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Featured Application: Semantic dependency parsing could be applied in many downstream tasks
of natural language processing, including named entity recognition, information extraction, ma-
chine translation, sentiment analysis, question generation, question answering, etc.

Abstract: Higher-order information brings significant accuracy gains in semantic dependency parsing.
However, modeling higher-order information is non-trivial. Graph neural networks (GNNs) have
been demonstrated to be an effective tool for encoding higher-order information in many graph
learning tasks. Inspired by the success of GNNs, we investigate improving semantic dependency
parsing with higher-order information encoded by multi-layer GNNs. Experiments are conducted
on the SemEval 2015 Task 18 dataset in three languages (Chinese, English, and Czech). Compared
to the previous state-of-the-art parser, our parser yields 0.3% and 2.2% improvement in average
labeled F1-score on English in-domain (ID) and out-of-domain (OOD) test sets, 2.6% improvement on
Chinese ID test set, and 2.0% and 1.8% improvement on Czech ID and OOD test sets. Experimental
results show that our parser outperforms the previous best one on the SemEval 2015 Task 18 dataset
in three languages. The outstanding performance of our parser demonstrates that the higher-order
information encoded by GNNs is exceedingly beneficial for improving SDP.

Dataset: https://doi.org/10.18653/v1/s15-2153.

Keywords: semantic dependency parsing; higher-order information; graph neural networks; graph
convolutional network; graph attention network; biaffine attention network

1. Introduction

Semantic dependency parsing (SDP) attempts to identify semantic relationships be-
tween words in a sentence by representing the sentence as a labeled directed acyclic graph
(DAG), also known as the semantic dependency graph (SDG). In an SDG, not only can
semantic predicates have multiple or zero arguments, but also words from the sentence
can be attached as arguments to more than one head word (predicate), or they can be
outside the SDG (being neither a predicate nor an argument). SDP has been successfully
applied in many downstream tasks of natural language processing, including named entity
recognition [1], information extraction [2], machine translation [3], sentiment analysis [4],
question generation [5], question answering [6], etc. SDP originates from syntactic depen-
dency parsing which aims to represent the syntactic structure of a sentence by means of a
labeled tree.

Higher-order information is generally helpful for improving the performance of syn-
tactic and semantic dependency parsing [7–9] because it contains not only the information
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about the head and modifier tokens but also the information about higher-order parts (head
tokens, modifier tokens, and other tokens linked to them together form the higher-order
parts). Here is a straightforward example (as in Figure 1). For the sentence “They read
Mickey Spillane and talk about Groucho and Harpo”, its semantic dependency representation
is shown in Figure 1a; the higher-order parts that appear in this sentence are shown in
Figure 1b. When considering the semantic dependency relationship between talk and Harpo
(dotted edge), if we know (1) Groucho and Harpo are included in the second-order part
(siblings) and (2) there is a dependency edge labeled PAT-arg between talk and Groucho (blue
edges), it is obvious that there is also a dependency edge labeled PAT-arg between talk
and Harpo.
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Figure 1. 2nd-order, 3rd-order, 4th-order parts appeared in the example sentence.
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Figure 1. Second-order, third-order, and fourth-order parts that appear in the example sentence.

Several semantic dependency parsers have been presented in recent years. Most of
them are first-order parsers that utilize the information about first-order parts [10–14]; the
rest are second-order parsers that utilize the information about second-order parts [8,15,16].
They have demonstrated that second-order information could bring significant accuracy
gains in SDP. However, the second-order parts used in these second-order parsers are
limited to specific types, including siblings, grandparent, and co-parents. Utilizing more
types of higher-order parts (e.g. tri-siblings, great-grandparents, grand-tri-siblings, etc.) in
SDP still remains under-explored. The reason for this issue is that modeling higher-order
parts is non-trivial [8]. Higher-order parts have been exploited in syntactic dependency
parsing [7,9,17–19]. However, algorithms for higher-order syntactic dependency parsing
aim to generate a dependency tree rather than a dependency graph, therefore they are not
applicable to SDP.

Graph neural networks (GNNs) have been demonstrated to be an effective tool for
encoding higher-order information in many graph learning tasks [7,20]. GNNs aggregate
higher-order information in a similar incremental manner: One GNN layer encodes in-
formation about immediate neighbors and K layers encode K-order neighborhoods (i.e.,
information about nodes at most K hops away).

This study aims to exploit GNNs’ powerful ability of representation learning in SDP.
Inspired by the success of GNNs, we investigate using GNNs to encode higher-order
information to improve the accuracy of SDP. Instead of encoding higher-order information
of specific types of higher-order parts extracted from intermediate parsing graphs, we
aggregate higher-order information by stacking multiple GNN layers. We extend the
biaffine parser [12] and employ it as the vanilla parser to produce an initial adjacency matrix
(close to gold) since there is no graph structure available during testing. Two GNN variants,
Graph Convolutional Network (GCN) [21] and Graph Attention Network (GAT) [22], have
been investigated in our model (GNNSDP: GNN -based Semantic Dependency Parser).

GNNSDP has been evaluated on the SemEval 2015 Task 18 dataset which covers
three languages (Chinese, English, and Czech) and contains three semantic dependency
formalisms (DM, PAS, and PSD). Compared to the previous best one, our parser yields 0.3%
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and 2.2% improvement in average labeled F1-score on English in-domain (ID) and out-
of-domain (OOD) test sets, 2.6% improvement on Chinese ID test set, and 2.0% and 1.8%
improvement on Czech ID and OOD test sets. Experimental results show that GNNSDP
outperforms the previous state-of-the-art parser in three languages. In addition, GNNSDP
shows greater advantage over the baseline in the longer sentence and PSD formalism
(appearing linguistically most fine grained). To the best of our knowledge, this work is the
first study to apply GNNs in semantic dependency parsing. Our code is publicly available
at https://github.com/LiBinNLP/GNNSDP (accessed on 16 April 2022).

2. Related Work

In this section, the studies on higher-order syntactic dependency parsing, semantic
dependency parsing, and GNNs will be summarized.

2.1. Higher-Order Syntactic Dependency Parsing

Higher-order parsing has received a lot of attention in the syntactic dependency pars-
ing. McDonald and Pereira [23] presented a second-order parser which extended the
maximum spanning tree parsing framework to incorporate second-order siblings parts.
Carreras [17] presented a second-order parser which incorporated grand-parental relation-
ships in the dependency structure. Koo and Collins [18] developed a third-order parser.
They introduced grand-siblings and tri-siblings parts. Ma and Zhao [19] developed a forth-
order parser which utilized grand-tri-siblings parts for fourth-order dependency parsing.
Ji et al. [7] used GNNs to capture higher-order information for syntactic dependency pars-
ing, which was closely related to our work. The core difference between their method
and ours is that they integrated three types of high-order information (grandparent, grand-
child, and siblings), and ours is not limited to any specific types of higher-order parts.
Zhang et al. [9] presented a second-order TreeCRF extension to the biaffine parser.

Higher-order parts have been exploited in syntactic dependency parsing. However,
approaches for higher-order syntactic dependency parsing aim to generate a dependency
tree rather than a dependency graph. Therefore, they are not applicable to semantic
dependency parsing.

2.2. Semantic Dependency Parsing

Several SDP models have been presented in recent years. Their parsing mecha-
nisms are either transition based or graph based. Most of them are first-order parsers.
Wang et al. [13] presented a neural transition-based parser, using a variant of the list-based
arc-eager transition algorithm for dependency graph parsing. Lindemann et al. [24] devel-
oped a transition-based parser for Apply-Modify dependency parsing. They extended the
stack-pointer model to predict transitions. Fernández-González and Gómez-Rodríguez [14]
developed a transition-based parser, using the Pointer Network to choose a transition
between Attach-p and Shift. More recently, there has been a predominance of purely graph-
based SDP models. Dozat and Manning [12] extended the LSTM-based syntactic parser
of Dozat et al. [25] to train on and generate SDG. Kurita and Søgaard [26] developed a
reinforcement learning-based approach that iteratively applied the syntactic dependency
parser to build a DAG structure sequentially. Jia et al. [27] presented a semi-supervised
model based on the Conditional Random Field Autoencoder to learn a dependency graph
parser. He and Choi [28] significantly improved the performance by introducing contextual
string embeddings (called Flair).

Higher-order SDP has received less attention. Martins et al. [15] developed a second-
order parser which employed a feature-rich linear model to incorporate first and second-
order parts (arcs, siblings, grandparent, and co-parents). The AD3 algorithm was employed
for approximate decoding. Cao et al. [16] presented a quasi-second-order parser and
used a dynamic programming algorithm (called Maximum Subgraph) for exact decoding.
Wang et al. [8] extended the parser [12] and managed to add the information about three
types of second-order parts (siblings, grandparent, and co-parents) for score computation

https://github.com/LiBinNLP/GNNSDP
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and then applied either mean-field variational inference or loopy belief propagation for
approximate decoding.

These second-order parsers demonstrated that second-order information could bring
significant accuracy gains in SDP. However, the second-order parts used in these second-
order parsers are limited to specific types, including siblings, grandparent, and co-parents.
Utilizing more types of higher-order parts (e.g., tri-siblings, great-grandparent, grand-tri-
siblings, etc.) in SDP still remains under-explored. The reason for this issue is that modeling
higher-order parts is non-trivial [8].

2.3. Graph Neural Networks

Recent years have witnessed great success from GNNs [21,22,29] in graph learning.
GNNs follow a message-passing mechanism, where the node embedding is obtained by
aggregating and transforming the embeddings of its neighbors. Due to the powerful
ability to learn effective representations of graphs, GNNs have been applied to various
downstream tasks including node classification, link prediction, and graph classification.

Two main families of GNNs have been proposed, i.e., spectral methods and spatial
methods. The first family learns node representation based on graph spectral theory [21,30,31].
The second family defines graph convolutions in the spatial domain as aggregating and
transforming local information [22,29]. GCNs [21] is a spectral-based method, which learns
node representation based on graph spectral theory. GAT [22] is a spatial-based method,
which introduces the multi-head attention mechanism to learn different attention scores for
neighbors when aggregating information.

GNNs have been demonstrated to be an effective tool for encoding higher-order
information in many graph learning tasks [7,20]. Marcheggiani and Titov [20] utilized
GNNs to capture higher-order information from the syntactic dependency tree for semantic
role labeling. Ji et al. [7] utilized GNNs to encode specific types of higher-order parts for
syntactic dependency parsing.

Inspired by the success of GNNs, we investigate using GNNs to encode higher-order
information for improving semantic dependency parsing.

3. GNN-Based Semantic Dependency Parser

GNNSDP is a parser that extends the biaffine parser [12]. An overview of GNNSDP is
shown in Figure 2. Given sentence s with n words [w1, w2, . . . , wn], there are three steps to
parse it as an SDG. Firstly, the sentence will be parsed with a vanilla SDP parser, producing
an initial SDG. Secondly, the contextualized word representations output by long short-
term memory (BiLSTM) and adjacency matrix obtained from the initial SDG will be fed into
the GNN encoder to obtain node representations which contain higher-order information.
Finally, Multi-Layer Perceptron (MLP) will be used to get the hidden state representation,
and then decoded by the biaffine classifier to predict edge and label.

Mary wants to buy a book

Vanilla Parser 

Initial Graph

Edge Prediction

Label Prediction

BiLSTM

GNNs

DecoderEncoder

Mary

wants

buy

book

ARG2ARG1

root

ARG3

BV

to aROOT

ARG1

MLP

orphan Predicted Graph

Mary

wants

buy

book

ARG2ARG1

root

ARG2

BV

to aROOT

ARG1

Figure 2. Overall architecture of the proposed GNNSDP.
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3.1. Vanilla Parser

We use the biaffine parser [12] as the vanilla parser. Sentence s will be parsed by the
vanilla parser to obtain the initial adjacency matrix.

(Ã, G̃) = VanillaParser(W, F) (1)

where Ã is the initial adjacency matrix; G̃ is the initial SDG; W denotes n words and F
denotes features of words.

3.2. Embeddings

Word embeddings and feature embeddings are used to represent the embedding of
each token in GNNSDP.

3.2.1. Word Embeddings

Pretrained word embeddings of three languages are downloaded from the internet:

• For English, the 100-dimension English word embeddings from GloVe [32] are used.
• For Chinese, the 300-dimension Chinese word embeddings from SGNS [33] are used.
• For Czech, the 300-dimension Czech word embeddings from fasttext [34] are used.

3.2.2. Feature Embeddings

Four types of features are used in GNNSDP. The dimension of each feature embedding
is denoted as d (d = 100):

• Part-of-speech (POS) tag embeddings: POS tag embeddings E(pos) are randomly
generated. E(pos) ∈ Rn×d, where n is the number of POS tags.

• Lemma embeddings: A lemma is the base form of a word; lemma embeddings E(lemma)

are also randomly generated. E(lemma) ∈ Rl×d, where l is the number of lemmas.
Lemmas that occurred seven times or more are included in the lemma embedding
matrix.

• Character embeddings: Character embeddings summarize the information of char-
acters in each token, which are generated using a one-layer unidirectional LSTM
(CharLSTM) that convolves over three character embeddings at a time, whose end
state is linearly transformed to be d-dimensional.

• Bidirectional Encoder Representation from Transformer (BERT) embeddings: BERT
embeddings are extracted from the pretrained BERT model.

3.3. Encoder

We concatenate word embeddings and feature embeddings, and feed them into a
BiLSTM to obtain contextualized representations.

Specifically, BiLSTM is a sequence processing model that consists of two reversed
unidirectional LSTM networks: One taking the input in a forward direction to capture
forward information, and another in a backward direction to capture backward informa-
tion. BiLSTM can integrate both forward and backward information by concatenating
bidirectional information.

xi = e(word)
i ⊕ e( f eat)

i (2)

−→oi = LSTM( f orward)(xi) (3)
←−oi = LSTM(backward)(xi) (4)

oi =
−→oi ⊕←−oi (5)

where xi is the concatenation (⊕) of the word embeddings and feature embeddings of word
wi, X represents [x1, x2, . . . , xn]. O = [o1, o2, . . . , on] is the contextualized representations of
sequence X.
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Then we employ K-layer GNNs to capture higher-order information by aggregating
the representation of K-order neighborhoods. The node embedding matrix R(k) in the
kth-layer is computed as Equation (6):

R(k) = GNNLayer(k−1)(R(k−1), Ã) (6)

When the GNNLayer is implemented in the GCN, the representation r(k)i of node i in
the kth layer is computed as Equation (7)

r(k)i = σ

W ∑
j∈N(i)

r(k−1)
j + Br(k−1)

i

 (7)

where W and B are parameter matrices; N(i) are neighbors of node i; σ is the active function
(ReLU is used); r(0)i = oi.

When GNNLayer is implemented in GAT, r(k)i is computed as Equation (8):

r(k)i = σ

W ∑
j∈N(i)

a(m)(k−1)
ij r(k−1)

j + Br(k−1)
i

 (8)

where a(m)(k−1)
ij is the attention coefficient of node i to its neighbour j in attention head m at

the (k− 1)th layer.
While higher-order information is important, GNNs would suffer from the over-

smoothing problem when the number of layer is excessive. Therefore we stack three layers
with the past experience.

3.4. Decoder

The decoder has two modules: The edge existence prediction module and the edge
label prediction module. For each of the two modules, we use MLP to split the final node
representation R = [r1, r2, . . . , rn] into two parts—a head representation, and a dependent
representation, as shown in Equations (9)–(12):

h(edge−head)
i = MLP(edge−head)(ri) (9)

h(label−head)
i = MLP(label−head)(ri) (10)

h(edge−dep)
i = MLP(edge−dep)(ri) (11)

h(label−dep)
i = MLP(label−dep)(ri) (12)

We can then use two biaffine classifiers (as Equation (13)), which are generalizations
of linear classifiers to include multiplicative interactions between two vectors—to predict
edges and labels, as Equations (14) and (15):

Bia f f (x1, x2) = xT
1 Ux2 + W(x1 ⊕ x2) + b (13)

s(edge)
i,j = Bia f f (edge)(h(edge−dep)

i , h(edge−head)
j ) (14)

s(label)
i,j = Bia f f (label)(h(label−dep)

i , h(label−head)
j ) (15)

where s(edge)
i,j and s(label)

i,j are scores of edge existence and edge label between words wi and
wj. U, W, and b are learned parameters of the biaffine classifier. For the edge existence

prediction module, U will be (d× 1× d)-dimensional, so that the s(edge)
i,j will be a scalar.

For edge label prediction, if the parser is unlabeled, U will be (d× 1× d)-dimensional, so
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that the s(label)
i,j will be a scalar. If the parser is labeled, U will be (d× c× d)-dimensional,

where c is the number of labels, so that the s(label)
i,j is a vector that represents the probability

distributions of each label.
The unlabeled parser scores each edge between pairs of words in the sentence—these

scores can be decoded into a graph by keeping only edges that received a positive score.
The labeled parser scores every label for each pair of words, so we simply assign each
predicted edge its highest-scoring label and discard the rest.

ŷ(edge)
i,j = {s(edge)

i,j > 0} (16)

ŷ(label)
i,j = arg max s(label)

i,j (17)

3.5. Learning

We can train the model by summing the losses from the two modules, back propagating
the error to the parser. The cross entropy function is used as as the loss function, which is
computed as Equation (18):

CE(p, q) = −∑
x

p(x) log q(x) (18)

The loss functions of the edge existence prediction module and the edge label predic-
tion module are defined as:

L(edge)(θ1) = CE(ŷ(edge)
i,j , y(edge)

i,j ) (19)

L(label)(θ2) = CE(ŷ(label)
i,j , y(label)

i,j ) (20)

where θ1 and θ2 are the parameters of two modules.
Then the adaptive moment estimation (Adam) method is used to optimize the summed

loss function L:
L = λL(edge) + (1− λ)L(label) (21)

where λ is a tunable interpolation constant λ ∈ (0, 1).

4. Experiments

In this section, the dataset, hyper-parameters, and experimental results are shown
as follows.

4.1. Dataset

In order to test the proposed approach, we conducted experiments on the SemEval
2015 Task 18 dataset [35], which covers three languages (English, Chinese, and Czech)
and contains three different formalisms (DELPH-IN MRS (DM) [36], Predicate-Argument
Structure (PAS) [37], and Prague Semantic Dependencies (PSD) [38]). For English, three
formalisms (DM, PAS, and PSD) are all available; for Chinese, only PAS formalism is
available; for Czech, only PSD formalism is available.

The dataset split of three languages is shown as Table 1. For English, we use the
same dataset split as in previous approaches [10,39], with 33,964 training sentences from
Sections 00-19 of the Wall Street Journal corpus [40], 1692 development sentences from
Section 20, 1410 sentences from Section 21 as in-domain (ID) test data, and 1849 sentences
sampled from the Brown Corpus [41] as the out-of-domain (OOD) test data. For Chinese,
we use the top 3000 sentences as the development data, the remaining 25,336 sentences as
the training data, and 8976 sentences as the ID test data. For Czech, we use the top 3000
sentences as the development data, the remaining 39,057 sentences as the training data,
1670 sentences as the ID test data, and 316 sentences as the OOD test data.
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For the evaluation, we use the evaluation script used in Wang et al. [8], reporting
labeled F-measure scores (LF1) (including ROOT arcs) on the ID and OOD test sets for each
formalism as well as the macro-average over the three of them.

Table 1. The number of sentences contained in each divided dataset of three languages. Only the
in-domain test set is available for Chinese; the in-domain and out-of-domain test sets are available
for English and Czech.

Language Train Set Development Set Test Set
ID OOD

English (DM/PAS/PSD) 33,964 1692 1410 1849
Chinese (PAS) 25,336 3000 8976 -
Czech (PSD) 39,057 3000 1670 316

4.2. Experimental Environments

The main hardware and software used in our experimental environments are shown
as Table 2. GPU is utilized to do the computation of neural networks, to speed up the
process of training and prediction.

Table 2. Hardware and software used in our experimental environments.

Hardware/Software Value

CPU Intel Xeon(R) Silver 4216 @ 2.1GHz(16-core)
Memory 128 GB

GPU NVIDIA RTX 2080Ti(11G)

Python 3.6.1
Pytorch 1.9.0

Anaconda 4.8.3
CUDA 11.0

IDE Pycharm

4.3. Hyper-Parameters

The hyper-parameter configuration for our final system is given in Table 3. Following
Wang et al. [8], we use Adam to optimize our model, annealing the learning rate by 0.5 for
every 10,000 steps, and switch the optimizer to AMSGrad after 5000 steps without improve-
ment. We train the model for 100,000 iterations with batch sizes of 6000 tokens and terminate
the training early after 10,000 iterations with no improvement on the development set.

Table 3. Final hyper-parameter configuration.

Layer Hyper-Parameter Value

Word Embedding English 100
Chinese/Czech 300

Feature Embedding POS/Lemma/Char/BERT 100

LSTM
layers 3

hidden size 400
dropout 0.33

GNN
GCN layers/GAT heads 3

GAT α 0.2
GCN/GAT dropout 0.33

MLP edge-head/label-head hidden size 600
edge-dep/label-dep hidden size 600
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Table 3. Cont.

Layer Hyper-Parameter Value

Trainer

optimizer Adam
learning rate 1 ×10−2

Adam (β1, β2) (0.95, 0.95)
decay rate 0.75

decay step length 5000
λ 0.1

4.4. Baseline Approaches

We compare GNNSDP with previous state-of-the-art parsers in Tables 4 and 6. Turku
is from Kanerva et al. [42]. Riga is from Barzdins et al. [43]. Peking is a hybrid model from
Du et al. [10]. Lisbon is from Almeida and Martins [39]. WCGL [13] is a neural transition-
based model. PTS17 is proposed by Peng et al. [11] and Basic is single task parsing, while
Freda3 is a multitask parser across three formalisms. D&M [12] is a first-order graph-based
model. MF and LBP [8] are a second-order model using mean field variational inference
or loopy belief propagation. Lindemann et al. [44] and Lindemann et al. [24] are a compo-
sitional semantic parser for SDP and abstract meaning representation. SemPointer [14] is
a transition-based model using the Pointer Network. Jia et al. [27] is a semi-supervised
parser, only the full-supervised result on DM formalism is shown in their paper. He and
Choi [28] uses not only BERT but also contextual string embeddings (called Flair).

Table 4. Comparison of labeled F1 scores achieved by our model and previous state-of-the-art in the
English dataset. The bold numbers indicate the current best scores. The F1 scores of baseline and
our models are averaged over five runs. ID denotes the in-domain (WSJ) test set and OOD denotes
the out-of-domain (Brown) test set. +Char, +Lemma, +BERT, and +Flair mean augmenting the token
embeddings with character-level, lemma embeddings, BERT embeddings, and Flair embeddings.
Semi-SDP only shows the full-supervised result on DM formalism.

English
Models DM PAS PSD Avg

ID OOD ID OOD ID OOD ID OOD

Peking [10] 89.1 81.8 91.3 87.2 75.7 73.3 85.3 80.8
Lisbon [39] 88.2 81.8 90.9 86.9 76.4 74.8 85.2 81.2

PTS17 [11]: Basic 89.4 84.5 92.2 88.3 77.6 75.3 86.4 82.7
PTS17 [11]: Basic 90.4 85.3 92.7 89.0 78.5 76.4 87.2 83.6

WCGL [13] 90.3 84.9 91.7 87.6 78.6 75.9 86.9 82.8
D&M [12]: Basic 91.4 86.9 93.9 90.8 79.1 77.5 88.1 85.0

MF [8]: Basic 93.0 88.4 94.3 91.5 80.9 78.9 89.4 86.3
LBP [8]: Basic 92.9 88.4 94.3 91.5 81.0 78.8 89.4 86.2

Lindemann et al. [44]: Basic 91.2 85.7 92.2 88.0 78.9 76.2 87.4 83.3
SemPointer [14]: Basic 92.5 87.7 94.2 91.0 81.0 78.7 89.2 85.8

GNNSDP(GCN): Basic 93.3 88.0 94.8 91.1 85.6 83.6 91.2 87.6
GNNSDP(GAT): Basic 93.0 87.9 94.8 91.6 85.4 83.3 91.1 87.6

D&M [12]: +Char+Lemma 93.7 88.9 93.9 90.6 81.0 79.4 89.5 86.3
MF [8]: +Char+Lemma 94.0 89.7 94.1 91.3 81.4 79.6 89.8 86.9
LBP [8]: +Char+Lemma 93.9 89.5 94.2 91.3 81.4 79.5 89.8 86.8
Jia et al. [27]: +Lemma 93.6 89.1 - - - - - -

SemPointer [14]: +Char+Lemma 93.9 89.6 94.2 91.2 81.8 79.8 90.0 86.9

GNNSDP(GCN): +Char+Lemma 94.2 90.1 94.9 91.4 86.4 84.9 91.8 88.8
GNNSDP(GAT): +Char+Lemma 94.4 89.9 95.0 91.8 86.2 84.6 91.9 88.8
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Table 4. Cont.

English
Models DM PAS PSD Avg

ID OOD ID OOD ID OOD ID OOD

Lindemann et al. [44]: +BERTlarge 94.1 90.5 94.7 92.8 82.1 81.6 90.3 88.3
Lindemann et al. [24]: +BERTlarge 93.9 90.4 94.7 92.7 81.9 81.6 90.2 88.2

SemPointer [14]: +Char+Lemma+BERTbase 94.4 91.0 95.1 93.4 82.6 82.0 90.7 88.8
He et al. [28]: +Char+Lemma+BERTbase+Flair 94.6 90.8 96.1 94.4 86.8 79.5 92.5 88.2

GNNSDP(GCN): +Char+Lemma+BERTbase 95.1 91.1 95.7 93.2 87.7 87.3 92.8 90.5
GNNSDP(GAT): +Char+Lemma+BERTbase 95.3 91.9 96.0 94.3 87.0 86.7 92.8 91.0

4.5. Experimental Results

We group SDP models into three blocks depending on the embeddings provided to
the models: (1) just basic pre-trained word embeddings and POS tag embeddings (Basic),
(2) character and pre-trained lemma embeddings augmentation (+Char+Lemma), and (3)
pre-trained BERT embedding augmentation (+Char+Lemma+BERT).

4.5.1. Results on English

Table 4 presents the comparison of GNNSDP and previous approaches on the test
sets of the SemEval 2015 Task 18 English dataset. From the results, we have the following
observations:

• In the basic settings, GNNSDP achieves 1.8 and 1.3 averaged LF1 improvements on
the ID and OOD test set over the previous best parsers.

• Adding both the character-level and the lemma embeddings, most models improve
performance quite a bit generally. GNNSDP leads to 1.9 and 1.9 averaged LF1 im-
provements over the previous best parsers on the ID and OOD test sets.

• Adding BERT embeddings pushes performance even higher generally. GNNSDP
outperforms the previous best parsers by 0.3 and 2.2 average LF1 improvements on
the ID and OOD test sets, respectively.

• GNNSDP makes significant improvements on the PSD formalism, with 4.6 and 4.7
LF1 improvements in the basic settings, 4.6 and 5.1 LF1 improvements when character-
level and lemma embeddings are added, 0.9 and 5.3 LF1 improvements when BERT
embeddings are added on the ID and OOD test sets, respectively.

• The LF1 scores of all parsers on the PSD is lower than the other two formalisms.
Table 5 shows part of contrastive statistics of three formalisms. We have noticed that
the PSD formalism appears linguistically most fine-grained because it contains the
most semantic labels and frames [35]. This makes PSD more challenging to predict.
However, GNNSDP performs better than other first-order and second-order parsers,
suggesting that higher-order information is beneficial for improving SDP.

• The performances of GNNSDP(GCN) and GNNSDP(GAT) are close in three em-
bedding settings, demonstrating that both GCN and GAT are capable of capturing
higher-order information.

Table 5. Contrastive statistics of three semantic formalisms.

DM PAS PSD
ID OOD ID OOD ID OOD

# labels 59 47 42 41 91 74
# frames 297 172 - - 5426 1208

4.5.2. Results on Chinese and Czech

Table 6 shows the comparison of GNNSDP and previous studies on the SemEval 2015
Task 18 Chinese and Czech datasets. From the results, we have observed that:
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• GNNSDP(GCN) and GNNSDP(GAT) outperform the previous parsers on Chinese
and Czech.

• The LF1 scores of GNNSDP(GCN) and GNNSDP(GAT) are relatively close on Chinese
and Czech.

Table 6. Comparison of labeled F1 scores achieved by our model and previous state-of-the-art on
Chinese and Czech datasets. The bold numbers indicate the current best scores. The results of D&M
on Chinese and Czech are not reported in their paper; therefore, we reproduce it. The F1 scores of
baseline and our models are averaged over five runs. Only the PAS formalism and in-domain test
set is available for Chinese; the PSD formalism, in-domain, and out-of-domain test sets are available
for Czech.

Chinese Czech
Models PAS PSD

ID ID OOD

Turku[42] 79.6 75.3 63.7
Riga [43] 82.5 75.3 61.3

Peking [10] 83.4 78.5 64.4
Lisbon [39] 82.0 79.3 63.5

D&M [12]: Basic 87.4 86.9 77.8

GNNSDP(GCN): Basic 88.3 88.2 79.1
GNNSDP(GAT): Basic 88.0 87.8 78.9

D&M [12]: +Char+Lemma 87.8 87.6 78.9

GNNSDP(GCN): +Char+Lemma 88.5 88.8 80.2
GNNSDP(GAT): +Char+Lemma 88.3 88.9 80.2

GNNSDP(GCN): +Char+Lemma+BERTbase 90.1 89.6 80.7
GNNSDP(GAT): +Char+Lemma+BERTbase 90.4 89.3 80.4

In summary, GNNSDP outperforms the previous state-of-the-art parser in three
languages and three semantic dependency formalisms. Outstanding performances of
GNNSDP have demonstrated that higher-order information can bring considerable accu-
racy gains in SDP. In addition, GNNs are capable of capturing higher-order information.

5. Experimental Analysis

In this section, we analyse the experimental results from three perspectives, including
performance on different sentence length, ablation study, and case study.

5.1. Performance on Different Sentence Length

We want to study the impact of sentence lengths. The ID and OOD test sets of the
three formalisms are split with 10 tokens range. The ID test set has six groups and OOD
has seven groups. GNNSDP(GCN) and biaffine parser are evaluated on them. The results
for different groups are shown in Figure 3.

The results show that GNNSDP outperforms the biaffine parser on different groups
with the same embedding settings, except for being slightly lower on the first group (0–10
tokens) on ID test set of PAS formalism. Furthermore, GNNSDP that only uses POS tag
embeddings outperforms the biaffine parser that uses POS tag, character-level, and lemma
embeddings when sentences get longer, especially when sentences are longer than 30. It
turns out that higher-order information is favorable for longer sentences since higher-order
dependency relationships are more prevalent in longer sentences.
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Figure 3. LF1 score of different sentence lengths in 3 formalisms. ?-T represents that only the POS
tag is used as feature. ?-TCL represents that the POS tag, character-level and lemma embeddings are
used as features. ?-TCLB represents that the POS tag, character-level, lemma and BERT embeddings
are used as features.
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Figure 3. LF1 score of different sentence lengths in three formalisms. ?-T represents that only the POS
tag is used as feature. ?-TCL represents that the POS tag, character-level, and lemma embeddings are
used as features. ?-TCLB represents that the POS tag, character-level, lemma, and BERT embeddings
are used as features.

5.2. Ablation Study

We investigate how the number of GNN layers affects the performance of our parser.
We train and test the GNNSDP(GCN) in PSD formalism datasets of English and Czech. The
number of GCN layers increases from 1 to 3.

Table 7 shows the results of GNNSDP(GCN) with different numbers of GCN layers in
basic embedding settings. From the results, we can see that:

• GNNSDP(GCN) with only one GCN layer still performs better than the biaffine parser,
demonstrating that higher-order information is beneficial for improving SDP.

• The performance of GNNSDP(GCN) is gradually improved when the number of GCN
layers is increased, demonstrating that stacking more GNN layers is able to capture
better higher-order information.
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Table 7. LF1 scores of GNNSDP with different GNN layers on ID and OOD test set of Chinese and
Czech. The bold numbers indicate the current best scores.

English Czech
Models PSD PSD

ID OOD ID OOD

D&M [12] 79.1 77.5 86.9 77.8
GNNSDP(GCN): 1-layer 83.4 81.9 87.7 78.6
GNNSDP(GCN): 2-layers 84.2 82.6 88.0 78.6
GNNSDP(GCN): 3-layers 85.6 83.6 88.2 79.1

5.3. Case Study

We provide a parsing example to show why GNNSDP benefits from higher-order
information. Figure 4 shows the parsing results of the biaffine parser (Figure 4a) and
GNNSDP(GCN) (Figure 4b) for the English sentence (sent_id = 40504035, in OOD of PSD
formalism) “There is never enough corn, peas or strawberries”. Both parsers are trained in the
basic embedding settings.

Version April 14, 2022 submitted to Appl. Sci. 13 of 14
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Figure 4. Parsing results of the biaffine parser and GNNSDP, for the sentence (sent_id = 40504035 in
OOD of PSD formalism). Some irrelevant dependency edges are hidden.

In the gold annotation, three words corn, peas, and strawberries are three members of the
disjunctive word or. In addition, the word enough has three dependency edges labeled EXT
with them. In the results of the biaffine parser, only the dependency edge between enough
and corn is identified; the remaining two are not. In GNNSDP(GCN), given the initial SDG
predicted by the biaffine parser, the words corn, peas, and strawberries aggregate the higher-
order information of or and is (first-order), there (second-order), and ROOT (third-order).
The word enough aggregates the higher-order information of the corn (first-order), is and or
(second-order), there (third-order), and ROOT (fourth-order). The dependent word enough
and three head words corn, peas, and strawberries aggregate information of four common
words (ROOT, There, is and or). Therefore, the representations of them with higher-order
information bring more evidence into decoders’ final decisions. As a result, it is effortless
for GNNSDP to identify that there are also two dependency edges labeled EXT between
the dependent word enough and the head words peas and strawberries.

6. Conclusions

This paper aims to exploit GNNs’ powerful ability of representation learning in SDP.
GNNs are utilized to encode higher-order information to improve the accuracy of semantic
dependency parsing. Experiments are conducted on the SemEval 2015 Task 18 dataset in
three languages (Chinese, English, and Czech). Compared to the previous state-of-the-art
parser, our parser yields 0.3% and 2.2% improvement in the average labeled F1-score
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on English in-domain (ID) and out-of-domain (OOD) test sets, 2.6% improvement on
Chinese ID test set, and 2.0% and 1.8% improvement on the Czech ID and OOD test
sets. Experimental results show that our parser outperforms the previous best one on the
SemEval 2015 Task 18 dataset in three languages. In addition, our parser shows greater
advantage in longer sentence and complex semantic formalism. Outstanding performances
of our parser demonstrates that higher-order information encoded by GNNs is exceedingly
beneficial for improving SDP.

Despite that significant improvement has been made, the initial graph structure output
by the vanilla parser may be noisy, resulting in a performance penalty to some extent. In
the future, we would like to apply graph structure learning models to jointly learn graph
structure and graph representation, rather than depending on the initial dependency graph
output by the vanilla parser.
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SDP Semantic Dependency Parsing
SDG Semantic Dependency Graph
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GCN Graph Convolutional Network
GAT Graph Attention Network
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PAS Predicate-Argument Structure
PSD Prague Semantic Dependencies
BERT Bidirectional Encoder Representation from Transformers
BiLSTM Bidirectional Long Short-Term Memory Networks
MLP Multi-Layer Perceptron
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