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Abstract: Considering the effect of the bridge deck’s bending stiffness and the indirect effect of
adjacent cables (CEB), this paper aims to propose a refined model to reliably analyze the complex
internal resonance mechanism of the tower–multicable–beam coupled system (MCS) under nonlinear
geometric conditions. To accurately analyze the dynamic behavior, the shear difference effect is
applied to simulate the continuous rigidity of the single beam. The dynamic equations of the whole
resonance system are derived based on the D’Alembert Principle and the Finite Difference Method,
the Galerkin Method and verified by the case study. The results of the numerical simulation based
on the Fourth Runge–Kutta Method show that the dynamic parameter of each component is closely
related to the coupled resonance of the system. The dynamic behavior under two conditions, tower–
cable 1:1 resonance (TCR) or cable–beam 1:2 resonance (CBR), is deeply analyzed. Additionally, the
excitation effect of the maximum amplitude by two excitation approaches, the initial displacement or
initial velocity, both show a linear increase. The mutual transmission process of vibration excitation
on the cable through the bridge beam or the tower as the medium is also further discussed.

Keywords: cable-stayed bridges; multicable system; numerical analysis; parametric resonance;
coupled resonance

1. Introduction

Complex spatial cable architecture, such as long-span cable-stayed bridges, exhibits
a complex dynamic characteristic [1]. Due to the periodic change in the lateral restoring
force of the cable, the lateral vibration of the cable is coupled with the horizontal/vertical
vibration of the tower/beam. When the ratio of the local modal frequency of the cable to
the overall modal frequency satisfies a certain relationship, 1:1 or 1:2, a strong and complex
coupled internal resonance will occur in the combined structure [2–4]. So far, the same
characteristic violent vibrations of the cable with a maximum lateral amplitude exceeding
1 m have been observed in real bridge monitoring in many countries [5,6]. The failure
of the dampers on the stay cables caused by this severe vibration will further reduce the
structural stiffness and also seriously affect the safe operation of the bridge [7].

To address this problem, a number of researchers have carried out a wealth of the-
oretical and practical research. Kang [8], Song [9] and Cong [10] proposed a number of
dynamic models reduced from the cable-stayed bridges according to different research
objects and analyzed the parameter sensitivity of the parametric resonance by various nu-
merical simulation methods, such as the Runge–Kutta Method, the Multi-Scale Method and
others. Focusing on the different resonance conditions, 1:2 and 2:1, of cable–beams, investi-
gations were conducted to deeply analyze the characteristics of the parametric resonance
in cable–beam structures [11]. Gattulli V. [12] investigated the mechanism of resonance
change caused by cable end angle changes and analyzed the conversion of low-frequency
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vibration and high-frequency vibration from the perspective of energy transfer. Wang [13]
analyzed the influence factors, such as the frequency ratio of the cable-beam, the excitation
amplitude, the cable force and cable dampers, on the characteristics of structural coupling
by the numerical simulation of a proposed model. In addition, Sun [14,15] observed the
severe vibration phenomena of 2:1 resonance through the model experiment of the cable-
stayed bridge and studied the process of mode shape coupling under different order modes.
Zhang [16] conducted the resonance interval of the frequency ratio between the cable to
beam or tower through a field experiment of the existing bridges. Moreover, Caetano [17]
concluded that the linear cable–deck interaction under the first two internal resonance
modes was considered to be the key excitation source for the cable oscillation with a large
amplitude through the experimental data on Guadiana Bridge. Ouni [18] investigated the
structural dynamic instability phenomenon when the local mode and global mode were
coupled. The influence of excitation amplitude and additional damping on the steady-state
response of stay cables under parametric excitation was further discussed through finite
element analysis and field experiments.

It has been concluded that the parametric excitation polynomial in cable vibration
differential equations is one of the main factors that cause global–local resonance in the
combined systems of cable-supported bridges [12]. It is illustrated that the finite element
model requires a large number of subdivisions to perform the fine analysis of the cou-
pled parametric resonance well [19], and it is definitely difficult to analyze the dynamic
characteristic of the full-bridge resonance accurately. Thus, limited by the difficulty of
accurate finite element division and field testing of bridges, researchers have conducted a
number of refined studies focusing on the parameter sensitivity analysis of the dynamic
behavior of a single-cable system [20–23]. However, the vibration of a single cable does
affect the vibration characteristics of other cables through the indirect effect transformed by
the beam or the tower [24], and the local resonance effect under the single-cable system
cannot accurately reflect the resonance effect under the MCS of the cable-stayed bridge.
More knowledge should be obtained through further studies on the nonlinear dynamics
modeling of the full-bridge system [25].

In this paper, the shear difference in the beam section at each cable’s anchored position
is applied to simulate the effect of the bridge deck’s bending stiffness and the indirect effect
of adjacent cables (CEB). Considering the parabola alignment of the cable and the boundary
of the system, the ordinary differential equations (ODEs) of the vibration system are derived
based on the D’Alembert Principle and the Galerkin Method. The case study is adopted to
verify the effectiveness of the modeling, while the mode shapes of the single beam obtained
by this method and the finite element method are discussed in depth. The effect of the
dynamic parameters obtained from the equation forms and that of the excitation sources on
the parametric resonance have been further investigated through the numerical simulation
based on the Fourth Runge–Kutta method.

2. The Dynamic Model of the MCS
2.1. The Vibration Equations of the Tower and the Cable

The parametric resonance of the cable excited by the tower or the beam is the object of
this investigation. To focus on the object, the dynamic model of a tower–six-cables–beam
structure is established, as shown in Figure 1A. It is agreed that the relevant parameters of
towers, cables, and beams are subscripted by t, c and b; the C1#~C6# cable corresponds to
the 1#~6# subsystem, and the reduced model of the Ci# cable is shown in Figure 1B. The
nomenclature list for the variable parameters is selected as shown in Table 1.

In Figure 1B, the directions of xci and yci represents the chord and transverse direction
of the cable vibration, respectively. To highlight the research emphasis, some assumptions
are given as follows [15,21]: (i) the influence of cable bending and torsion stiffness on
vibration is negligible; (ii) the influence of the cable’s gravity on the string tension in the
chord direction is ignorable; (iii) the flexural, torsional, shear strain and the longitudinal
inertia force of cables are ignorable; (iv) it is believed that the deformation constitutive



Appl. Sci. 2022, 12, 4095 3 of 19

relationship of the cable and the bridge tower satisfies Hooke’s law when it vibrates; and
(v) the axial influence of stay cable on the tower and the beam segment is ignorable.
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Figure 1. The schematic diagram of the dynamic model: (A) the reduced model of a dynamic tower–

six-cables–beam system; (B) the reduced model of the Ci# cable sub-system; (C) the micro-element 

section of the cable. 
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Static modulus of elasticity 𝐸𝑡 

Bending moment of inertia 𝐼𝑡 
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Figure 1. The schematic diagram of the dynamic model: (A) the reduced model of a dynamic tower–
six-cables–beam system; (B) the reduced model of the Ci# cable sub-system; (C) the micro-element
section of the cable.
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Table 1. The nomenclature list for the variable parameters.

Designation Parameter

Tower

Unit mass mt(z)
Static modulus of elasticity Et
Bending moment of inertia It

Damping coefficient ct
Height Lt

Lateral vibration displacement vt(z, t)

Ci# cable

Unit mass mci(xci)
Static modulus of elasticity Eci

Cross-sectional area Aci
Static alignment wci(xci)

Vibration displacement in the chord direction uci(xci, t)
Vibration displacement in the transverse direction vci(xci, t)

Static tension in the chord direction Hci
Dynamic tension in the chord direction hci
Static tension in the tangential direction Tci

Dynamic tension in the tangential direction τci
Displacement of the cable in chord direction Li
The length of the cable under the static state Lci
Sag of the Ci# cable at the midspan position Dci

Damping coefficient cci
The angle of the cable with beam θi

Bi# beam portion

Mass Mbi
Static modulus of elasticity Ebi
Bending moment of inertia Ibi

Damping coefficient cbi

The generalized coordinates, limited with time Vt(t), Vci(t), Vbi(t)
Acceleration of gravity g

In Figure 1, the bridge tower can be regarded as a cantilevered tower with a rigid
foundation, cast-in boundary condition and upper-end tension without considering the
influence of foundation deformation or the superstructure. It is noticeable that this paper
aims to propose a refined model for investigating the simulation of the CEB on the para-
metric resonance of the whole dynamic system. On this basis, it is assumed that the cables
are anchored at the same position of the tower. It is easy to obtain the partial differential
equations (PDEs) of the tower as follows:

M∗t ·
..
vt(z, t) +

.
ct·

.
vt (z, t) + K∗t ·vt(z, t) = F∗t (1)

where M∗t , K∗t and F∗t represent the equivalent mass, equivalent stiffness and equivalent
external force, respectively, and the detailed derivation process is shown in Appendix A.
The in-plane lateral vibration displacement of the tower is as shown in Equation (2):

vt(z, t) =
n

∑
n=1

ϕtn(z)·Vt(t) (2)

where ϕtn(z) represents the mode shape of the nth-order. To reduce the amount of cal-
culation, the following research only studies the first order of the mode shape (n = 1,
ϕt(t) = ϕt1(t)). The boundary conditions of the tower are:

vt(0, t) = 0, vt(Lt, t) = Vt(t) (3)

To avoid complex calculations, only the first mode shape of the tower which satisfies
the geometry and the dynamic boundary conditions is selected as ϕt(z) = 1− cos πz

2Lt
[9,13].
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The parabolic alignment is selected as the initial alignment of the cable under the static
state [9,10]:

wci(xci) =
mcig·Lci

2·cosθi
2Hci

(
xci
Lci
− xci

2

Lci
2 ) (4)

Lci =
∫ Li

0

(
dsi
dxci

)2
· ds0i
dxci

dxci ≈
∫ Li

0

(
dsi
dxci

)3
dxci = Li·[1 + 8·

(
Dci
Li

)2
] (5)

Dci =
mcig·Li

2·cosθi
8Hci

(6)

According to the force relationship between cable balance and vibration, the vibration
dynamic equation of the Ci# cable can be obtained based on the D’Alembert Principle [8,20]:

(Hci + hci)·
∂2vci(xci ,t)

∂xci
2 + hci·

∂2wci(xci)
∂xci

2

= mci·
∂2vci(xci ,t)

∂t2 + cci·
∂vci(xci ,t)

∂t

(7)

hci = Eci Aci·εci ≈ Eci Aci·
[

Uxci +
∂vci(xci, t)

∂xci

∂wci(xci, t)
∂xci

+
1
2

(
∂vci(xci, t)

∂xci

)2
]

(8)

Uxci = uci(Lci, t) + uci(0, t) (9)

where εci represents the dynamic strain in the chord direction of the Ci# cable; Uxci rep-
resents the vibration displacement at both ends of the cable in the direction of xci. For
the reduced Ci# cable dynamic model of the i# subsystem, it should satisfy the following
boundary and continuation conditions:

vci(Lci, t) = −Vbi(t)·cosθi (10)

uci(Lci, t) = −Vbi(t)·sinθi (11)

vci(0, t) = −Vt(t)·sinθi (12)

uci(0, t) = Vt(t)·cosθi (13)

Following the assumptions given in the previous part, the in-plane lateral vibration
displacement of an ideal cable without considering the bending stiffness can be processed
by the method of separating variables [8]:

vci(xci, t) =
n

∑
j=1

ϕcij(xci)·Vci(t)−Vbi(t)·cosθ· xci
Li
−Vt(t)·sinθi·(1−

xci
Li

) (14)

where ϕcin(xci) represents the mode shape of the nth-order and is selected as:
ϕcin(xci) = sin nπxci

Lci
. According to Tagata’s experiment results [26], the fundamental mode occu-

pies the main position in the free vibration of the taut string. Thus, the following research only studies
the first order of the mode shape (n = 1, ϕci(t) = ϕci1(t)). Inserting hci and vci(xci, t) into Equation
(7), by some simplifications, the PDEs of the Ci# cable can be obtained as follows:{

Hci +
E∗ci Aci

Lci
· [−Vbi(t)·cosθi −Vt(t)·sinθi

+
∫ Lci

0
∂wci(xci ,t)

∂xci
· ∂vci(xci ,t)

∂xci
dxci

+
∫ Lci

0
1
2 ·
(

∂vci(xci ,t)
∂xci

)2
dxci]

}
· ∂

2vci(xci ,t)
∂xci

2 +
E∗ci Aci

Lci

·[−Vbi(t)·cosθi −Vt(t)·sinθi

+
∫ Lci

0
∂wci(xci ,t)

∂xci
· ∂vci(xci ,t)

∂xci
dxci

+
∫ Lci

0
1
2 ·
(

∂vci(xci ,t)
∂xci

)2
dxci]·

∂2wci(xci)
∂xci

2

= mci·
∂2vci(xci ,t)

∂t2 + cci·
∂vci(xci ,t)

∂t

(15)

where E∗ci represents the elastic modulus of the Ci# cable revised by the Ernst Method [27]; Aci.
represents the cross-sectional area of the Ci# cable.
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2.2. The Reduced Model of the Beam Considering the CEB
As shown in Figure 1A, the bridge beam is divided into rigid portions connected by springs and

hinges. However, for a Euler–Bernoulli beam with distributed mass and distributed load, the plastic
material properties hypothesis focused on a certain point does not represent the CEB as a whole
structure, which also carries out onerous works on numerical simulation by establishing thousands
of finite element model. To address this problem, the shear difference between the left and the right
side of the beam section at each cable anchor position is applied to simulate the CEB [28–30]. The
refined processes of the reduction are shown in Figure 2A: 1© according to the anchoring position
of each cable, the single beam is reduced to N discrete beam portions connected by spring hinges.
It is assumed that the interval displacement d of adjacent cables stays the same, resulting in that
the equivalent mass and length ∆d between independent beam sections are also the same. 2© The
single beam can be reduced to an integrated system comprised of a number of discrete beam portions.
In Figure 2B,C, to distinguish it from the mass symbol, where Mb(i−1), Mbi represent the bending
moments on the left and right sides of the section between adjacent beam portions, respectively, and
Fb(i−1,i), Fb(i,i+1) represent the shear force on the left and right sides of the beam portion at the cable’s
anchored position, respectively.
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After considering the equilibrium conditions, the vibration equation of the Bi# beam portion
can be obtained by the D’Alembert Principle:

Mbi·
..
Vbi(t)− hci·sinθi + ∆Fi + cbi·

.
Vbi(t) = 0 (16)

where the shear difference ∆F(i) represents the influence between different beam portions due to the
bending stiffness of a continuous single beam. To reduce the amount of the calculation, the finite
difference is also applied to correct the vibration equation of each beam portion. The curvature
ρbi and the bending moment Mbi of the Bi# beam portion can be approximated obtained by the
second-order central difference:

Mbi = −Ebi Ibi·(
1
ρ
)

bi
≈ −Ebi Ibi

d2

[
Vb(i−1)(t)− 2Vbi(t) + Vb(i+1)(t)

]
(17)

The shear at both sides of the micro-segment satisfies the following equations:

∆Fi = −Fb(i−1,i) + Fb(i,i+1) (18)

Fb(i−1,i) =
Mbi −Mbi−1

d
(19)

Fb(i,i+1) =
Mbi+1 −Mbi

d
(20)

Thus, the influence between different beam portions due to the bending stiffness of a continuous
single beam satisfies the equation:

∆Fi =
EI
d3

[
−Vb(i−2)(t) + 4Vb(i−1)(t)− 6Vbi(t) + 4Vb(i+1)(t)−Vb(i+2)(t)

]
(21)

It is noticeable that one end of the B1# beam portion and B6# beam portion is close to the simply
supported end where the bending moment and displacement are equal to zero. Inserting ∆Fi into
Equation (16), by some simplifications, the vibration equation of the Bi# beam portion can be obtained
as follows:

Mbi·
..
Vbi(t)+

E∗ci Aci
Lci

sin2θi·Vbi(t) +
E∗ci Aci
2Lci

sin2θi·Vt(t)− 16Dci Eci Aci
πLi

2 sinθi

·Vci(t)− π2Eci Aci
2Lci

2 ·sinθi·Vci
2(t)− Eci Aci

Lci
2 sin3θi·Vt

2(t)
− Eci Aci

Lci
2 sinθicos2θi·Vbi

2(t) + Eci Aci
2Lci

2 sinθisin2θi

·Vbi(t)Vt(t) + Ebi Ibi
d2 [−Vb(i−2)(t)+4Vb(i−1)(t)− 6Vbi(t)

+4Vb(i+1)(t)−Vb(i+2)(t)] + cbi·
.

Vbi(t) = 0

(22)

3. The Mathematical Model of the MCS
3.1. The Equations of the MCS

To avoid repetition, Vt(t) , Vci(t) and Vbi(t) are all reduced to the symbols Vt , Vci and Vbi.
Equations (1) and (15) are reduced to non-dimensional form equations by imposing the Galerkin
Method. Summarizing Equation (22), the dynamic equations of the whole system can be obtained, as
shown in Equation (23):

..
Vt + α1·Vt + α2 ·

.
V + α3·Vt

2 + α4·Vbi + α5·Vbi
2 + α6·Vci + α7·Vci

2 + α8
·VbiVt + α8 = 0

(23)

..
Vci + βi

1·Vci+ βi
2·

..
Vbi + βi

3·
..
Vt + βi

4·
.
Vci + βi

5·
.
Vbi + βi

6·
.

Vt + βi
7·Vci

2

+βi
8·Vci

3 + βi
9·Vbi + βi

10·Vt + βi
11·Vt

2 + βi
12·Vbi

2 + βi
13

·Vbi·Vt +
[
βi

14
]
·{VbVci}+

[
βi

15
]
·{Vci}·Vt + βi

16·Vci·Vt
2

+βi
17·Vbi

2Vci + βi
18·VbiVci·Vt = 0

(24)

..
Vbi + γi

1·Vbi+ γi
2·

.
Vbi + γi

3·Vbi
2 + γi

4·Vt + γi
5·Vt

2 + γi
6·Vci + γi

7·Vci
2

+γi
8·Vbi·Vt +

EI
d2 ·D· Vbi

Mbi
= 0

(25)

where
..
Vci,

..
Vbi,

.
Vci,

.
Vbi, Vci, Vbi, Vci

2, Vci
3, Vbi

2, VbVci, Vbi
2Vci and Vbi

2 are 6-element vector column
vectors of the same form. To avoid repetition, only the vector of

..
Vci is shown as in Equation (26):

..
Vci =

{ ..
Vc1,

..
Vc2,

..
Vc3,

..
Vc4,

..
Vc5,

..
Vc6

}T
(26)
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In Equations (24) and (25), βi
1, βi

2, βi
3, βi

4, βi
5, βi

6, βi
7, βi

8, βi
9, βi

10, βi
11, βi

12, βi
13, βi

14, βi
15, βi

16, βi
17,

βi
18, γi

1, γi
2, γi

3, γi
4, γi

5, γi
6, γi

7 and γi
8 are sixth-order coefficient diagonal matrices of the same form. To

avoid repetition, only the matrix of βi
1 is shown as Equation (27):

βi
1 =



β1
1

β2
1

β3
1

β4
1

β5
1

β6
1

 (27)

In Equation (25), D is the coefficient matrix, as shown in Equation (28):

D =



0 −4 1
−4 0 −4 1
1 −4 0 −4 1

1 −4 0 −4 1
1 −4 0 −4

1 −4 0

 (28)

In Equation (25), Vbi
Mbi

is a 6-dimensional column vector, as shown in Equation (29):

Vbi
Mbi

=

{
Vb1
Mb1

,
Vb2
Mb2

,
Vb3
Mb3

,
Vb4
Mb4

,
Vb5
Mb6

,
Vb6
Mb6

}T
(29)

The detailed polynomial coefficients in Equation (23) to Equation (25) are given in Appendix B.
In Equation (23) to Equation (25), it is illustrated that a coupling relationship is generated

between the vibration equations of the tower and the Bi# beam portion through the dynamic tension
hci of the cable. The geometric nonlinearity of the system is clear with the existence of second-order
polynomials and third-order polynomials.

In addition, α1, βi
1 and γi

1 represent the polynomial coefficients of parameter incentives [4,8] in
the left side of the vibration equation of the tower, the Ci# cable and the Bi# beam portion, respectively.
The dimensions of these three coefficients are equal to the square of the natural vibration frequency,
named as the dynamic parameters of the tower, Ci# cable and Bi# beam portion participating in
the global vibration in the full-bridge dynamic model in this paper, respectively. Once the stiffness
restoring force of the beam portion and the sag of the cable is ignorable (µ = 0 and neglecting the
sinθi), the coefficient of γi

1 is degenerated to the square of the natural frequency equation of the M2
vibrator (γi

1 = ω2
2) in [4]; once the CEB of the bending stiffness of the single beam is ignorable, the

coefficient of γi
1 is degenerated to the square of the natural frequency equation of the beam (γi

1 = ωb
2)

in [9,31]. Compared with the previous references, the reduced model proposed in this paper considers
more parameters, and thus the model is closer to the actual bridges.

3.2. The Case Verification
The case of a double-cable structure in [25] and the case of the three-cable structure in [31] are

devoted to verifying the effectiveness of the dynamic model and the analytical method in this paper.
The key idea of the verification is to reduce the MCS model of this paper into the case model of
these two references and compare the calculation results after substituting the parameters of these
two references. Without considering the constant coefficient, a logic operation model for numerical
simulation based on SIMULINK/MATLAB is established with the Fourth Runge–Kutta method.
The initial displacement of each component is selected as 0.01 m, while the fixed-step is selected as
0.01 s. The validity and correctness of the dynamic model proposed in this paper are verified by
comparing the vibration displacement curves. The calculation results through the method of this
paper (symbolized as PMS in Table 2) and the references (symbolized as RMS in Table 2) are selected
in Table 2.
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Table 2. The comparison of the self-vibration frequency calculated by different methods.

Provenance Shorthand Dynamic Parameter (
√

β1
1, rad/s)

RMS PMS

The case of double-cable tructure in [25]
S1C1 1.8928 1.8928
S1C2 1.8925 1.8925

The case of three-cable structure in [31]
S2C1 3.0753 3.0731
S2C2 3.0659 3.0747
S2C3 3.0803 3.0748

In Table 2, without considering the influence of gravity on the cable’s vibration, the calculation
results in this paper are basically consistent with the results of related references. For further
comparison, two conditions (S1 and S2) are considered:

(i) Ignoring the vibration displacement of the tower (Vt = 0 in Equation (24)), selecting the

parameters in Reference [25] to satisfy the equation
√

β1 ≈ 2
√

γ1
1 6= 2

√
γ2

1 and comparing
with the Figure 3 of Reference [25];

(ii) Selected parameters in [31] to satisfy the equation
√

α1 ≈
√

β1
1 ≈

√
β2

1 ≈
√

β3
1 and compare

with the Figures 6–8 of [31]. The vibration displacement comparison of C1# cable is selected
under different conditions, as shown in Figure 3.
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Figure 3. The comparison of simulation results obtained from this paper with other researches:
(A) compared with [25]: the vibration displacement comparison of Cable 1 when√

β1 ≈ 2
√

γ1
1 6= 2

√
γ2

1; (B) compared with [31]: the vibration displacement comparison from Cable

1 to Cable 3 when
√

α1 ≈
√

β1
1 ≈

√
β2

1 ≈
√

β3
1.

In Figure 3, although the phases and the maximum amplitudes of these two vibration displace-
ment curves exhibit the difference to some extent, the curve change rules and coupling characteristics
of the two calculation cases are quite similar. It is evident from the results that the reduced model
proposed in this paper can accurately the simulate dynamic behavior of the MCS. Otherwise, during
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the verification process, it was found that the methods proposed in the [25,31] did not consider the
interaction caused by the CEB when the adjacent cables resonated. More specifically, the numerical
analysis of the full-bridge resonance in these two references is adopted under the theoretically given
conditions. This is also the target problem addressed in this article.

4. The Numerical Analysis
4.1. Parameters of the Case

As shown in Figure 3, the symmetrical cable and its anchored beam portion are selected with
the same parameters. The parameters of the cables are consulted with [9,32], which are also referred
from the actual bridges. The basic parameters of each component are presented in Tables 3 and 4.

Table 3. Basic parameters of bridge tower and beam sections.

Parameters (Unit) Tower Parameters (Unit) Bi# Beam Portion

mt (kg/m) 850,000
Mt (kg/m) 250,000
Ebi (MPa) 500

Et (MPa) 450
Ibi (m4) 2.85
di (m) 50

It (m4) 3.0 √
γi

1

B1# 0.2483
B2# 0.2582

Lt (m) 80
B3# 0.1947
B4# 0.1947

√
α1 0.2368

B5# 0.2582
B6# 0.2483

Table 4. Basic parameters of stay cables.

Parameters (Unit) C1# C2# C3# C4# C5# C6#

θi (rad) 0.57 0.82 1.27 1.27 0.82 0.57
Li (m) 148.41 109.67 83.82 83.82 109.67 148.41

Aci (cm2) 99.43 70.18 53.49 53.49 70.18 99.43
Hci (MN) 3.88 3.65 3.49 3.49 3.65 3.88

mci (kg/m) 81.04 57.20 43.59 43.59 57.20 81.04
Dci (m) 0.51 0.16 0.03 0.3 0.16 0.51

E∗ci (GPa) 202 208 209 209 208 202
The Irvine Parameter

λ [32] 0.3848 0.0538 0.0017 0.0017 0.0538 0.3848√
βi

1
0.7478 1.1542 1.6891 1.6891 1.1542 0.7478

From Table 3, it is noticeable that the values of Et It and Ebi Ibi are set relatively lower than the
parameters of actual bridges to meet the requirements of the working conditions.

4.2. The In-Plane Vertical Natural Vibration Mode
To accurately analyze the natural vibration mode of the in-plane vertical mode, the MCS is also

analyzed through the finite element method (FEM) by commercial software (MIDAS CIVIL). The
tower and the beam are all performed by the beam element while the cable is performed by the truss
element. The in-plane vertical natural vibration frequencies are selected in Table 5, while the vertical
modal shapes of the first five orders are selected as shown in Figure 4, respectively.

Table 5. The in-plane vertical model properties of the MCS.

Mode No. Abbreviation
f (Hz)

Error (%)
FEM PMS

1 V1 0.01308 0.01309 0.8
2 V2 0.01339 0.01340 0.7
3 V3 0.01780 0.01781 0.6
4 V4 0.02457 0.02459 0.8
5 V5 0.03452 0.03453 0.3
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In Table 5, the calculation errors with these two methods varied within a small margin. There
is little difference between the first two modes of the dynamic system. Additionally, in Figure 4,
the vertical mode shapes obtained by PMS fit those obtained by FEM well. It is illustrated that the
fundamental vibration shapes and frequencies of the components occupying lower-order modes are
not much different. Additionally, it is evident from the comparison of the results that the dynamic
model and the numerical analysis in this paper can accurately simulate the CEB.

4.3. The Numerical Analysis of the Dynamic Parameter
In this part, sub-system #1 is selected as the research object to apply the numerical analysis.

The Fast Fourier Transform method is applied to obtain the spectrogram of different components in
sub-system #1. To further verify the effectiveness of the model proposed in this paper on the dynamic
analysis, changing the dynamic parameter of each component with variable properties, the dynamic
parameter ratio of the tower, cable and beam is deeply discussed through three working conditions
which have been widely verified to be the parametric resonance conditions [8,9,11,17,28,31]:

1. The first working condition (W1): change mt = 85, 000 kg/m to satisfy the equation
√

α1:
√

βi
1 ≈

1 : 1, and the displacement and the spectrogram of each component is obtained, as shown in
Figure 5A;

2. The second working condition (W2): change Mbi = 70, 000 kg to satisfy the equation
√

βi
1:
√

γi
1 ≈

1 : 2, and the displacement and the spectrogram of each component is obtained, as shown in
Figure 5B;

3. The third working condition (W3): change mt and Mbi at the same time to satisfy the equation
√

α1 :
√

βi
1:
√

γi
1 ≈ 1 : 1 : 2, and the displacement and the spectrogram of each component are

obtained, as shown in Figure 5C.

By applying the Fourth Runge–Kutta method on the undamped model, the initial displacement
of each component is selected as 0.01 m, while the fixed-step is selected as 0.02 s. The analytical
results of the above three conditions are shown in Figure 5.

In Figure 5, it is illustrated that the resonance of the Tower–Cable or Cable–Beam would respec-

tively be observed when the equation of
√

α1:
√

βi
1≈1:1 or

√
βi

1:
√

γi
1≈1:2 is satisfied. In Figure 5A,

when
√

α1:
√

βi
1≈1:1 is satisfied, the coupled resonance can be observed from the displacement curves

between the tower and the C1# cable. A significant characteristic of the ‘beat’ can be observed on the
cable displacement curve. From the spectrogram in Figure 5A, when the vibration frequency of the
tower ( ft = 0.8161 Hz or or 0.8161 Hz) changes to the same value as the C1# cable ( fC1# = 0.8161 Hz),
the cable amplitude reaches the peak of the maximum, which is 9.148 times the initial amplitude;

in Figure 5B, when
√

βi
1:
√

γi
1 ≈ 1 : 2 is satisfied, the coupled resonance can be observed from the

displacement curves of the C1# cable and the B1# beam portion. In addition, from the spectrogram
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in Figure 5B, when the vibration frequency of the C1# cable ( fC1# = 0.7391 Hz) changes to nearly
half the value of the B1# beam portion ( fB1# = 1.485 Hz), the cable amplitude reaches the peak of
the maximum, which is 13.36 times the initial amplitude. Particularly in Figure 5C, the condition is
regarded as the special working condition of the parametric resonance. Under this condition, the
total energy conversion trans between the tower, the cable and the beam. From the spectrogram in
Figure 5C, it is clear that the resonance modes in the system are extremely rich. Different resonances
influence and interfere with each other while obtaining a lower maximum amplitude, 7.289 times
initial amplitude, than the first two conditions. In general, the parameter of α1, βi

1 and γi
1 characterize

the ability of different components to participate in the global resonance to a certain extent and are
evidently important parameters for the dynamic design of cable-stayed bridges.
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5. The Influence Discussion on the Internal Resonance under Different Excitations
To accurately analyze the influence of the different excitations from different components on the

parametric resonance, the controlled variable method is applied and the conditions of W1 and W2
are selected. The initial velocity (vin) or initial displacement (Vin) of the tower, the cable and beam in
subsystem #1 is changed from 0 m to 0.02 m, respectively. It is noticeable that the subscript indicates
the initial state of the parameter. The maximum value (Vc1max) of the different components under
these two conditions and the fitting curves are selected, as shown in Figure 6.
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From Figure 6, the correlation coefficients of the fitting R2∈ [0.9381, 0.9999] show a significant
relationship of linear increase. The initial velocity and initial displacement of different components
will have different excitation effects on the cable when the parametric resonance is satisfied in this
sub-system. Additionally, in Figure 6D, some curves seem to remain at 0 until Vin = 0.8 cm, while it
is known that the internal resonance occurs only above a threshold amplitude. To further discuss
the influence on the parametric resonance, the correlation coefficients of the influence (k-Vin or k-vin),
also regarded as the slopes of polynomial linear fitting curves, are selected, as shown in Figure 7.

In Figure 7, the axis coordinate range locates at the interval of [–2,10]. The smaller the slope
value, the closer to the center point, and the less significant the effect. Based on this, several priority
phenomena of resonance excitation in the parametric resonance of MCS can be clearly observed:
1© the excitation effect of the initial displacement under the condition of CBR is generally larger

than that under the condition of TCR; 2© the excitation effect of the initial displacement is generally
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larger than that of the initial velocity; 3© the excitation sequence of the internal components of the
subsystem is: beam > tower > cable; 4© the excitation effect of the initial displacement under the
condition of CBR has the most significant influence among the others, whose influence coefficient
(k-Vbin) reaches the peak of 9.457.
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Additionally, the cable can also be excited by the indirect influence of adjacent cables under the
whole condition of MCE. To analyze this effect, the initial displacement of the beam section under the
W1 working condition, whose coupling ‘beat’ characteristic is relatively obvious, is applied to the
background of the investigation object. The initial displacement of the B1# beam portion, B2# beam
portion and B3# beam portion are selected as 0.01 m, while other parameters are selected as 0. The
displacement of the C1# cable is shown in Figure 8.
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From Figure 8, the cable of the MCS can be excited by the components of other sub-systems
through the medium effect of CEB or the tower. The originally static component would be excited
to obtain an initial velocity or displacement due to the effect. Moreover, if the sub-system of the
exciting cable satisfies the parametric resonance conditions, the effect will be converted into the
parametric resonance excitation of the cable, resulting in a severe oscillation. In addition, the closer
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the beam portion of the resonant subsystem is, the larger the resonance amplitude of the cable. It
appears possible that the resonance energy can be transformed to other sub-systems through the CEB.
Thus, it is important to focus on the dynamic parameters of the components avoiding the parametric
resonance conditions in the design phase.

6. Conclusions
This paper aims to simulate the CEB of the MCS and investigate the excitations of parametric

resonance through the defined relationship of the dynamic parameters of different components. To
make ODEs more accessible to the numerical simulation, the shear difference and the finite difference
method are applied to simulate the CEB of the MCS, whose accuracy and effectiveness have been
verified by the case study and the dynamic analysis of mode shapes. A few meaningful conclusions
are obtained as follows:

1. The CEB, including the effect of bending stiffness of the single beam or indirect influence of
adjacent cables, does affect the parametric resonance. The effectiveness of the refined dynamic
model considering CEB has been verified by case investigations.

2. The concept of dynamic parameters of each component, which affects the conditions of the
parametric resonance, is proposed in this paper and deeply discussed with the influence effect
on the parametric resonance.

3. The excitation effects of different initial conditions are discussed in this paper. The excitation
of the beam’s initial displacement under the condition of the CBR, by which the maximum
displacement of the cable reaches the peak of 13.36 times the initial value, is relatively large
among others. In addition, the different internal resonance behavior of the cable would interfere
with each other, resulting in the relatively small maximum vibration displacement of the cable
when the CBR and TCR occur at the same time.

4. The process of the energy conversion through the medium of the CEB or the tower has been
simulated when the parametric resonance occurs. It is evident that the indirect coupling effect of
adjacent cables through the beam or the tower cannot be ignored in the parametric resonance of
the MCS. Hence, the dynamic analysis of CEB should be paid more attention to the engineering
design of the cable-stayed bridge.

The reduced model established in this paper provides an accessible method for investigating
the dynamic characteristics of MCS. The next step of the research will focus on the refined simulation
of the single beams and the high-order modal nonlinear resonance analysis of the cable.
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Appendix A

For the tower, the kinetic energy is:

Tt =
1
2
·
∫ Lt

0
Mt(Z)·

[ .
vt(z, t)

]2dz =
1
2
·
∫ Lt

0
Mt(Z)·ϕt(z)

2·
.

Vt(t)
2dz (A1)

To avoid the complex calculation, the influence of the additional axial force on the vibration,
such as the gravity and the influence of stay cable, is ignorable while establishing the potential energy
equation. Thus, the bending potential energy is:

Vt =
1
2
·
∫ Lt

0
Et It·[vt(z, t)′′ ]2dz =

1
2
·
∫ Lt

0
Et It·[ϕt(z)′′ ]

2·Vt(t)
2dz (A2)
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The damping work is:

Dt =
1
2
·
∫ Lt

0
ct·
[ .
vt(z, t)

]2dz (A3)

According to the Lagrange Functions, the dynamic:∫ Lt
0 Mt(Z)·ϕt(z)

2 dz·
..
Vt(t)− 0 +

∫ Lt
0 Et It·[ϕt(z)′′ ]

2dz·Vt(t)

+
∫ Lt

0 ct·ϕt(z)
2dz·

.
Vt(t) =

6
∑

i=1
(Hi + hi)cosθi·δ(z− zi)

(A4)

δ(z− zi) represents the Dirac delta function, shown as follows:

δ(z− zi) =

{
δ(z− zi) = 0, (z 6= zi)∫ +∞
−∞ δ(z− zi)dz = 1, (z = zi)

(A5)

Set:

M∗t =
∫ Lt

0
Mt(Z)·ϕt(z)

2dz·
..
Vt(t) (A6)

C∗t =
∫ Lt

0
ct·ϕt(z)

2dz (A7)

K∗t =
∫ Lt

0
Et It·[ϕt(z)′′ ]

2dz (A8)

F∗t =
6

∑
i=1

(Hci + hci)cosθi·δ(z− zi) (A9)

Finally, Equation (1) can be obtained as:

M∗t ·
..
vt(z, t) + C∗t ·

.
vt (z, t) + K∗t ·vt(z, t) = F∗t (A10)

Appendix B

α1 =
π5·EtIt

16(3π − 8)mtLt4 + ∑6
i=1

π2E∗ciAcj·sin2θi

(3π − 8)(−2 + π)mt·LciLt
; α2 =

ct

mt
;

α3 = −∑6
i=1

π2EciAci
(−2 + π)(3π − 8)mtLtLci

2 ·sin3θi; α4 = ∑6
i=1

πE∗ciAci

(3π − 8)mtLtLci
·sin2θi;

α5 = −∑6
i=1

πEci Aci
(−2 + π)(3π − 8)mtLtLci

2 ·sinθicos2θi; α6 = −∑6
i=1

32πDciEci Aci
(−2 + π)(3π − 8)mtLtLi

2 ·sinθi;

α7 = −∑6
i=1

π4Eci Aci
2(−2 + π)(3π − 8)mtLtLci

2 ·sinθi; α8 = ∑6
i=1

πEci Aci
(−2 + π)(3π − 8)mtLtLci

2 ·sinθisin2θi;

α9 = −∑6
i=1

2π2Hisinθi
(−2 + π)(3π − 8)mtLt

; (A11)

βi
1 =

512Dci
2E∗ci Aci

π2mci·Li
4 +

π2·Hci
mci Lci

2 ; βi
2 = − 2

π
·cosθi; βi

3 = − 2
π
·sinθi; βi

4 =
1

mci
·cci;

βi
5 = − 2

mci·π
·cosθi·cci; βi

6 = − 2
mci·π

·sinθi·cci; βi
7 =

16πDci·E∗ci Aci

mci·Li
2·Lci

2 ; βi
8 =

π4·E∗ci Aci

4·mci·Lci
4 ;

βi
9 = −

32DciE∗ci Aci

mci·πLci·Li
2 ·sinθi; βi

10 = −
32DciE∗ci Aci

mci·π·Lci·Li
2 ·cosθi; βi

11 =
16DciE∗ci Aci

mci·πLci
2·Li

2 ·sin2θi; (A12)

βi
12 =

16DciE∗ci Aci

mci·πLci
2·Li

2 ·cos2θi; βi
13 = −

16DciE∗ci Aci

mci·πLci
2·Li

2 ·sin2θi; βi
14 = −

π2·E∗ci Aci

mci·Lci
3 ·sinθi;

βi
15 = −

π2·E∗ci Aci

mci·Lci
3 ·cosθi; βi

16 =
E∗ci Aci·π2

2·mci·Lci
4 ·sin2θi; βi

17 =
E∗ci Aci·π2

2·mci·Lci
4 ·cos2θi;
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βi
18 = −

E∗ci Aci·π2

2·mci·Lci
4 ·sin2θi;

γi
1 =

E∗ci Aci

Mbi Lci
·sin2θi + µ· Ebi Ibi

Mbid3 ; µ =

{
−5, i = 1or N
−6, 1 < i < N

; γi
2 =

cbi
Mbi

;

γi
3 = −

E∗ci Aci

2·Mbi·Lci
2 ·sinθicos2θi; γi

4 =
E∗ci Aci

2Lci·Mbi
·sin2θi; γi

5 = −
E∗ci Aci

2·Mbi·Lci
2 ·sin3θi; (A13)

γi
6 = −

16DciE∗ci Aci

π·Mbi Li
2 ·sinθi; γi

7 = −
π2E∗ci Aci

4·Mbi Lci
2 ·sinθi; γi

8 =
E∗ci Aci

2·Mbi·Lci
2 ·sinθisin2θi; γi

9 =
Ebi Ibi
Mbid3 ;
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