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Abstract: The subject of this article is to determine COVID-19 vulnerability risk and its change over
time in association with the state health care system, turnover, and transport to support the crisis
management decision-making process. The aim was to determine the COVID-19 Vulnerability Index
(CVI) based on the selected criteria. The risk assessment was carried out with methodology that
includes the application of multicriteria analysis and spatiotemporal aspect of available data. Partic-
ularly the Spatial Multicriteria Analysis (SMCA) compliant with the Analytical Hierarchy Process
(AHP), which incorporated selected population and environmental criteria were used to analyse the
ongoing pandemic situation. The influence of combining several factors in the pandemic situation
analysis was illustrated. Furthermore, the static and dynamic factors to COVID-19 vulnerability risk
were determined to prevent and control the spread of COVID-19 at the early stage of the pandemic
situation. As a result, areas with a certain level of risk in different periods of time were determined.
Furthermore, the number of people exposed to COVID-19 vulnerability risk in time was presented.
These results can support the decision-making process by showing the area where preventive actions
should be considered.

Keywords: risk management; decision-making; Spatial Multicriteria Analysis; temporal analysis;
vulnerability risk; COVID-19

1. Introduction

The end of 2019 brought the outbreak of SARS-CoV-2 followed by introducing a global
state of emergency that affected the lives of people around the world [1,2]. For this reason,
it became a popular subject of research for scientists from various disciplines. The spatial
nature of the pandemic determines the increasing number of articles with the use of spatial
data. Among them, the discussion on new challenges in operational crisis management
and the role of spatial information and spatial technologies is visible [3].

The search performed on the “crisis management” phrase only in the Web of Science
database (WoS) resulted in 59,138 research items (as of 20 October 2021), 5620 of them have
been published in 2021, and 4424 were related to the pandemic of COVID-19. This leads
to the conclusion that the problem of crisis management is a hot topic of science. In order
to identify the ongoing trends in literature, “crisis management spatial analysis” research
was performed and the obtained results were presented with the use of Weighted Network
Visualization (WNV) shown in Figure 1.

The WNV was prepared with the use of the fractionalization method for normalizing
the strength of the links between items [4]. The bigger the label, the higher the weight of
certain terms. The colours are determined by the cluster to which the term belongs, while
lines represent links: the closer two terms appear, the stronger the correlation between them.
For example, Geographic Information System (GIS) is strongly related to “vulnerability”,
“model”, “framework” etc. The homonyms joining were not performed.

Appl. Sci. 2022, 12, 4090. https://doi.org/10.3390/app12084090 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12084090
https://doi.org/10.3390/app12084090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3264-9544
https://orcid.org/0000-0001-9114-5317
https://doi.org/10.3390/app12084090
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12084090?type=check_update&version=2


Appl. Sci. 2022, 12, 4090 2 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 30 
 

them. For example, Geographic Information System (GIS) is strongly related to “vulnera-

bility”, “model”, “framework” etc. The homonyms joining were not performed. 

 

Figure 1. Weighted network visualisation of associations between terms within “crisis management 

spatial analysis” keyword relations (own study). 

The WNV shows a strong presentation of management, crisis, model, and GIS in the 

body of literature. Also, well-established trends on the possible applications of spatial 

analysis and SMCA (the analyses take into consideration a group of variable factors and 

assess their changes over time) were noticeable in broadly understood decision process 

and decision management with: suitability map [5–9], scenario evaluation method [10–

12], resources allocation [13], transportation and vehicle routing [14–18], impact assess-

ment [19–21], location migration and allocation [13,20,22,23], risk management and natu-

ral hazards occurrence can be noted [2,24–32]. This state according to [30,33–35] will per-

sist, driven by the new applications of spatial analysis in GIS, and will include crisis man-

agement aspects. 

More detailed analysis shows the use of the GIS environment [36–38] with recently 

developed methodologies to support the decision-making process in crisis management 

at the local level [29,39] and it is emphasized that its essential part was the visualisation 

of crisis progress, shown with the use of interactive, realistic, large-scale simulations [40]. 

The results of analyses may be used in several crisis situations like flooding, land-

slides [24,41] or for vulnerability or risk index estimation of selected areas or infrastruc-

ture elements [40,42–44] in order to provide the recommendation for the administrative 

strategies to minimize the social and economic effects of crisis situations [32,45–47]. 

According to the authors, the vulnerability index [31], susceptibility models, or sus-

ceptibility maps [48,49] should be determined with the use of different methods [50], de-

pending on the area and crisis situation in order to ensure optimal performance and reli-

able results [51,52]. Reliability of results depends on the accuracy of data which is one of 

the crucial problems revealed in publications on spatial data next to the techniques for 

information extraction [24,41,53,54]. Those are followed with conclusions on the use of 

Figure 1. Weighted network visualisation of associations between terms within “crisis management
spatial analysis” keyword relations (own study).

The WNV shows a strong presentation of management, crisis, model, and GIS in the
body of literature. Also, well-established trends on the possible applications of spatial anal-
ysis and SMCA (the analyses take into consideration a group of variable factors and assess
their changes over time) were noticeable in broadly understood decision process and deci-
sion management with: suitability map [5–9], scenario evaluation method [10–12], resources
allocation [13], transportation and vehicle routing [14–18], impact assessment [19–21], loca-
tion migration and allocation [13,20,22,23], risk management and natural hazards occur-
rence can be noted [2,24–32]. This state according to [30,33–35] will persist, driven by the
new applications of spatial analysis in GIS, and will include crisis management aspects.

More detailed analysis shows the use of the GIS environment [36–38] with recently
developed methodologies to support the decision-making process in crisis management at
the local level [29,39] and it is emphasized that its essential part was the visualisation of
crisis progress, shown with the use of interactive, realistic, large-scale simulations [40].

The results of analyses may be used in several crisis situations like flooding,
landslides [24,41] or for vulnerability or risk index estimation of selected areas or infras-
tructure elements [40,42–44] in order to provide the recommendation for the administrative
strategies to minimize the social and economic effects of crisis situations [32,45–47].

According to the authors, the vulnerability index [31], susceptibility models, or sus-
ceptibility maps [48,49] should be determined with the use of different methods [50],
depending on the area and crisis situation in order to ensure optimal performance and
reliable results [51,52]. Reliability of results depends on the accuracy of data which is
one of the crucial problems revealed in publications on spatial data next to the tech-
niques for information extraction [24,41,53,54]. Those are followed with conclusions on
the use of heterogeneous data sources and remotely sensed data to improve the analysis
results, [53,55,56], furthermore, authors show that the potential improvement in the accu-
racy of GIS-based analysis can be achieved by applying a dedicated approach, for example,
neural network [54], integrated uncertainty-sensitivity analysis approach, and attributed
model of criteria weights [56].
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Pandemic situation publications are considering the causes and potential effects of
COVID-19. Researchers show the positive associations between new COVID-19 cases and
death cases linked to several factors: public transport usage [15,23,46–60], temperature
and humidity [21,61], age, sex, blood group, had influenza [50,62,63], poverty [64], and
socio-cultural factors [65]. Furthermore, the juxtaposition of virus transmission acceleration
in several countries in relation to the global policy and government responses, human
mobility, environmental impact, socioeconomic, lockdown, migration, and vaccination
was delivered [20,59,66,67] based on the developed spatiotemporal data matrix of factors
and open data sources. The above leads to the determination of the most significant
factors, enabling the prediction and modelling of the spatial patterns of virus spread. The
researchers commonly use spatial statistic tools such as linear and non-linear regression [50],
Bayesian Belief Networks [68], Adaboost algorithm [69], Potential Model [70], Joinpoint
analysis [71], machine learning [50,72] in modelling COVID-19 spatial pattern. As a result,
it is possible to forecast the COVID spread and to deliver an effective response in cluster
containment for crisis situations with intelligent computing [20,62,70,73,74].

Publications considering the effects of the pandemic show the use of socioeconomic
data collection on daily new COVID-19 cases to link them to real gross domestic product, un-
employment rate, housing prices, export and import, energy system environment [73,75–79].

In the analysed publications on the subject of crisis management, the following prob-
lems are considered: the definition of risk, vulnerability, and hazard [80], the analysis of the
existing crisis situation, and the management process [2,32,38,65,81–83]. The pivotal role of
crisis management is to ensure public safety, in the matter of a pandemic, it is closely related
to the capacity of the healthcare system [44,84–86]. Therefore, crisis management has to
eliminate the possibility of an overload of the healthcare system, so that the number of
new hospitalisations does not exceed the capacity of the healthcare system in a given area,
as shown in Figure 2. Therefore, it is necessary to efficiently manage the available forces
(medical staff, volunteers, services) and resources (infrastructure, equipment, equipment,
and material reserves, restrictions, vaccinations) in time.
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Figure 2. Healthcare system capacity and possible new cases.

Thus, it was assumed that the essential knowledge on the pandemic situation and
COVID-19 vulnerability should be considered in a spatiotemporal approach. This deter-
mined the aim of our research: to estimate the vulnerability index based on selected criteria
along with the determination of its change over time in order to assess the threat caused by
COVID-19 in the given area. This will extend the approach presented [31].
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Based on a comprehensive analysis of the literature, the aim of this article was to
answer the following questions:

• What information can a study of the spatiotemporal vulnerability and risk provide?
• What is the influence of selected criteria on the final value of the COVID-19 vulnerability?
• What direction of changes over time can be observed in the distribution and concen-

tration of vulnerability risk?
• What decisions can be made based on the result of the spatiotemporal vulnerability map?

The novelty of our approach is the use of spatiotemporal multicriteria analysis for
COVID-19 situation vulnerability risk assessment in order to support a quick decision-
making process. The solution will be valuable to making decisions on implementing
preventive actions in the selected area, especially in the initial period of a pandemic by
showing the change of vulnerability risk in the selected area in time. Furthermore, the use
of basic data in COVID-19 vulnerability estimation plays a pivotal role by addressing the
methodology to the countries where more detailed data are not available.

2. Materials and Methods

The spatiotemporal analysis approach applied in this research was based on Spatial
Multicriteria Analysis (SMCA) with Analytical Hierarchy Process (AHP) for weights calcu-
lation described in. The used methodology is presented in Figure 3. The general concept
of SMCA was described in [87,88]. In this article, SMCA allows for the determination
of COVID-19 Vulnerability risk—defined as a situation where the risk of exposure to the
hazard might be increased [89]. The presented approach allows for the estimation of the
COVID-19 Vulnerability risk index (CVI) of the selected area and its characteristics over
time. The test field of the solution was Germany.

Figure 3. The methodology of spatiotemporal index estimation performed in research (own study).

AHP methodology allows for the importance estimation by calculating the weight of
selected criteria by means of pairwise comparisons of each evaluation criterion.
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The application of the AHP methodology is based on a value-function type and as
such requires an estimation of the value function and criterion weights to determine the
summary statistics on the selected area as below [87]:

CVI =
n

∑
i=1

Wi × Sn (1)

where CVI is COVID-19 Vulnerability Index, Wi is normalized weight, and S is the Vul-
nerability Score of the area on the selected layer (n) as value function. Value function and
weights are obligatory for estimation. The function values in the paper case study were
determined by calculation based on the available dataset. The weights were estimated by
pairwise comparisons of each evaluation criteria. This determines the relationship strength
between the criteria, that was used to rank selected criteria based to the [90].

In this paper CVI calculations were extended by authors with the spatiotemporal
analysis to show CVI change in time as follows:

∆CVI = CVIti − CVIti−1 (2)

where ∆CVI is the change in time for summary COVID-19 Vulnerability Index for three
months’ interval.

Furthermore, based on the value of CVI on the selected area the population number
endangered with a certain level of vulnerability in time was estimated. This was performed
with the use of GIS systems.

The results validation consists of comparing the values of CVI with new cases over time
and this is followed with the calculation of the value of the R-squared, to show the propor-
tion of the variance for confirmed COVID-19 cases and CVI index as dependent variables.

Criteria and Weights

Based on the literature review it was assumed that the criteria needed to determine
the CVI were basic country demographic statistics listed in Table 1.

Table 1. SMCA criteria and criteria data sources (own study).

Criteria Criteria Explanation Data Source Criteria Type

Cas Number of COVID cases per 100,000 inhabitants rki.de

Dynamic
Serv Turnover rate for accommodation and food services in relation

to the period before the pandemic destatis.de

Mb The estimation of population movement destatis.de
Hsp Number of COVID hospitalisations per 100,000 inhabitants rki.de
Vacc Population percentage of two doses vaccinated rki.de

Hos Number of hospitals in the region per 100,000 inhabitants destatis.de

Static
Hbed Total number of hospital beds on region per 100,000 inhabitants destatis.de
PDen Population density per sq. km destatis.de

Rd Total length of roads in the region OSM
Rs Total length of railways in the region OSM

This simple set of criteria enables the implementation of the COVID-19 vulnerability
risk assessment algorithm by all, even less advanced countries if needed. The research
was based on several open data sources, such as web services that present demographic
statistics: destatis.de [91] and the Robert Koch Institute Site [92], were used. Furthermore,
to estimate the information on the transport network, selected data from OpenStreetMap
were acquired and analysed. [93]. The case study area was limited to Germany, and the
analyses were divided by regions.

The listed criteria presented in Table 1 can be grouped into two categories: dynamic
(quickly changing in time) and static (slowly changing in time or static).
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The criteria determination process was followed by the pairwise comparison that
resulted in the importance determination (in accordance with the AHP methodology). The
importance of relations can be found in Table 2. The larger the relative importance values
were, the stronger the relation that can be assigned to the pair of criteria.

Table 2. Determination of relative importance based on own study [90].

Relative Importance Definition Explanation

1 Equal importance Two activities contribute equally to objective
3 Weak importance Experience and judgement slightly favour one activity over another
5 Strong importance Experience and judgement strongly favour one activity over another
7 Demonstrated importance One activity is strongly favoured and demonstrated in practice

9 Extreme importance The evidence favouring one activity over another is of the highest
possible order of affirmation

2, 4, 6, 8 Intermediate values When compromise is needed between two adjacent judgments

The methodology was used to select and compare the criteria. Pairwise comparisons
resulted in the estimation of weights that are presented in Table 3. Validation of calculated
weights returns Consistency Ratio (CR), which was 0.10; Consistency Index (CI) 0.15.
According to the weights listed in the table, the greatest importance can be assigned to the
following criteria: Hos, Hbed, Cas, PDen, Hsp.

Table 3. AHP pairwise comparison matrix with calculated weights (own study based the [90]).

PDen Serv Hos Hbed Cas Vacc Hsp Mb Rd Rs Criteria Weight

PDen 1.00 6.00 0.25 0.25 0.50 2.00 3.00 4.00 3.00 4.00 0.10
Serv 0.16 1.00 0.11 0.11 0.14 0.25 0.25 0.33 0.50 0.33 0.02
Hos 4.00 9.00 1.00 2.00 3.00 4.00 3.00 8.00 8.00 8.00 0.26

Hbed 4.00 9.00 0.50 1.00 4.00 4.00 6.00 8.00 8.00 8.00 0.25
Cas 2.00 7.00 0.33 0.25 1.00 3.00 3.00 6.00 6.00 6.00 0.14
Vacc 0.50 4.00 0.25 0.25 0.33 1.00 0.25 5.00 4.00 5.00 0.07
Hsp 0.33 4.00 0.33 0.16 0.33 4.00 1.00 4.00 3.00 4.00 0.08
Mb 0.25 3.00 0.13 0.13 0.16 0.20 0.25 1.00 2.00 2.00 0.03
Rd 0.33 2.00 0.13 0.13 0.16 0.25 0.33 0.50 1.00 2.00 0.03
Rs 0.25 3.00 0.13 0.13 0.16 0.20 0.25 0.50 0.50 1.00 0.02

Analysis of results in the static and dynamic groups show that the static criteria affected
the CVI estimation twice as strongly as the dynamic criteria (static sum weights: 0.66;
dynamic sum weights: 0.34).

To calculate the CVI of the region, the criteria vulnerability score was determined
based on the categories in Table 4 (the remaining criteria risk score available in Appendix A).
The assigned vulnerability score (VSc) takes values in the range from 2 to 8. The high
score represents a high vulnerability in the term of the relevant criterion. For example,
density—greater than 2000 people per sq. km—corresponds to the vulnerability value of 8.

Table 4. The selected criteria scores (own study based on [90]).

Criteria/VSc PDen Serv Hos Hbed Cas Vacc

2 <100 <20 >10 >2000 <1 >75
3 100–200 20–40 8–10 1400–2000 1–2 60–75
4 200–300 40–55 6–8 800–1400 2–6 50–60
5 300–500 55–70 4–6 400–800 6–12 30–50
6 500–1000 70–85 2–4 200–400 12–20 15–30
7 1000–2000 85–100 1–2 100–200 20–30 5–15
8 >2000 >100 <1 <100 >30 <5
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3. Results and Discussion
3.1. Vulnerability Score Value Analysis for Individual Criteria

For each criterion, the VSc values were estimated. Next, the VSc map was developed
as a choropleth map. The example map is presented in Figure 4.
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Figure 4. VSc map for population density.

The map shows the information on a selected day (12 May 2021) and gives the rep-
resentative vulnerability level in accordance with the selected criteria score related to
COVID-19 pandemic and its spatial location.

The intensive colours represent large numbers of density and correspond to the high
COVID-19 VSc. The light colours represent low populated areas and correspond to a
low score of vulnerability for selected criteria. High value can be noticed in Hamburg,
Bremen, and Brandenburg. The population density criteria generate vulnerability risk that
is constant in time for each region. A similar effect of constant vulnerability can be observed
for all static criteria. VSc values of individual criteria can be found in Figures 5 and 6.

All maps present various VSc. The highest score value of criteria in summary for all
regions can be assigned to the numbers of hospitalisations and new cases, the lowest to the
railway and road density.

Areas marked with the highest score values may generate potential COVID-19 vulner-
ability risk so the preventive actions should be there considered.
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3.2. COVID-19 Vulnerability Index Analysis

The CVI was a result of summaries of the vulnerability values for each criterion
multiplied by their weight. The CVI map in Figure 7 presents the various risks classified
into five categories from very low to very high. The highest CVI occurs e.g., in the Hamburg,
Bremen, Niedersachsen Mecklenburg-Vorpommern, Berlin, Brandenburg. Bayern and
Nordrhein-Westfalen were classified as low CVI. The low value of CVI resulted from the
summary weighted VSc of criteria.
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Figure 7. COVID-19 Vulnerability risk map.

Considering the example of Bayern, high VSc values of: new cases, number of hospi-
tals, and number of hospitalisations should result in a high vulnerability risk value; instead
the vulnerability of: population density, service turnover, number of vaccinated people,
railways, and road lengths caused the occurrence of a low CVI.

The presented CVI analysis may be used in the crisis management process to determine
if certain actions (restrictions) have to be taken to prevent further spread of the COVID-19
pandemic. The developed vulnerability risk map allows for measurable assessment of the
current situation and determining the risk state of a selected day. The above statements
were crucial for research, because the presentation of data on a selected day validates the
possibility of the SMCA application in the development of a vulnerability map sequence
on selected days and vulnerability change maps over time.

3.3. Criteria Vulnerability Score Analysis in Time

The estimated Vulnerability Score for selected days was presented as a sequence of
VSc maps. The example of a selected Vulnerability Score for criteria map on selected days
with a three-month interval is shown in Figures 8, 9 and 11. (The number of maps was
limited—the remaining maps are provided in Appendix B).
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Figure 8 presents the vaccinations vulnerability on selected days. The increase of
vaccinated people decreased the risk score. The process of vaccinations began in 2021—all
maps before 12 February 2021 present a constant vulnerability risk valued by eight.

Figure 9 shows vulnerability risk resulting in new cases on selected days of the
COVID-19 pandemic.

A gradual increase in new cases is noticeable over time. This was confirmed by the
chart of new cases according to the data acquired from the Koch Institute (Figure 10).

A juxtaposition of the vaccination vulnerability risk maps and new cases caused by
the COVID-19 in corresponding days, explains the fact that at the beginning of 2021 the
number of new cases decreased. The noticeable slowing down of the pandemic as a result of
reaching 50% vaccination rate of the population in the region visible in Figure 8. Similar ob-
servation can be taken on hospitalisations change in time caused by COVID-19 (Figure 11).
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3.4. COVID-19 Vulnerability Index in Time

Based on the Vulnerability Score summaries for selected days, the CVI was calculated.
Figure 12 presents the sequence of CVI maps in time. Based on Figure 12a it can be noticed
that the federal states: Bremen, Saarland, and Hamburg were classified as high or very high
vulnerability risk from the very beginning of the pandemic. This suggests that preventive
actions like increasing the number of hospitals beds, preparing field hospitals or restrictions
should be considered to ensure public safety in those federal states.
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These recommendations, despite the low number of new cases and hospitalisations,
were a result of high vulnerability values assigned to static criteria of the listed federal
states. The static and dynamic criteria vulnerabilities of selected countries in time are
shown in Figure 13.
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Figure 13. The static (a) dynamic (b) static and (c) summary vulnerability risk for each federal state
on selected days.

The high level of static vulnerability increases the overall level of COVID-19 vulner-
ability as shown in Figure 13a,c. On the other hand, the low level of static vulnerability
decreases the final level of COVID-19 vulnerability. In real life scenario, this will correspond
to the situation, where the number of hospitals and hospital beds exceeds the number of
potential patients.

The analysis in the area of Germany, allows us to estimate the number of people
endangered at a certain level of COVID-19 vulnerability in time. Results were presented in
Table 5. Pursuant to the above it may be concluded that 22,102,833 population of Germany
were at risk of very high COVID-19 vulnerability risk and the number of population
endangered changes over time.
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Table 5. Number of the German population endangered with a certain level of vulnerability over time.

4 March
2020

12 May
2020

12 August
2020

12 November
2021

12 February
2021

12 May
2021

12 August
2021

22 October
2021

Very Low 44,717,994 33,610,761 44,717,994 0 13,142,063 15,671,946 44,717,994 33,610,761
Low 15,391,927 24,374,711 15,391,927 44,717,994 31,575,931 29,046,048 9,097,291 14,017,604

Medium 15,273,831 17,398,280 14,288,686 9,097,292 17,366,538 17,366,538 20,583,322 26,770,242
High 7,810,535 7,129,840 8,114,985 22,194,140 13,299,220 18,577,079 6,263,004 8,114,985

Very High 0 680,695 680,695 7,184,861 7,810,535 2,532,676 2,532,676 680,695

The COVID-19 vulnerability risk maps were used to develop the maps shown in
Figure 14, One may be easily noticed in which area the pandemic situation has changed.
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In this regard, Figure 14c shows the increase in vulnerability caused by post-holiday
returns and the re-opening of schools. Figure A4b presents the general decrease in the
risk caused by a significant increase in the number of fully vaccinated people. This was
followed by another increase in vulnerability Figure A4c.
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3.5. Validation

The validation of results was performed in two stages: the first stage was the jux-
taposition of CVI and confirmed cases in the time presented. The second stage was the
comparison of CVI and COVID-19 active cases. The validation was performed according to
the data from Table 6.

Table 6. CVI and new COVID-19 Cases in time for Berlin, Brandenburg, Nordrhein-Westfalen.
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Berlin
Cases 7 2 111 1132 485 510 358 713
CVI 5.52 5.67 5.86 6.34 6.03 5.95 5.67 5.74

Brandenburg Cases 1 5 8 452 374 397 116 685
CVI 3.09 3.13 3.21 3.59 3.63 3.43 3.13 3.43

Nordrhein-Westfalen
Cases 115 201 413 4615 1881 3108 1886 2284
CVI 3.59 3.81 3.82 4.56 4.26 4.32 3.81 3.82

Figure 14 shows the CVI and confirmed cases in selected days on Berlin, Brandenburg,
Nordrhein-Westfalen. According to Figure 14 the COVID-19 vulnerability risk in Berlin
and Brandenburg, Nordrhein-Westfalen on the first three bars (4 March 2020, 12 May 2020,
and 12 August 2020) was growing constantly and this, despite the constant number of new
cases, suggests that some actions or preventive steps should be taken in order to reduce the
large increase in COVID-19 infections that occurred on the following days: 12 November
2020, 12 February 2021, and 12 May 2021. The above shows that the growing or high value
of the COVID-19 vulnerability risk index predicts an upcoming pandemic wave that can be
foreseen in a short period of time.

Figure 15 shows the CVI and confirmed cases in selected days on Berlin, Brandenburg,
Nordrhein-Westfalen.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 30 
 

Table 6. CVI and new COVID-19 Cases in time for Berlin, Brandenburg, Nordrhein-Westfalen. 

  

04
 M

ar
ch

 2
02

0 

12
 M

ay
 2

02
0 

12
 A

u
g

u
st

 2
02

0 

12
 N

o
v

em
b

er
 2

02
0 

12
 F

eb
ru

ar
y

 2
02

1 

12
 M

ay
 2

02
1 

12
 A

u
g

u
st

 2
02

1 

22
 O

ct
o

b
er

 2
02

1 

Berlin 
Cases 7 2 111 1132 485 510 358 713 

CVI 5.52 5.67 5.86 6.34 6.03 5.95 5.67 5.74 

Brandenburg 
Cases 1 5 8 452 374 397 116 685 

CVI 3.09 3.13 3.21 3.59 3.63 3.43 3.13 3.43 

Nordrhein-Westfalen 
Cases 115 201 413 4615 1881 3108 1886 2284 

CVI 3.59 3.81 3.82 4.56 4.26 4.32 3.81 3.82 

Figure 15 shows the CVI and confirmed cases in selected days on Berlin, Branden-

burg, Nordrhein-Westfalen. 

The chart analysis reveals a positive exponential trend between CVI and the number 

of confirmed cases with the R2 value of 0.92 respectively (Figure 16). 

  

(a) (b) 

 

(c) 

Figure 15. CVI and COVID-19 confirmed cases in (a) Berlin, (b) Brandenburg and (c) Nordrhein-

Westfalen. 

2.50
3.50
4.50
5.50
6.50
7.50

0
300
600
900

1200
1500

C
 V

 I

C
as

es

Berlin   

CVI Cases

2.50

3.00

3.50

4.00

0

200

400

600

800

1000

C
 V

 I

C
as

es

Brandenburg    

CVI Cases

2.50

3.00

3.50

4.00

4.50

0

1000

2000

3000

4000

5000

C
 V

 I

C
as

es

Nordrhein-Westfalen 

CVI Cases

Figure 15. CVI and COVID-19 confirmed cases in (a) Berlin, (b) Brandenburg and (c) Nordrhein-Westfalen.
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The chart analysis reveals a positive exponential trend between CVI and the number
of confirmed cases with the R2 value of 0.92 respectively (Figure 16).
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Figure 16. The CVI and new cases relation in the (a) Berlin, (b) Brandenburg and (c) Nordrhein-Westfalen.

The study has the following known limitations:

• Weights summary estimation was based on the AHP method. In this regard, it is
essential to pay attention to the problem of criteria selection key and criteria quan-
tity. The increase in criteria quantity would result in a more precise view of the
situation in terms of several factors. However, more criteria will cause difficulties in
performing analysis due to the lack of available data. If the number of criteria will be
decreased—the analysis would be more general, but the data acquisition problem will
be less probable.

• Criteria proposed by the authors, and calculated weights create a perspective, focused
on health care state image and selected population statistics. This excludes the possi-
bility of insight and of estimating the influence of other factors on pandemic situation.
The presented approach and selected criteria include the static criteria groups that
allow for early vulnerability risk detection (e.g., in risk of shortage of hospital beds)
and furthermore dynamic criteria group for tracking the progress of pandemic in time
(new cases).

• The performed analysis was limited to the inference at the strategic level, which results
from the limited detailed data access. Obtaining the data in subregions division would
allow for more precise identification of pandemic vulnerability risk and would result
in appropriate crisis response ensuring public safety. The authors argued that there
is quite an immerse gap in the possibilities of conducting spatiotemporal analysis
caused to the lack of accurate data. More detailed data are required to prepare
recommendations for the selected subregion.

The comparison of the obtained results with the results of works by other authors
reveals that those criteria that provide a thematic direction for the analysis results and
data are important for the results. As far as the proposed methodology is concerned, data
obtained from open data sources were used. What distinguishes the proposed approach
from others is the use of both static and dynamic criteria are used, which enable making
decisions related to hospital infrastructure and the available resources in the given area.
Most studies on COVID-19 involve the modelling of the influence of selected factors, while
the proposed approach focuses on modelling the risk connected to the SARS-CoV-2 virus.
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4. Conclusions

The outbreak of SARS-CoV-2 caused a pandemic situation and affected the lives of
people around the world. For this reason, it became crucial to provide an appropriate crisis
response based on research, allowing for the determination of the hazards it implies. The
studies on the COVID-19 vulnerability risk index as a result of a weighted summary of the
determined individual criteria risk score show the dynamics of threat change in time in the
selected area. This allows for tracking the increase of vulnerability risk, caused by the virus
spreading and delivering appropriate crisis response.

In terms of the impact of individual criteria on the value of vulnerability risk, it
was found that each of the criteria had a different influence on the final value of the CVI
coefficient. Furthermore, the division of criteria into static and dynamic ones enabled us to
identify factors that were causing a certain level of vulnerability risk to COVID-19 spread
even in the early stages of the pandemic. This could help to provide an early reaction,
which may prevent the rapid increase of pandemic threat.

The directions of vulnerability risk changes over time were different in each region.
However, there is a visible correlation between the CVI change in time and certain, typical
events in the annual life cycle e.g., return to school and work from vacation (visible increase)
and with such preventive actions as reaching a high level of vaccination (visible decrease),
can be noted.

Taking the above into consideration, based on the spatiotemporal vulnerability risk
analysis, the decisions on taking actions at an early stage of a pandemic, e.g., relocation of
equipment, forces, and resources, are available. Moreover, the conducted analysis illustrates
the level of threat better than the number of new cases, which makes it a relevant source of
information to identify the areas where restrictions should be introduced.

Furthermore, the performed spatiotemporal analysis allows backward and current
modelling of COVID-19 vulnerability risk. The precision of the model of vulnerability risk
in the time presented in the case study is low due to the limited number of days taken for
the temporal analysis in the article. The increase in time model precision could be obtained
as a result of setting smaller time intervals between the COVID-19 vulnerability risk maps.
However, this would result in an increased number of maps that would be impossible to
be included in the article due to its limited length. Therefore, only the concept and the
methodology of the research were presented.

The analysis provided in the case study focused on revealing the COVID-19 vulnera-
bility from the point of view of the healthcare system demonstrated that the spatial data
enables the determination of the impact of a crisis situation in the field and, eventually,
allows making decisions on an appropriate crisis response. This signifies the role of spatial
analysis and spatial data sources in the decision-making process.

According to the authors, future research in this field should be continued and the
application of proposed methods with different time data intervals and the results should
be assessed to reveal the optimal interval for maps to detect vulnerability change. More-
over, the authors believe that the use of the determined static criteria of vulnerability in
combination with the selected pandemic prediction model would extend the perspective
to a specific future period of time. This would be a significant potential advantage of the
proposed method.
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Appendix A

Table A1. The remaining criteria scores.

Criteria/Score Hsp Mb Rd Rs

2 <0.1 <10 K 1–2 0.1–0.2
3 0.1–0.2 10 K–50 K 2–4 0.2–0.4
4 0.2–0.4 50 K–100 K 4–6 0.4–0.8
5 0.4–0.8 100 K–250 K 6–8 0.8–1.5
6 0.8–1.4 250 K–400 K 8–10 1.5–2.5
7 1.4–2.2 400 K–500 K 10–12 2.5–5.0
8 >2.2 >500 K 12–15 5.0–5.2
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