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Featured Application: Our AI-based approach flags low-quality ultrasound hip images as inade-
quate for diagnosis. This would help sonographers to collect high-quality hip scans suitable for
early diagnosis of DDH.

Abstract: Ultrasound images can reliably detect Developmental Dysplasia of the Hip (DDH) during
early infancy. Accuracy of diagnosis depends on the scan quality, which is subjectively assessed by
the sonographer during ultrasound examination. Such assessment is prone to errors and often results
in poor-quality scans not being reported, risking misdiagnosis. In this paper, we propose an Artificial
Intelligence (AI) technique for automatically determining scan quality. We trained a Convolutional
Neural Network (CNN) to categorize 3D Ultrasound (3DUS) hip scans as ‘adequate’ or ‘inadequate’
for diagnosis. We evaluated the performance of this AI technique on two datasets—Dataset 1 (DS1)
consisting of 2187 3DUS images in which each image was assessed by one reader for scan quality on
a scale of 1 (lowest quality) to 5 (optimal quality) and Dataset 2 (DS2) consisting of 107 3DUS images
evaluated semi-quantitatively by four readers using a 10-point scoring system. As a binary classifier
(adequate/inadequate), the AI technique gave highly accurate predictions on both datasets (DS1
accuracy = 96% and DS2 accuracy = 91%) and showed high agreement with expert readings in terms
of Intraclass Correlation Coefficient (ICC) and Cohen’s kappa coefficient (K). Using our AI-based
approach as a screening tool during ultrasound scanning or postprocessing would ensure high scan
quality and lead to more reliable ultrasound hip examination in infants.

Keywords: hip; developmental dysplasia of the hip; 3D ultrasound; scan quality assessment; deep
learning; convolutional neural networks

1. Introduction

Developmental Dysplasia of the Hip (DDH) is common in infants, present in one to
three per 1000 live births [1] with large variations among ethnic groups [2]. Undiagnosed
DDH is a major risk factor for early hip Osteoarthritis (OA) [2,3] which is associated with
a huge economic burden [4,5]. It is also seen as the underlying cause for more than 1/3 of
hip replacements in adults who are less than 60 years of age [6]. If diagnosed in early
infancy (<3 months), DDH can be treated by simple techniques such as bracing (e.g., Pavlik
harness) [7]. Despite obvious advantages of early diagnosis [8,9], hip screening programs
for infants are not common in most countries, due in large part to the high variability in
scan assessment [10].

Clinically, DDH is diagnosed by physical examination including Barlow and Ortolani
maneuvers which have poor sensitivity beyond the neonatal period, resulting in missed
cases, particularly of mild DDH or fixed dislocations [11–13]. Compared to physical
examination, ultrasound imaging is more reliable and more sensitive [11–13] and is ideal
for screening programs as it is safe, easily portable and inexpensive.
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During hip examination, 2D ultrasound images are usually acquired and interpreted
based on the Graf technique [14] which measures the alpha angle between the ilium and
acetabular roof. Alpha angles greater than 60 degrees are considered normal and those
less than 43 degrees are considered severely dysplastic [14]. This technique relies heavily
on obtaining a single 2D image in the Graf plane containing all landmarks such as illum,
labrum, os ischium and femoral head (Figure 1A). Acquiring such images requires many
hours of training, since slight variations in probe orientation can result in suboptimal
images. Previous studies have shown that deviation from the Graf plane by novice users
can result in incorrect diagnosis in two-thirds of neonates and half of infants evaluated [15].
These variations can be reduced to some extent by using 3D Ultrasound (3DUS). Since
3DUS covers a larger area, it is more likely to contain the Graf plane, thereby making it more
reliable than 2DUS, especially when scanning is performed by novice sonographers [16].

Figure 1. Examples of ultrasound hip images of different scan quality. (A) Example of a high-
quality image in which all landmarks such as ilium, os ischium, labrum and femoral head are clearly
visible. The alpha angle is measured as the inner angle between the iliac line and acetabular roof.
(B) Moderate-quality scan containing all landmarks, but with the blurring of the os ischium and
blurring and slight tilt of the iliac line. (C) Poor-quality image with none of the landmarks visible.

However, in both 2DUS and 3DUS, reliability of the ultrasound examination depends
to a large extent on scan quality. In current clinical practice, sonographers manually as-
sess scan quality based on visibility of key landmarks. This approach is prone to high
inter-observer variance. As a result, poor-quality images can be presented to radiologists,
risking misdiagnosis. Examples of images of varying scan quality are shown in Figure 1.
In earlier work [17], a semi-quantitative scoring technique that evaluates individual imag-
ing landmarks (such as ilium, labrum, femoral head and os ischium) and artifacts (such
as movement and other artifacts) is proposed. While such approaches make scan qual-
ity assessment less subjective, there can still be variability in the manual assessment of
individual features.

Automatic assessment of scan quality could address these issues and provide the
sonographer with a reliable and non-subjective assessment of image adequacy at the time
of scanning. Automatic assessment of ultrasound is challenging due to various factors
such as the presence of spurious image effects that resemble anatomical structures, blurred
image boundaries, mirror artifacts and shadowing artifacts. The 3DUS images (as well
as 2D sweeps) also contain artifacts resulting from patient movement or hand movement
at the time of scanning. As a result, commonly used image processing techniques such
as template-matching [18,19] and feature extraction [20,21] cannot be directly applied
to ultrasound.

Related Work on Deep Learning in Hip Ultrasound

With the recent success of Convolutional Neural Networks (CNNs) in medical image
processing, data-driven approaches have been proposed for automatic image segmentation
and classifications in hip ultrasound. Hareendranathan et al. [22] developed a CNN for seg-
menting the acetabulum that used multi-scale super pixels as inputs to an AlexNet model.
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The 3D convolutional networks (3DconvNet) such as C3D and I3D have been used
for video classification. The C3D network uses a homogeneous architecture with 3 × 3 ×
3 convolution kernels in all layers and gave 52.8% accuracy on the UCF101 dataset [23].
The Inflated 3D ConvNet (I3D) used a new two-stream approach to combine 2D and 3D
convolutions. With pretraining on Kinetics, the I3D model gave accuracies of 80.9% on
the HMDB-51 dataset and 98.0% on the UCF-101 dataset [24]. Similarly, 2D segmentation
models such as the 3D U-Net [25], 3D V-Net [26] and the 3D Deeply Supervised network [27]
have also been used for image segmentation in videos. Extending these models to 3DUS
volumes of the hip is non-trivial, mainly due to the lack of large datasets.

Generally, deep learning models are trained on hip ultrasound images acquired by
well-trained sonographers in research settings. Such images contain all necessary imaging
landmarks such as straight and horizontal acetabulum and round femoral head. The scan
quality of the images used in these datasets was assessed subjectively by the sonographer.
In this paper, we develop a deep learning technique to automatically assess the image
quality of hip ultrasound images and categorize it as adequate vs. inadequate for DDH
diagnosis. Similar deep learning techniques have been developed using CNNs [28,29] and
Recurrent Neural Networks (RNNs) [30] for 2DUS scan quality assessment. Along these
lines, we propose a new 3D CNN model to predict the adequacy of hip scans for DDH
diagnosis in 3D ultrasound images and validate it on two large clinical datasets.

This is the first study to validate an automatic hip quality assessment technique on a
large dataset, of 2187 hip scans performed by 3DUS (Dataset 1). Any systematic error in
prediction is also examined by evaluating the algorithm on subgroups of images based on
age {0–3 months, >3 months} and sex {Male, Female}. On a separate dataset of 107 images
(Dataset 2), we conducted a multi-reader study with four readers who semi-quantitatively
evaluated scan quality using a 10-point scoring system [17] and compared it to predictions
from our AI-based approach.

2. Materials and Methods

We recruited infants who had been referred for ultrasound examination based on
clinical suspicion of DDH (due to risk factors such as hip laxity, asymmetrical skin creases,
breech position, female sex, positive family history of DDH, first-born infants and ethnicity).
In this institutional health research ethics board-approved study, we added 3DUS scanning
to the routine 2DUS scanning protocol and obtained written informed parental consent
from each participant. Since DDH can be unilateral or bilateral, we included all dysplastic
hips separately but, in cases where both hips were normal, we only included one hip
per subject in the study. Each hip was categorized as normal or abnormal based on the
assessment of the consulting radiologist.

2.1. Ultrasound Scanning

Routine ultrasound examination for both hips was performed per American College of
Radiology recommendations [31]. In addition to 2D scans, we also acquired coronal 3DUS
images of both hips using a Philips iU22 scanner with a Philips 13VL5 (Philips Healthcare,
Andover, MA, USA) linear array transducer (having a center frequency of 13 MHz). Each
3DUS image consisted of 3.2 s sweeps (sweep angle +/− 15 degrees, 256 slices), with the
head of the transducer positioned near the greater trochanter of the infant. Sweeps were
acquired such that the central slice of the 3DUS volume roughly approximated the Graf
plane. Each slice was 411 × 193 pixels (with each pixel measuring 0.11 mm × 0.20 mm)
and a slice thickness of 0.13 mm.

2.2. Model Development

We used a 3D CNN consisting of convolutional and fully connected layers to pre-
dict scan quality. The optimal architecture for the network (as shown in Figure 2) was
dynamically determined based on accuracy of classification on the validation set. Like the
C3D model, we used a homogenous kernel size of 3 × 3 × 3 in all layers. To minimize



Appl. Sci. 2022, 12, 4072 4 of 10

the memory requirement in training, we resized the original 800 × 600 × 256 image to
a 32 × 32 × 32 tensor. Since the input tensor is already much smaller compared to the
original image, we applied max pooling only in the slice dimension, i.e., a pooling ratio
of 1 × 1 × 2. Hence, the height and width of each slice was maintained at 32 × 32 pixels.
We used a stride size of 1 in all convolutional layers and used 16, 32 and 64 kernels in
the convolutional layers conv1, conv2 and conv3, respectively. The model was trained
for 100 epochs to minimize a categorical cross entropy loss optimized using rmsprop at
learning rate lr = 0.001. To prevent the model from overfitting, we used 20% dropout in the
fully connected layers.

Figure 2. Overview of the proposed technique showing the CNN model consisting of 3 convolutional
layers and 2 Fully Connected (FC) layers. Each convolutional layer consists of a convolution layer,
ReLU activation and softmax (applied only in the slice dimension).

Labels for training the network were obtained from the manual scoring on 1548 other
3DUS scans excluded from the test set by one reader (MM with 4 years of experience in
hip ultrasound image analysis). Factors such as the straightness of the ilium, visibility of
labrum, os ischium and femoral head and presence of movement artifacts were considered
while scoring the images. These labeled images were divided into the training (70%,
1083 images, 651 high-quality images, 432 low-quality images) and validation set (30%,
465 images, 300 high-quality images, 165 low-quality images).

In our dataset, we had a relatively low number of poor-quality images. This is typical
of ultrasound scanning taking place in research settings where scans are acquired by
well-trained sonographers. We tried to address this issue by assigning a higher weight
(0.65 vs. 0.45) for misclassified low-quality scans.

2.3. Model Evaluation

We tested the AI technique on two datasets—(1) Dataset 1 (DS1): A large dataset of
2187 3D hip ultrasound images obtained from 508 infants (each 3D image from a patient
scan was analyzed separately for image quality) in which one reader (MM), a radiology
resident with 4 years of expertise in hip dysplasia ultrasound, scored images from 1–5, and
(2) Dataset 2 (DS2): A separate set of 107 3D images from 101 subjects in which 4 readers
evaluated the quality more systematically using a previously published 10-point scoring
system [17] as summarized in Table 1.
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Table 1. Method of scoring used to evaluate Datasets 1 and Dataset 2. #+, #− indicate the number of
adequate-quality and inadequate-quality images in each dataset.

Dataset # Images, (#+, #−) # Readers Method Scan Adequacy
Criteria

Dataset 1 2187 (1568, 619) 1
Holistic score:
Low quality: 1
High quality: 5

>3

Dataset 2 107 (75, 32) 4

10-point scoring 1:
High quality: 10

Straight and horizontal ilium: 2
Clearly visible
Os ischium: 2

Visible labrum: 1
Round femoral head: 1
No motion artifacts: 2

No other image artifacts: 2

>6

1 Details on the 10-point scoring system can be found in [17].

2.4. Statistics

The readers included one expert (reader 4) who is our lead radiologist, with fellowship
training in pediatric and musculoskeletal radiology and 13 years of experience (JJ) and
three non-expert readers (reader 1, BC, a radiology resident with 2 years’ experience in hip
ultrasound, reader 2, EO, a graduate student in radiology with 1 year experience in hip
ultrasound, reader 3, AH, a research associate with 5 years of experience in ultrasound hip
image analysis). For binary classification, scans with a score of above 3/5 in DS1 and above
6/10 in DS2 were considered ‘adequate’ quality.

Accuracy, sensitivity, specificity, Negative Predictive Value (NPV), Positive Predictive
Value (PPV) and Area Under the ROC Curve (AUC) were calculated for each image with
the manual categorization treated as ground truth. Descriptive statistics of agreement of
AI prediction with manual readings are also reported in terms of ICC (3,k) and kappa.
We evaluated the Accuracy, Sensitivity (SN), Specificity (SP), and Positive and Negative
Predictive Value (PPV, NPV) of the AI network as a diagnostic test for image quality in
which a true-positive result was an image manually defined as inadequate (i.e., a test
that flags poor-quality scans). Calculations were performed using our inhouse software
developed in Python 3.6 using sklearn and pingouin libraries.

3. Results

As seen in Table 2, within DS1 (2187 3DUS images from 508 infants) the AI technique
correctly predicted 596/619 images as inadequate quality and 1501/1568 as adequate
quality. In DS2 (107 3DUS images), the AI technique gave the highest accuracy, sensitivity,
specificity, NPV and PPV when compared to three non-expert readers. We also tried
to address the data imbalance (651 high-quality images vs. 432 low-quality images) by
assigning a higher weight to the underrepresented class (i.e., low-quality images). However,
this gave a lower AUC of 0.89.

In order to check for any systematic error in predictions, we divided the images into
subgroups based on age and sex and evaluated all parameters within the subgroups as
summarized in Table 3. Accuracies were similar in all subgroups, indicating no systematic
error in prediction.

Agreement of AI-based predictions with manual scoring was quantified using ICC
and Cohen’s kappa as shown in Table 4. We used kappa to measure the inter-observer
agreement between AI and the expert reader in Dataset (DS) 1. The DS was evaluated
by three non-expert readers and one expert (JJ). Compared to the non-expert readers, AI
showed higher agreement (0.77 vs. 0.72) with the expert. The difference in kappa scores
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between AI and non-expert human readers was statistically significant (p < 0.05) for readers
2 and 3.

Table 2. Accuracy, sensitivity, specificity, Negative Predictive Value (NPV), Positive Predictive Value
(PPV) and AUC of our AI-based approach. AUC represents the area under the Receiver Operating
Characteristic (ROC) curve.

Dataset Reader Accuracy Sensitivity Specificity PPV NPV AUC

Dataset 1 AI 0.96 1.0 0.87 0.94 1.0 0.93

Dataset 2

AI 0.91 0.9 0.93 0.97 0.76 0.91
Reader 1 0.89 0.9 0.85 0.95 0.74 0.88
Reader 2 0.7 0.59 1.0 1.0 0.46 0.8
Reader 3 0.75 0.72 0.81 0.92 0.5 0.77

Table 3. Comparison of accuracy, sensitivity, specificity, PPV, NPV and AUC in subgroups of data
categorized based on age and sex. Note that there was no systematic bias in any subgroup.

Variable Subgroup Accuracy Sensitivity Specificity PPV NPV AUC

Age 0–3 months 0.97 1.0 0.84 0.96 1.0 0.92
>3 months 0.93 1.0 0.89 0.83 1.0 0.94

Sex
Male 0.96 1.0 0.87 0.94 1.0 0.94

Female 0.96 1.0 0.86 0.94 1.0 0.93

Table 4. Agreement of AI predictions with scores provided by expert and non-expert readers. The
95% Confidence Intervals (CIs) of each value is provided in square brackets.

Dataset Readers Ground Truth Kappa ICC

DS1 AI Expert 0.90 [0.97, 0.82] 0.95 [0.94, 0.95]
DS2 AI Expert 0.77 [0.85, 0.68] 0.88 [0.84, 0.91]

Reader 1 Expert 0.72 [0.79, 0.65]
Reader 2 Expert 0.43 [0.50, 0.35]
Reader 3 Expert 0.44 [0.50, 0.38]

Overall agreement of AI with manual reading was quantified using ICC considering
AI-based prediction as the 2nd reader in DS1 and as the 5th reader in DS2. In both cases,
agreement among readers was high (DS1 −0.95; DS2 −0.88).

Some examples of images of varying quality that were evaluated by AI are shown in
Figure 3. All images in row 1 are high-quality images with all necessary landmarks that
the CNN correctly identified as adequate. Similarly, images in row 2 are images that are
correctly categorized as inadequate by AI. Images in row 3 are moderate-quality images
in which there exists variability in manual assessment. The expert radiologist scored two
of these images (A, B) as adequate (with score 7) and one image (C) as inadequate (with
score 6). AI classified images A and B as inadequate and C as adequate. This row of images
highlights the inevitable subjectivity of assessment of intermediate-quality scans.
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Figure 3. Examples of images analyzed by AI. Row 1: Images of high quality that were correctly
identified AI. Row 2: Low-quality images correctly categorized as inadequate by AI. Row 3: Cases
where AI failed are indicated with a red box. Images (A,B) were categorized as inadequate by AI and
two human readers but were categorized as adequate by the expert reader (these images represent
false positives in classification). Similarly, image (C) was classified as adequate by AI and 2 human
readers, but inadequate by the expert reader (false negative).

4. Discussion

We developed a 3D CNN for automatic ultrasound scan quality assessment and
validated it on two datasets, one large (>2000 scans) and one as part of a multi-reader
exercise (four human readers, 107 scans). This is the first study of automatic ultrasound scan
quality assessment on a large dataset with wide representation from infants of different age
groups and sex. On the large data set, our CNN was 96% accurate (with 100% sensitivity and
87% specificity) when compared to expert manual assessment of quality. In the multi-reader
study, the AI technique actually performed slightly better than each of the three non-expert
human readers in agreeing with the 4th expert human reader on diagnostic quality as
rated in a 10-point scoring system [17]. Based on the commonly used interpretation of ICC
(where values less than 0.5 indicate poor, 0.5–0.75 moderate, 0.75–0.9 good and greater than
0.90 excellent [32]), the CNN showed excellent reliability.

The 3D CNN approach flags low-quality images containing imaging artifacts that
are commonly seen in 3DUS (as well as 2D sweeps). These artifacts usually occur due
to patient movement, hand movement and ultrasound shadowing. Although we do not
specifically segment these artifacts, since our technique considers temporal and spatial in-
formation around each pixel, images with high occurrence of image artifacts are categorized
as inadequate.

Since 3DUS scans consist of a large number (~250) of slices, manual assessment of
scan quality is tedious. As a result, anatomical landmarks crucial to DDH assessment
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could be missed in 3DUS. Our automatic assessment technique is fast (average execution
time ~2 s/image on the Compute Canada Cedar cluster with an NVIDIA V100 GPU) and
accurate and it can be used to provide feedback on scan quality to the sonographer in real
time during hip examination.

This can also be used as a preprocessing step for automatic interpretation of hip
ultrasound. Automatic interpretation usually involves calculation of alpha angle and/or
predicting the probability of DDH from ultrasound images. Since these techniques [33–35]
generally rely on imaging landmarks such as ilium, acetabulum, os ischium and femoral
head, their accuracy depends to a large extent on adequate visualization of these features.
Our technique could flag inadequate images upfront and thereby improve the accuracy of
these automatic hip interpretation systems. Since the focus of this paper is to apply a CNN
model on the new use case of hip image quality assessment, we have not compared it to
other 3D networks such as C3D, I3D or 3D U-Net.

One limitation of our study is the variability in ground truth as it is based on manual
assessment. Images in Dataset 1 were holistically scored from 1–5 by a manual reader.
There could be variability in these scores if the same images were to be scored by a second
reader. We address this issue to some extent in Dataset 2 which was semi-quantitatively
assessed using the scoring system described in [17]. Using the scoring system, the human
reader makes a series of (mostly binary) decisions based on landmarks found in the image.
Although this reduces the variability, there are inevitably some variations in manual
assessment of these individual features, most relevant in intermediate-quality images. For
example, as shown Figure 2 row 3, two images were assessed as adequate quality by two
human readers but with a low score of 7 points. These images were assessed as inadequate
by AI with a probability of 0.42 and 0.4. Such images represent edge cases where there
exists ambiguity in ground truth assessment.

Images used in our study were acquired in a research environment by experienced
sonographers in dedicated sessions which represent the idealized scenario. Hence, most
images were of high quality. For example, in Dataset 2 more than 90% of the images
have clearly visible labrum and femoral head. As future work, we plan a multi-center
study on 2D sweep images acquired from tertiary centers and small clinics using handheld
pocket-sized devices. In this study, we expect to acquire more low-quality scans that can be
used to further validate the utility of our AI-based approach. Demonstrating validity of the
AI technique for assessing scan quality in these settings is critical to the feasibility of using
2DUS for population screening of DDH.

5. Conclusions

We developed a new AI technique for automatic interpretation of ultrasound scan
quality and validated it on two datasets of 3D ultrasound images. Our approach was
fast, highly reliable and showed agreement with an expert reader that was equivalent to
or better than that of three other human readers. This new AI approach can be used to
provide feedback on scan quality to sonographers during or immediately after ultrasound
examination. It can also be used as a preprocessing step in interpretation systems to filter
low-quality images and improve the reliability of hip ultrasound examinations.
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