in the field of natural language processing,
and it has been gradually applied to the tasks of computer vision and time series prediction
and regression. Tao et al. [33] used the transformer to classify EEG data for brain vision
and motor imagination to decode EEG signals from human brain activities.

In this paper, scalp EEG is used to predict the onset of epilepsy to provide enough
treatment time for doctors and patients and prevent the occurrence of seizure events.
The proposed seizure prediction model in this paper is based on transformer networks
for extracting and fusing the three-dimensional features of EEG signals and has achieved
remarkable results in seizure prediction. The main contributions of this paper are as follows:

1. Based on the transformer’s self-attention coding layer and gating mechanism, a
transformer network with a three-tower structure is established to extract and fuse
the features of epileptic EEG signals from different dimensions, which improves the
learning ability of the time, spectrum, and spatial information.

2. A feature engineering scheme for the EEG sequence prediction task is proposed
that uses STFT to extract the hidden laws of EEG signals and improve the upper-
performance limit of the model.

3. A three-tower transformer network is proposed to deal with the seizure prediction
task. The experimental results for a Children’s Hospital Boston and the Massachusetts
Institute of Technology (CHB-MIT) dataset show that our method is superior to the
existing ones.

2. Materials and Methods
2.1. EEG Database

In this study, a multi-channel scalp EEG database was used for the experiment. The
EEG database we used is the CHB-MIT scalp EEG database collected by Children’s Hospital
Boston. The data, which was originally published in Shoeb’s Ph.D. thesis [34] and can
be accessed at https://physionet.org/physiobank/database/chbmit accessed on 11 April
2022, contains 24 medical records from 23 patients with intractable epilepsy. The first
23 cases were from 22 patients (17 females, aged 1.5–19 years; 5 males, aged 3–22 years.
Chb01 and Chb21 were obtained from the same female subject at an interval of 1.5 years,
and Chb24 had no clear gender or age recorded). Table 1 shows the basic characteristics of
the database. The Children’s Hospital Boston assessed the potential conditions for surgical
intervention after all the epileptic patients stopped antiepileptic drugs for a period of time
and monitored the patients for several days. Scalp EEG signals were sampled at 256 Hz
with 16-bit resolution, and the position of electrode placement followed the international
10–20 electrode positions system. The total duration of EEG recordings was nearly 983 h,
with 198 seizures.

2.2. Preprocessing

Epileptic EEG signals can be divided into three stages, namely, interictal, preictal, and
ictal. In our seizure prediction task, we mainly focused on the preictal and interictal periods.
Therefore, we discarded the ictal EEG segments and transformed seizure prediction into
a binary classification problem. At the same time, we rearranged the EEG data for each
patient according to the electrode order. In this dataset, the interictal and preictal data were
severely unbalanced since some patients had fewer seizures during the monitoring period.
In order to overcome this problem, we used overlapping sliding windows in the training

https://physionet.org/physiobank/database/chbmit
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stage to obtain more preictal fragments. To ensure that the ratio of the two types of training
data was close to 1, we set the window size of preictal to Wp as follows:

Wp =
np

ni
W (1)

where np and ni represent the number of EEG segments in each patient’s preictal and
interictal stage, respectively, and W represents the size of the EEG window.

Table 1. Details of the CHB-MIT 1 database.

Case Gender Age (Years) Number of Channels Number of Seizures

Chb01 F 11 23 7
Chb02 M 11 23 3
Chb03 F 14 23 7
Chb04 M 22 23 4
Chb05 F 7 23 5
Chb06 F 1.5 23 10
Chb07 F 14.5 23 3
Chb08 M 3.5 23 5
Chb09 F 10 23 4
Chb10 M 3 23 7
Chb11 F 12 23 3
Chb12 F 2 18 40
Chb13 F 3 23 12
Chb14 F 9 18 8
Chb15 M 16 18 20
Chb16 F 7 18 10
Chb17 F 12 18 3
Chb18 F 18 18 6
Chb19 F 19 23 3
Chb20 F 6 23 8
Chb21 F 13 23 4
Chb22 F 9 23 3
Chb23 F 6 23 7
Chb24 - - 23 16

1 CHB-MIT: Children’s Hospital Boston and the Massachusetts Institute of Technology.

STFT has been widely used in the field of signal processing, and many studies have
proved that it has advantages in the analysis of time series [35,36]. Therefore, in this paper,
STFT is used to convert the EEG signal into a two-dimensional matrix composed of the
time domain and frequency domain, and the EEG signal is analyzed in the time-frequency
domain. We selected the cosine analysis window to perform the STFT on the 5 s sample,
and then used log10 to calculate the intensity value. The EEG recordings in the CHB-MIT
dataset were contaminated by 60 Hz power line noise. Therefore, in the experiment, we
removed the components in the frequency range of 57–63 Hz, 117–123 Hz (power line
frequency is 60 Hz), and the direct current (DC) component (0 Hz) so as to conveniently
and effectively remove the interference of power line noise and DC component. After
STFT processing, the dimension of each 5S EEG segment was (c, 114, 9), where c is the
number of EEG channels, and 114 and 9 represent the number of frequency points and time
steps, respectively.

2.3. Classification

Because of its good performance in natural language processing, transformer has
been applied to computer vision, time series classification, and prediction tasks. In recent
years, it has also shown good effects in the classification of epilepsy EEG [33,37]. EEG
signals contain abundant time, frequency, and spatial information. In this paper, we used
transformer networks to analyze and classify the characteristics of epileptic EEG signals in
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three dimensions. The overall architecture of the network model proposed in this paper is
shown in Figure 1.

Figure 1. The model architecture of three-tower transformer model.

The traditional transformer is used in the processing of text sequence, and the text data
(L, D) is generally two-dimensional, where L and D represents the length and dimension of
the word vector, respectively. However, after time-frequency domain transformation, the
EEG segment has a three-dimensional matrix (C, F, T), in which C, F, and T represent the
channel, frequency, and time step of the EEG signal, respectively. We flatten the 3D matrix
x ∈ RC×F×T from three different dimensions into two dimensions to obtain xc ∈ RC×(F·T),
x f ∈ RF×(C·T), xs ∈ RT×(C·F). These three matrices are taken as the three inputs for the
model. Because the three inputs are continuous, the embedding layer of the model is
replaced by a full connection layer. To the best of our knowledge, the order of each channel
in the EEG sequence has no absolute or relative correlation, so we only added positional
encoding on the basis of frequency-wise and step-wise input embeddings. Then, three
sets of encoders were used to capture the correlation of each dimension sequence from
the aspects of step, frequency, and channel information. Each layer of the encoder has
two operations, namely feed forward and multi-head attention composed of multiple
self-attention. The inputs of the self-attention mechanism are Q (query), K (key), and V
(values), and the calculation formula for its output matrix is shown as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

The multi-head attention mechanism further improves the self-attention layer, expands
the ability of the model to focus on different positions, and gives multiple “representation
subspaces” in the attention layer, which is expressed as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headm),where : headi = Attention
(

QWi
QKWi

K, VWi
V
)

(3)
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where m is the number of attention heads, and Wi
Q, Wi

K and Wi
V are the learned projec-

tion matrices.
The output matrix of the multi-head attention layer is transferred into a feed-forward

neural network to enhance feature extraction. Then, the model adds a gating mechanism to
integrate the characteristics of time, frequency, and channel direction. We set the outputs of
the three towers as C, S and F, connected them into vectors, obtained H through the linear
projection layer, and then assigned gating weights g1, g2, and g3 to each output through
the softmax function. Finally, the weight of each gate corresponds to the output of the
corresponding tower, and the eigenvector y is obtained through the following formula.

H = W·Concat(C, S, F) + b, (4)

g1, g2, g3 = So f tmax(H), (5)

y = Concat(C·g1, S·g2, F·g3) (6)

Finally, the feature vector y passes through a linear full connection layer and changes
it into a vector with dimensions (Batch_size,2), and the classification results of the EEG
segments are then obtained.

2.4. Performance Evaluation

In the experiment, the prediction effect was achieved by learning and classifying
the EEG data characteristics of preictal and interictal segments. In order to evaluate the
prediction effect of the prediction system, we introduce some performance evaluation
indexes. In this paper, Accuracy, Sensitivity, Specificity, Precision, Recall, and F1-Score are
used as the evaluation indexes for the model. The calculation formulae are as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (7)

Sensitivity = Recall =
TP

TP + FN
, (8)

Speci f icity =
TN

TN + FP
, (9)

Precision =
TP

TP + FP
, (10)

F1− score =
2× Recall × Precision

Recall + Precision
, (11)

where the true positive (TP) and true negative (TN) are correctly classified as preictal
and interictal EEG segments, respectively. False positives (FP) and false negatives (FN)
indicated that they were incorrectly predicted as preictal and interictal EEG segments.

In real life, however, it is necessary to warn patients and doctors in advance of the
impending seizure, so that the medical doctors can be prepared to properly manage
the episode. In order to evaluate the performance of the seizure prediction model, we
introduced seizure prediction horizon (SPH) and seizure occurrence period (SOP). SOP is
defined as the time-period for predicting seizures, while SPH refers to the time-period from
the alarm to the beginning of SOP, that is, the period of clinical intervention. The successful
prediction of epilepsy means that seizures must occur after SPH and during SOP (Figure 2).
If there is a seizure during SPH or no seizure in SOP, it is considered a false alarm. In
clinical use, the SOP should not be set too long, otherwise it will increase the anxiety of
patients and cause mental stress. The setting of SPH should provide doctors with enough
time for clinical interventions [38]. In order to define an appropriate period for SPH and
SOP, researchers have studied both. According to the survey in [39], the optimal warning
time is 3–5 min. Therefore, we considered setting the SPH to 3–5 min. Nesaei [40] proposed
that SPH + SOP should be more than 10 min and less than 90 min to provide treatment for
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patients and avoid undesirable anxiety. Furthermore, the SOP in many seizure prediction
studies [12,38,41] is generally 30 min. Based on the above considerations, SPH and SOP
in this paper are set to 3 min and 30 min, respectively, that is, when the model gives a
correct alarm, the patient’s seizure should occur between 3 min and 33 min later. However,
the SOP and SPH are usually unknown clinically, and researchers usually chose values
based on assumptions [41]. Studies have shown that the electrical changes that occur in the
brain before seizures are difficult to capture with the human eye [42]. Furthermore, due to
the specificity of seizures, the length of the pre-onset period will vary from a few minutes
to a few hours [43]. This may cause our hypothesis for pre-seizure to deviate from the
ground truth, resulting in the wrong label for individual EEG segments that do not have the
characteristics of typical pre-seizure, thus affecting the accuracy of the prediction results.

Figure 2. The definition of seizure prediction horizon (SPH) and seizure occurrence period (SOP).

The model we proposed is primarily designed to distinguish between preictal and in-
terictal EEG segments, where sporadic false positives during interictal periods are common
and false alarms will appear. The false positive rate (FPR), defined as the number of false
alarms per hour, is an important index for evaluating the prediction of seizures. In order
to reduce the false-positive rate, we further post-processed the classification results of the
model. In this paper, we adopt the k-of-n method put forward by [12] to post-process the
seizure prediction task. In the process of our experiment, we set n = 30 and k = 24, that is,
in the prediction of 30 consecutive EEG segments, at least 24 segments are predicted to be
positive before the alarm will be sent out, and the whole process is regarded as an epilepsy
prediction process.

3. Results

For the purpose of verifying the effectiveness of the proposed model, we conducted
corresponding tests on the CHB-MIT dataset. In the experiment, the interictal phase was
defined as the period 4 h before the seizure and 4 h after the end of the seizure. The
division of epileptic EEG signals is shown in Figure 3. According to the annotation file for
the database, in 24 cases some EEG recording electrodes added or deleted EEG channels
during the measurement process. Therefore, we selected the EEG data from the following
18 electrodes that were considered in most cases for analysis: FP1–F7, F7–T7, T7–P7, P7–O1,
FP1–F3, F3–C3, C3–P3, P3–O1, FP2–F4, F4–C4, C4–P4, P4–O2, FP2–F8, F8–T8, T8–P8, P8–
O2, FZ–CZ, and CZ–PZ. The letter notations are as follows: FP, frontopolar; F, frontal; T,
temporal; O, occipital; C, central; P, parietal (Figure 4). In addition, because the channels
for cases 12 and 13 changed frequently during the recording process, the EEG recordings
may have been polluted, and case 24 had frequent seizures, so we did not have enough
interictal data for training. Therefore, in the experiment, we removed the EEG data for
these three cases and applied the data for the remaining 21 patients to evaluate our model.
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Figure 3. Division of EEG signals in the different stages of epilepsy.

Figure 4. The electrode distribution of EEG signals.

The workflow of the seizure prediction system is shown in Figure 5. First, the EEG
signals in the preictal and interictal segments were extracted and labeled. Second, overlap-
ping sliding windows were used to balance the number of EEG segments in each patient’s
preictal and interictal segments. Third, the time-frequency domain characteristic informa-
tion from the above EEG segments was extracted by STFT to obtain the three-dimensional
spectrogram matrixes. The number of preictal and interictal spectrograms is summarized
in Table 2. Fourth, the feature matrix was inputted to the transformer network model with
a three-tower structure. The characteristics of epileptic EEG signals are learned from the
step-wise, frequency-wise, and channel-wise encoders, and the classification of EEG signals
is realized through the gating mechanism. Finally, the seizure prediction task is finished
after post-processing.

Figure 5. Workflow of the seizure prediction system.
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Table 2. The summary of the number of spectrograms for preictal and interictal periods.

Preictal Interictal

Subject No. 21 21
No. of channels 18 18

No. of spectrograms 312,552 329,437

We divided the EEG segments from all patients into a training set and a test set at a
ratio of 9:1. The model proposed in this paper was built in a Python 3.7 environment using
PyTorch 1.9, and the code is available at https://github.com/xutianyu540/Transformer-
network-with-a-three-tower-structure accessed on 11 April 2022. At the same time, the
gated transformer networks (GTN) model [44] was established for comparative experiments.
The classification results from the final experiments are shown in Table 3.

Table 3. The comparison between the performance of the GTN 1 and our model.

Patient No. of
Seizures

GTN 1 Our Model

Sen 2 (%) Spec 3 (%) Pre 4 (%) Sen 2 (%) Spec 3 (%) Pre 4 (%)

Chb01 7 98.62 98.99 98.96 100 99.88 99.9
Chb02 3 92.61 94.56 94.49 96.88 98.64 98.58
Chb03 7 90.65 91.01 89.87 97.82 96.87 94.31
Chb04 4 91.25 87.94 88.28 93.53 92.15 92.23
Chb05 5 92.34 90.40 90.6 94 99.45 98.95
Chb06 10 91.26 87.93 88.29 93.51 92.1 92.18
Chb07 3 89.04 93.99 93.73 99.11 97.12 97.2
Chb08 5 94.44 91.72 91.89 97.22 95.86 95.89
Chb09 4 87.59 92 91.71 94.53 97.15 97.1
Chb10 7 95.65 90.33 90.53 96.48 98.2 98.11
Chb11 3 89.5 86.25 81.14 97.48 96.39 94.69
Chb14 6 98.59 97.88 97.89 99.29 99.65 99.65
Chb15 13 91.60 88.87 86.67 93.22 97.43 96.63
Chb16 5 85.85 88 87.74 89.85 92.31 92.11
Chb17 3 93.19 95.12 95.04 98.54 97.24 97.28
Chb18 5 94.25 96.06 95.35 98.24 99.67 99.61
Chb19 3 93.56 91.59 89.05 95.56 94.21 92.35
Chb20 6 95.20 94.58 94.43 98.64 97.55 97.49
Chb21 4 89.58 88.63 88.81 93.50 91.55 91.77
Chb22 3 91.20 91.21 90.35 95.53 96.21 95.79
Chb23 5 88.25 89.01 88.81 93.33 91.21 91.29

Average - 92.11 91.72 91.12 96.01 96.23 95.86
1 GTN, gated transformer networks; 2 Sen, sensitivity; 3 Spec, specificity; 4 Pre, precision.

In Table 3, we compare the sensitivity, specificity, and precision of our model with
GTN. It can be seen that for all patients, the average sensitivity and specificity of our
model were 96.01% and 96.23%, respectively, which were significantly higher than the
corresponding values of 92.11% and 91.72% for the GTN model. This indicates that our
model achieved satisfactory results in the classification of both preictal and interictal states.
Compared with the GTN model, the average precision of our method improved from
91.12% to 95.86%. Figure 6 shows a comparison of the classification accuracy and F1 score
for each patient between the GTN model and our model. It can be seen that our model
was greatly improved in accuracy and F1 score. The results show that the proposed model
improves the utilization of temporal, spectral, and spatial information of EEG signals, and
has a better effect on the classification of epileptic EEG signals.

https://github.com/xutianyu540/Transformer-network-with-a-three-tower-structure
https://github.com/xutianyu540/Transformer-network-with-a-three-tower-structure
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Figure 6. The accuracy and the F1 score of the GTN and our model for 21 patients.

The classification results were subsequently post-processed to obtain the prediction
results from our seizure prediction model. The FPR classified for our network alone and
after post-processing is shown in Table 4. It can be seen that after post-processing, our FPR
decreased, on average, from 0.19/h to 0.047/h. This effectively eliminated sporadic errors
from the process of model classification and improved the performance of our epileptic
seizure prediction system so as to better complete the prediction task.

Table 4. The comparison between the performance of the GTN and our model.

Patient No. of Seizures

Without
Post-Processing

After
Post-Processing

FPR 1 (h−1) FPR 1 (h−1)

Chb01 7 0 0
Chb02 3 0.07 0.01
Chb03 7 0.3 0.07
Chb04 4 0.9 0.22
Chb05 5 0.02 0
Chb06 10 0.52 0.13
Chb07 3 0.3 0.07
Chb08 5 0.02 0
Chb09 4 0.3 0.08
Chb10 7 0.1 0.02
Chb11 3 0.1 0.02
Chb14 6 0 0
Chb15 13 0.05 0
Chb16 5 0.1 0.03
Chb17 3 0.07 0.02
Chb18 5 0.02 0
Chb19 3 0.3 0.08
Chb20 6 0.1 0.03
Chb21 4 0.45 0.11
Chb22 3 0.1 0.03
Chb23 5 0.3 0.07

Average - 0.19 0.047
1 FPR: False Prediction Rate.
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4. Discussion

In traditional methods, researchers usually use manually constructed features to
extract the time domain, frequency domain, and nonlinear features of EEG signals. We
proposed a new method that can better use temporal, spectral, and spatial information for
extraction. First, the spectrum of 18 channel EEG segments is obtained by STFT, and then,
the time, frequency and channel information from the spectrum are analyzed by the step-
wise, frequency-wise, and channel-wise encoders in the transformer tower, respectively.
When combined with the gated unit, the features of time, frequency, and spatial direction
are fused to realize the classification of EEG signals. The analysis results show that our
model has better performance and more accurate classification results.

The CHB-MIT dataset used in this study has also been used for performance evaluation
in other studies. Truong et al. [12] combined STFT and CNN to automatically extract and
classify the time-frequency features of EEG signals, and in this instance, the prediction
sensitivity was 81.2% and FPR was 0.16/h. Rukhsar et al. [45] extracted eight time-based
features and predicted seizures through multivariate statistical process control (MSPC),
and obtained 88.89% sensitivity and 0.39/h FPR. Xu et al. [46] proposed an end-to-end
deep learning solution based on CNN. The overall sensitivity and FPR for scalp EEG data
were 98.8% and 0.074/h, respectively. Tang et al. [47] proposed a novel framework of multi-
view convolutional gated recurrent network (Mv-CGRN) and embedded the attention
mechanism in Mv-CGRN, and determined the best feature combination of each patient by
adaptively adjusting the weight parameters, achieving an average sensitivity of 94.50% and
an average FPR of 0.118/h. Zhao et al. [48] used a binary single-dimensional convolutional
neural network (BSDCNN) to predict seizures with a sensitivity of 88.89% and an FPR of
0.39 per hour. Zhang et al. [49] used a simple CNN model to classify the correlation matrix
obtained by calculating the Pearson correlation coefficient to distinguish the preictal states
from the interictal ones and obtained a sensitivity of 92.9%. Table 5 shows a comparison of
the results for our method with the classification algorithms from the above literature. From
the comparative results, our method does not require the complex process of manually
constructing features and it has a lower FPR and higher sensitivity. Although the CNN
network proposed by [46] had higher sensitivity, this study only evaluated EEG data of
seven patients without good generalization. Therefore, from the perspective of overall
performance, our model is more effective at the epilepsy prediction task.

Table 5. The comparison of the results of this work with other reported methods.

Year Authors Feature Classifier No. of
Patients

No. of
Seizures

Sen 1

(%)
FPR

(h−1) SPH

2018 Truong STFT CNN 13 64 81.2 0.16 5 min

2019 Rukhsar Eight temporal-based features MSPC 10 90 88.89 0.39 -

2020 Xu - CNN 7 45 98.8 0.074 5 min

2020 Tang
L-DFA,

relative band energy,
synchronization modularity

Mv-
CGRNi 24 140 94.5 0.118 -

2020 Zhao - BSDCNN 6 - 94.69 0.095 5 min

2021 Zhang Pearson correlation
coefficient matrices. CNN 19 - 92.9 - 15 min

- This
work STFT

Three
tower
trans-

former

21 111 96.01 0.047 3 min

1 SPH, seizure prediction horizon.
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In this work, the proposed model has several limitations. (1) After the feature in-
formation is fused by the gated unit, the model only uses the full connection layer to
classify it, which may lead to redundant parameters and insufficient expression of spatial
structure. (2) Since different patients have specific seizures, their physiological preictal
periods are different. In this paper, if we set SPH as a fixed value, the defined preictal
segments and the prototypical physiological preictal signature (the ground truth) do not
match completely [41], which will lead to some training samples being labeled incorrectly.
In the future, we will further optimize the network structure and explore more accurate
classifiers to classify the characteristic information of an epileptic EEG. In addition, we also
need to analyze the EEG signals of patients in the preictal period to set a more appropriate
SPH value.

5. Conclusions

An effective seizure prediction method will not only better help doctors diagnose
and reduce the pain of patients, it can also help them avoid dangerous activities such as
driving or swimming before the onset of seizures. In this paper, the time domain, frequency
domain, and channel information of EEG signals were fused, combined with a gating unit
and transformer model to classify EEG signals for the prediction of patients’ seizures. The
prediction sensitivity and FPR of our model were 96.01% and 0.047/h, respectively, which
achieves effective classification of epileptic EEG signals and has good seizure prediction
performance. In the future work, we will further optimize our network performance and
apply it to other datasets to achieve a more effective seizure prediction system.
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