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Abstract: Understanding the contact mechanics of rough tooth surfaces is critical in order to under-
stand phenomena such as tooth surface flash temperature, tooth surface wear, and gear vibration.
In this paper, the contact behavior between the meshing tooth surfaces of beveloid gear pairs with
elliptical asperities is the focus. The contact area distribution function of the elliptical asperity was
proposed for the point contact of curved surfaces by transforming the elastic contact problem between
gear meshing surfaces into the contact between elastic curved surfaces with an arbitrary radius of
curvature. In addition, a fractal contact mechanics model for the rough surface of a beveloid gear with
elliptical asperities was established. The influence of tooth surface topography on the contact load and
contact stiffness under different fractal parameters was investigated, and the results demonstrated
that the real contact load and the contact stiffness of curved surfaces increase with the increase in
the fractal dimension D and the contact coefficient λ. Conversely, the real contact load and normal
contact stiffness decrease with the increase in the fractal roughness G and eccentricity e.

Keywords: mechanics model; surface topography; elliptical asperity; beveloid gears

1. Introduction

The contact tooth surfaces are microscopically rough due to problems in machining
accuracy and tooth surface wear. The contact between two rough tooth surfaces is a range
of elliptical asperities of different sizes, and the distribution law of the elliptical asperities
has a certain degree of anisotropy. Understanding the contact mechanics of rough tooth
surfaces is critical for understanding phenomena such as tooth surface flash temperature,
tooth surface wear, and gear vibration. Therefore, establishing a contact mechanics model
for rough surfaces accurately and investigating the relationship between the real contact
area and the contact load are particularly important.

Numerous studies on the contact analysis of rough surfaces have been conducted by
domestic and foreign scholars. Greenwood and Williamson introduced the famous GW
contact model and investigated the elastic contact between two rough surfaces by assuming
a flat surface in contact with a rough surface [1]. Majumdar and Bhushan produced the MB
contact model that considered isotropic rough surfaces to eliminate the scale-dependency of
statistical theories [2]. Moreover, the normal contact load and contact area in the MB contact
model were investigated using scale-independent parameters [3]. Chang established the
CEB contact model considering the elastic–plastic deformation of the asperities [4]. Zhao
suggested an elastic–plastic asperity contact model, namely, the ZMC model with the conti-
nuity of variables across different deformation regimes [5]. Kogut and Etsion constructed
the KE contact model between an elastic hemisphere and a rigid flat surface utilizing finite
element methods and analyzed the contact behavior by quantitatively separating the ranges
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of elastic deformation, elastic–plastic deformation, and plastic deformation [6,7]. Jackson
presented a multi-scale contact model by employing the Fourier series coefficients obtained
from an FFT of the rough surfaces to describe the surface geometry at multiple scales [8,9].
Sun proposed a revised contact mechanics model for rough surfaces based on the premise
that the initial profile of the rough surface should be indifferent to the sample duration
and contact area. Additionally, the effects of fractal dimension, fractal roughness, and
contact pressure on contact stiffness were addressed in detail [10]. Morag provided a novel
elastoplastic contact model for rough surfaces that addressed a critical drawback of the
MB model, which assumed that the asperities must be deformed [11]. Yuan introduced a
new MB model of elastic–plastic contact between rough surfaces, and the revised model
revealed that asperity levels have an effect on the mechanical characteristics of rough
surfaces [12,13]. Yu established the contact mechanics model for rough surfaces based on
shoulder–shoulder contact and fractal characteristics [14]. Pan constructed an analytical
model for contact stiffness that incorporated the friction factor between rough contact sur-
faces, and the findings indicated that the friction factor has a significant effect on the contact
stiffness of the whole structure [15,16]. Zhou suggested a new fractal contact model that
took asperity interactions into account by representing the impacts of asperity interactions
using the displacement of the mean of asperity heights [17]. Wang suggested a contact
stiffness model that took asperity interactions into account, and the proposed model’s
correctness was proved by experiments [18]. Li developed a novel contact stiffness model
for the mechanical joint surface that accounted for the asperity’s continuous smooth contact
features while also taking the asperity interaction into account [19]. Cohen introduced
an elastic–plastic spherical contact model for combined normal and tangential loadings,
which integrated previously accurate finite element analyses for contact and static friction
on rough surfaces [20,21]. Wang suggested a normal contact model that took into account
the contribution of elastically, plastically, and mixed elastic–plastically deformed asperities
to the total normal load of rough surfaces [22]. Xiao created a novel elastoplastic asperity
contact model that incorporated the continuity and smoothness of mean contact pressure
and load values throughout a range of deformation regimes, from elastic to elastoplastic,
and from elastoplastic to completely plastic [23]. Yu suggested a new contact stiffness
model for curved surfaces that incorporated friction and was based on the continuity of the
asperity length scale [24].

In recent years, the contact behavior of elliptical asperity on rough surfaces has been
widely studied. Asperities on the workpiece surface may have different curvature radii in
various directions, according to Kragelskii and Mikhin [25]. Horng suggested an elastic–
plastic contact model for elliptic contact spots between anisotropic rough surfaces [26].
Jamari presented a theoretical model for the elastic–plastic contact of ellipsoid bodies and
introduced a new simple method to analyze the complexity of the elliptical integral by an
accurate approximation [27]. Jeng and Wang developed an elastic–plastic contact model that
considered the elliptical contact of surface asperities [28]. To address the weaknesses of the
previous elastic–plastic micro-contact model, Wen proposed a new elliptical contact model
that took into account elastic–plastic deformation [29]. Jamari and Schipper experimented
to obtain data on the relationship between the normal deformation of asperity and contact
area and contact load and then used the fitting approach to derive the formula [30]. Lan
devised an elastic–plastic contact model with ellipsoid surfaces taking friction factors
into account, and he evaluated the contact load variation law for ellipsoid elastic bodies
under low-velocity impact situations [31]. The research related to the contact analysis of
rough curved surfaces such as tooth surfaces. Chen described the fractal approach for
evaluating contact stiffness for spheroidal contact bodies with friction [32]. Liu proposed
a contact model for determining the contact state of spherical pairs, taking into account
the microscopic properties of the rough spherical surface and the friction factor [33]. Wang
developed the contact model of the loading–unloading process for cylindrical contact
surfaces with friction in different deformation stages [34]. Yang proposed the contact
stiffness model of an involute arc cylindrical gear, considering the influence of sliding
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friction [35]. Some scholars developed a fractal contact model applicable to a gear pair
contact, considering the effect of tooth surface roughness on normal contact stiffness [36,37].

As demonstrated by the above literature review, while significant work has been
conducted by domestic and foreign scholars to investigate the contact problems between
rough surfaces, the current research on the fractal contact model between two rough curved
surfaces has generally ignored the influence of surface texture on rough surface contact
behavior. However, the topography of rough surfaces varies in the cutting direction and
vertical direction, and the contact between two rough surfaces consists of a spectrum of
elliptical asperities of varying diameters, with an anisotropic distribution of the elliptical
asperities. Therefore, the contact area distribution function of elliptical asperity was
proposed for the point contact of curved surfaces by transforming the elastic contact
problem between gear meshing surfaces into the contact between elastic curved surfaces
with an arbitrary radius of curvature. In addition, a fractal contact mechanics model for the
rough surface of a beveloid gear with elliptical asperities was established. The influence of
tooth surface topography on the contact load and contact stiffness under different fractal
parameters was investigated.

2. A New Fractal Characterization Approach for a Rough Surface Texture

Ausloos and Berman [38] established a three-dimensional fractal function model for
rough surfaces in 1985 by improving the WM function and demonstrating that the fractal
function model still satisfies randomness, multiscale, and self-similarity, and the expression
of the three-dimensional fractal function model is:

z(x, y) = L
(

G
L

)(D−2)( ln g
M

)1/2 M
∑

m=1

nmax
∑

n=nmin

g(D−3)n

×{cos jm,n − cos[(2pgn f (x, y)/L) cos(g(x, y)− am) + jm,n]}
(1)

where, z(x,y) is the three-dimensional morphological height of the rough surface. D is
the fractal dimension. G is the fractal roughness. n is the frequency index, n = lnl/lnγ,
l = 1/γn. ϕm,n is the random phase. γn is the spatial frequency of the rough surface. M
indicates the number of overlapping elevated parts of the rough surface. When M = 1, the
rough surface morphological characteristics show isotropic, when M 6= 1, the rough surface
morphological characteristics show anisotropic. αm is the three-dimensional rough surface
cosine direction, αm = πm/M. f (x,y) and g(x,y) are the functions of independent variables
related to the morphological characteristics of the rough surface, respectively.

Roughness measurements, as seen in Figure 1a, showed that the asperities dispersed on
the tooth surface may be approximated by an equivalent ellipsoid and that the distribution
law of the elliptical asperity on the rough tooth surface exhibits some anisotropy, as seen in
Figure 1b. To this purpose, this paper improves the W-M fractal function by making M = 1
and m = 1 in Equation (1), then the dual–autonomous W-M fractal function will degenerate
to a single–autonomous W-M fractal function, whose expression can be expressed as:

z(x) = L
(

G
L

)(D−1)

(ln γ)1/2
nmax

∑
n=nmin

cos ϕ1,n − cos(2πγn/L− ϕ1,n)γ
(D−2)n (2)
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Figure 1. Roughness measurements of a beveloid gear tooth surface. (a) The measurement experi-
ment of tooth surface topography; (b) The three-dimensional morphological characteristics of the
rough surface.

Therefore, the fractal curves of the tooth surface topography in the cutting direction
and vertical direction are superimposed to obtain a fractal description of the characteristics
of the rough surface texture, whose expression can be expressed as:

z(x, y) = L1

(
G1
L1

)(D1−1)
(ln γ1)

1/2 nmax
∑

n1=nmin

[
cos ϕ1,n1 − cos

(
2πγn

1 /L1 − ϕ1,n
)
γ(D1−2)n1

]
+L2

(
G2
L2

)(D2−1)
(ln γ2)

1/2 nmax
∑

n2=nmin

[
cos ϕ1,n2 − cos

(
2πγn

2 /L2 − ϕ1,n2

)
γ(D2−2)n2

] (3)

where z(x,y) is the height of the elliptical asperity. Dx, Dy are the fractal dimensions in the
direction x, y, Gx, Gy are the fractal roughness in the direction x, y, respectively. n1, n2 are
the number of sampling points within a finite length of the rough surface in the direction x,
y, respectively.

By adjusting the fractal dimensions Dx and Dy and the fractal roughness Gx and Gy in
the fractal characterization method (Equation (3)), the fractal characterization of the rough
surface texture can be obtained, as illustrated in Figure 2a,b; it is not difficult to discover
that a rough surface with a certain texture may be efficiently simulated by modifying the
fractal parameters in the x and y dimensions.

Figure 2. Fractal characterization of rough surfaces with different processing texture features:
(a) Gx = 1.0 × 10−11 m, Gy = 1.0 × 10−9 m, Dx = 1.6, Dy = 1.3; (b) Gx = 1.0 × 10−9 m,
Gy = 1.0 × 10−11 m, Dx = 1.3, Dy = 1.6.

3. Contact Mechanics Model of Elliptical Asperity with Rough Tooth Surface
3.1. Geometric Model of Single Elliptical Asperity

Since the contact between the meshing surfaces is mostly manifested as a multipoint
contact, the real contact area of the tooth surface is significantly smaller than the theoretical
contact area, and the contact issue between two rough surfaces is usually considered as the
contact between a rigid plane and a rough surface. As shown in Figure 3, the contact model
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of a single elliptical asperity was established in this paper; p is the normal load applied to
the elliptical asperity by a rigid plane, ωn is the actual deformation of the elliptical asperity,
and its value is between 0 and δ. The profile curve z(x, y) of a single elliptical asperity with
the major diameter lx and the minor diameter ly of the elliptical region as the base can be
deduced from Equation (3):

z(x, y) = (ln γ1)
1/2G1

D1−1lx
2−D1 cos

(
2πx

lx

)
+ (ln γ2)

1/2G2
D2−1ly2−D2 cos

(
2πy

ly

)
(4)

Figure 3. The contact model between a rigid plane and elliptical asperity.

The distance δn between the tip of the elliptical asperity and the base can be presented as:

δn = z(x, y)|x=0,y=0 = (ln γ1)
1/2G1

D1−1lx
2−D1 + (ln γ2)

1/2G2
D2−1ly2−D2 (5)

The normal deformation ωn of the elliptical asperity can be expressed as:

ωn = 2(ln γ1)
1/2G(D1−1)

1 (2rx)
(2−D1) = 2(ln γ2)

1/2G(D2−1)
2

(
2ry
)(2−D2) (6)

The geometric relationships between the normal deformation of the elliptical asperity
and the effective radii of curvature are illustrated in Figure 4 and the expressions are
described in Equations (7) and (8):

(Rx −ωn)
2 + r2

x = R2
x (7)(

Ry −ωn
)2

+ r2
y = R2

y (8)

Figure 4. The geometric model of a single elliptical asperity.

The semiminor and semimajor radius of the elliptical asperity could well be evaluated
also as the normal deformation ωn is significantly smaller than the curvature radius of the
elliptical asperity.

2Rxωn = r2
x (9)

2Ryωn = r2
y (10)
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The elliptical contact area can be expressed as:

a = πrxry = πrx
2
(

1− e2
)1/2

= πry
2
(

1− e2
)−1/2

(11)

Combine Equations (6), (9), (10), and (11), and the semiminor and semimajor radius of
the elliptical asperity can be expressed as:

Rx =
aD1/2(1− e2)−D1/4

2(4−D1)π(D1/2)G(D1−1)
1 (ln γ1)

1/2
(12)

Ry =
aD2/2(1− e2)D2/4

2(4−D2)π(D2/2)G(D2−1)
2 (ln γ2)

1/2
(13)

where e is the eccentricity of the contact ellipse, which can be expressed as:

e2 = 1−
(

ry

rx

)2
, ry < rx (14)

When the eccentricity e of the contact ellipse is 0, the elliptical contact area will be
transformed into a circular contact area, namely, Rx = Ry = Rm. When the eccentricity e is
not 0, the equivalent radius of curvature Rm corresponding to the elliptical asperity can be
expressed as:

1
Rm

=
1
2

(
1

Rx
+

1
Ry

)
(15)

3.2. Contact Mechanics Model of Single Elliptical Asperity
3.2.1. Elastic Contact of Elliptical Asperity

According to Hertz’s theory, when an elliptical asperity is deformed significantly less
than the critical elastic deformation, namely, ωn ≤ ωnec, it merely experiences elastic contact
deformation. The maximum contact pressure Pm, the semimajor radius of the contact ellipse
rx, and the elastic deformation ω can be expressed, respectively, as:

Pm =
3F
2a

(16)

rx =

[
3E(e)FRm

2πE′(1− e2)

]1/3
(17)

ω =
2K(e)

π

[
π
(
1− e2)

2E(e)Rm

]1/3(
3F
4E′

)2/3
(18)

where K(e) and E(e) are the complete elliptic integrals of the first and second kind, respec-
tively, whose expressions are:

K(e) =
∫ π/2

0

dϕ√
1− e2 sin2 ϕ

(19)

E(e) =
∫ π/2

0

√
1− e2 sin2 ϕdϕ (20)

where E’ is the effective elastic modulus, which can be calculated by the following equation:

1
E′

=
1− ν2

1
E1

+
1− ν2

2
E2

(21)
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where ν1, ν2 and E1, E2 are Poisson’s ratio and the elastic modulus of the two rough surface
materials in contact with each other, respectively.

Combining Equations (16)–(18), the real contact area and real contact load of elastic
deformation for elliptical asperity can be presented as:

ane(ω) =

[
E(e)

K(e)(1− e2)
1/2

]
πRmω = f1(e)πRmω (22)

Fne(ω) =

[
πE(e)−1/2

2K(e)3/2(1− e2)
1/2

]
4
3

E′Rm
1/2ω3/2 = f2(e)

4
3

E′Rm
1/2ω3/2 (23)

Therefore, the average contact pressure Pe can be expressed as:

Pe(ω) =
Fe(ω)

ae(ω)
=

4 f2(e)E′

3 f1(e)π

(
ω

Rm

)1/2
(24)

The asperity entirely enters a plastic deformation state when the maximal contact
pressure Pm is equal to KH, and the equation is:

H = 2.8σy (25)

where, H denotes the material hardness, K denotes the hardness coefficient, and the rela-
tionship between the material Poisson’s ratio is:

K = 0.454 + 0.41ν (26)

The critical normal deformation of a single elliptical asperity between elastic and
inelastic deformation is:

ωnec = K(e)E(e)Rm

(
KH
E′

)2
(27)

By combining Equations (15), (22) and (27), the expression for the critical contact area
anec between elastic and inelastic deformation can be deduced as:

anec

2(3−D1)π
D1
2 G1

(D1−1)(ln γ1)
1
2

(1− e2)
− D1

4

anec
− D1

2 +
2(3−D2)π

D2
2 G2

(D2−1)(ln γ2)
1
2

(1− e2)
D2
4

anec
− D2

2

2

= 4 f1(e)πK(e)E(e)
(

KH
E′

)2
(28)

3.2.2. Elastic–Plastic Contact of Elliptical Asperity

As shown in Figure 5, Kogut and Etsion [7] investigated the mechanism of elastic–
plastic deformation occurring in asperities on rough surfaces by performing a finite element
contact analysis of a single elastic sphere with a smooth rigid plane; the results of the study
showed that the asperities are in elastic–plastic deformation when the actual deformation
ωn of the asperities on the rough surface is greater than the critical elastic deformation
ωnec and less than or equal to 110 ωnec. In addition, a large number of simulation results
have proven that the elastic–plastic deformation is divided into two stages: the asperities
are in the first elastic–plastic deformation stage when the actual deformation ωn is greater
than the critical elastic deformation ωnec and less than or equal to 6 ωnec, and the asperities
are in the second elastic–plastic deformation stage when the actual deformation ωn is
greater than the critical elastic deformation 6 ωnec and less than or equal to 110 ωnec.
6 ωnec and 110 ωnec are defined as the critical elastic–plastic deformation and critical plastic
deformation, respectively, and their expressions can be expressed as follows, respectively:

ωnepc = 6ωnec = 6K(e)E(e)Rm

(
KH
E′

)2
(29)
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ωnpc = 110ωnec = 110K(e)E(e)Rm

(
KH
E′

)2
(30)

Figure 5. Relationship between the actual deformation ωn of asperity and the deformation mode.

Contact mechanics demands that the contact process of the asperity should be con-
tinuous. Therefore, the elliptical asperity is in the first elastic–plastic deformation when
the real contact area satisfies anec ≥ an ≥ anepc, and the elliptical asperity is in the second
elastic–plastic deformation when the real contact area satisfies anepc ≥ an ≥ anpc. The critical
elastic–plastic contact area anepc and the critical plastic contact area anpc can be expressed as:

anepc

2(3−D1)π
D1
2 G1

(D1−1)(ln γ1)
1
2

(1− e2)
− D1

4

anepc
− D1

2 +
2(3−D2)π

D2
2 G2

(D2−1)(ln γ2)
1
2

(1− e2)
D2
4

anepc
− D2

2

2

= 24 f1(e)πK(e)E(e)
(

KH
E′

)2
(31)

anec

2(3−D1)π
D1
2 G1

(D1−1)(ln γ1)
1
2

(1− e2)
− D1

4

anec
− D1

2 +
2(3−D2)π

D2
2 G2

(D2−1)(ln γ2)
1
2

(1− e2)
D2
4

anec
− D2

2

2

= 4 f1(e)πK(e)E(e)
(

KH
E′

)2
(32)

The expressions of the contact area and contact load when the asperity is in the first
elastic–plastic deformation can be expressed as follows, respectively:

anep1

anec
= mnep1

(
ωn

ωnec

)nnep1

(33)

Fnep1

Fnec
= cnep1

(
ωn

ωnec

)dnep1

(34)

where mep1 = 0.93, nep1 = 1.136, cep1 = 1.03, dep1 = 1.425.
The expressions of the contact area and contact load when the asperity is in the second

elastic–plastic deformation can be expressed as follows, respectively:

anep2

anec
= mnep2

(
ωn

ωnec

)nnep2

(35)

Fnep2

Fnec
= cnep2

(
ωn

ωnec

)dnep2

(36)

where mep2 = 0.94, nep2 = 1.146, cep2 = 1.40, dep2 = 1.263.

3.2.3. Plastic Contact of Elliptical Asperity

When the real contact deformation is greater than the critical plastic deformation,
namely, ωn ≥ 110 ωnec, the asperity is in full plastic deformation, and the contact area anp
and the normal contact pressure Fnp can be expressed as follows:

anp = πRmωn f1(e) (37)
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Fnp = Hanp (38)

3.3. Modified Model of the Island Area Distribution Function for a Point Contact
3.3.1. Contact Area Distribution Function

Mandelbrot [39] discovered the distribution law of ocean islands in the study of earth
geomorphology, and its expression is:

N(A > a) =
( al

a

)D/2
(39)

Majumdar and Bhushan linked Mandelbrot’s island area distribution theory to the
contact area distribution of the fractal rough surface, and then proposed a functional
relationship between the contact area distribution of discrete asperities and the fractal
dimension, which can be expressed as follows:

n(a) =
D
2

aD/2
l

a(D/2+1)
(40)

By integrating the contact area distribution function shown in Equation (40), the total
real contact area Ar can be obtained as:

Ar =
∫ al

0
n(a)ada =

∫ al

0

D
2

al
D/2a−D/2da =

D
2− D

al (41)

3.3.2. Elliptical Contact Area Distribution Function

As illustrated in Figure 6, the contact area of an elliptical asperity on the rough tooth
surface is an ellipse with a semiminor radius rx and a semimajor radius ry.

Figure 6. Comparison of the contact area between spherical asperity and elliptical asperity.

Based on Equation (40), the expression for the total number of islands between the
contact area a and the maximum contact area al of any elliptical asperities can be deduced as:

N(A > a) =
( al

a

)ζ(D1+D2)/2
(42)

where D1, D2 are the fractal dimensions of the rough surface in the x-axis and y-axis
directions, respectively. ζ is the contact coefficient of the elliptical asperity, and the contact
coefficient ζ can be expressed as:

ζ =
1
2

(
1− e2

)1/2
(43)
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Thus, the contact area distribution of elliptical asperities can be obtained as a function
of the fractal dimension:

n(a) =
ζ(D1 + D2)

2
aζ(D1+D2)/2

l

a(ζ(D1+D2)/2+1)
(44)

The total contact area Ar can be obtained by integrating the contact area distribution
function described in Equation (44) as:

Ar =
∫ al

0
n(a)ada =

ζ(D1 + D2)

2− ζ(D1 + D2)
al (45)

3.3.3. Contact Coefficient of the Elliptical Area of a Beveloid Gear

As shown in Figure 7, the contact area of beveloid gear pairs is elliptical. Assuming that
the principal curvatures of tooth surfaces are ρ11, ρ12, ρ21, and ρ22, respectively, the contact
area distribution functions of the beveloid gear should satisfy the following relationship:

n′(A) = λn(A) (46)

where λ is the contact surface coefficient, which can be expressed as:

λ =

(
S

∑ S

)ρm

(47)

where S is the theoretical contact area. ΣS is the sum of the surface areas of the two elastic
tooth surfaces, and ρm is the integrated curvature coefficient, whose expression is:

ρm = ρ11 + ρ12 + ρ21 + ρ22 (48)

Figure 7. Schematic diagram of a beveloid gear with the crossed shaft.

According to Hertz’s theory, the contact area will be transformed from the theoretical
point contact to an approximately elliptical contact under the action of a normal contact load
on the tooth surface, and the semimajor radius rx of the contact ellipse can be expressed as:

rx =

[
3FE(e)

2πE′(1− e2)ρm

]1/3
(49)

where F is the contact load on the tooth surface.
The elliptical contact area of the beveloid gear pair is:

S = πrxry = πrx
2
√

1− e2 = π

[
3FE(e)
2πE′ρm

]2/3(
1− e2

)1/6
(50)
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The sum of the surface areas of the two elastic surfaces ΣS can be expressed as:

∑ S = 2π(ρn1 + ρn2)L (51)

where L is the contact length of the two gears, and ρn1 and ρn2 are the radii of curvature at
the nodes of the gear and pinion, respectively, in the form of:

ρn1 =
d1 sin αn

2 cos β
, ρn2 =

d2 sin αn

2 cos β
(52)

Substituting Equations (50)–(52) into Equation (47), respectively, the contact coefficient
of the elliptical contact area can be expressed as:

λ =


2π
[

3FE(e)
2πE′ρm

]2/3
cos β

(d1 + d2) sin αnL(1− e2)
−1/6


ρm

(53)

Figure 8 shows the trend of the contact coefficient λ. The eccentricity e = 0.3, the
number of teeth of the gear is 45, the number of teeth of the pinion is 29, the normal pressure
angle αn = 20◦, and the modulus m = 4 mm. As seen in Figure 8a, the contact coefficient
reduces as the integrated curvature of the elastic surface increases. When the integrated
curvature of the elastic surface tends to 0, the two elastic surfaces are approximately in-
plane contact and the surface contact coefficient λ tends to 1. As seen in Figure 8b, the
contact coefficient rises when the contact load increases. This is because as the contact load
increases, the contact area of the elliptical asperities grows proportionately, resulting in an
increase in the surface contact coefficient.

Figure 8. Fractal characterization of rough surfaces with different processing texture features:
(a) Gx = 1.0 × 10−11 m, Gy = 1.0 × 10−9 m, Dx = 1.6, Dy = 1.3; (b) Gx = 1.0 × 10−9 m,
Gy = 1.0 × 10−11 m, Dx = 1.3, Dy = 1.6.

Therefore, the total elliptical contact area can be expressed as:

Ar =
∫ al

0
λn′(a)ada = λ

ζ(D1 + D2)

2− ζ(D1 + D2)
al (54)

4. The Fractal Contact Model for Rough Curved Surfaces with Elliptical Asperities
4.1. Real Contact Area and Contact Load
4.1.1. Real Contact Area

The smallest contact area is considered to converge to 0 based on the size distribution of
contact spots. When al > anec, the asperities may deform totally elastically, totally plastically,
or both elastically and plastically. The real contact area Ar is the sum of the plastic contact
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area Arp, the second plastic contact area is Arep2, the first plastic contact area is Arep1, and
the elastic contact area is Are, namely:

Ar = Arp + Arep2 + Arep1 + Are (55)

Arp =
∫ anpc

0
n′(a)ada = λ

ζ(D1 + D2)

2− ζ(D1 + D2)
al

ζ(D1+D2)
2 anpc

2−ζ(D1+D2)
2 (56)

Arep2 =
∫ anepc

anpc
n′(a)ada = λ

ζ(D1 + D2)

2− ζ(D1 + D2)
al

ζ(D1+D2)
2

(
anepc

2−ζ(D1+D2)
2 − anpc

2−ζ(D1+D2)
2

)
(57)

Arep1 =
∫ anec

anepc

n′(a)ada = λ
ζ(D1 + D2)

2− ζ(D1 + D2)
al

ζ(D1+D2)
2

(
anec

2−ζ(D1+D2)
2 − anepc

2−ζ(D1+D2)
2

)
(58)

Are =
∫ al

anec

n′(a)ada = λ
ζ(D1 + D2)

2− ζ(D1 + D2)
al

ζ(D1+D2)
2

(
al

2−ζ(D1+D2)
2 − anec

2−ζ(D1+D2)
2

)
(59)

4.1.2. Real Contact Load

When al > anec, the real contact load on the rough surface can be expressed as:

Fr = Frnp + Frnep2 + Frnep1 + Frne (60)

where the real contact loads for plastic deformation, second elastic–plastic deformation,
and first elastic–plastic deformation can be expressed, respectively, as:

Frnp =
∫ anpc

0
Fnpn′(a)da = Kσyλ

ζ(D1 + D2)

2− ζ(D1 + D2)
al

ζ(D1+D2)
2 anpc

2−ζ(D1+D2)
2 (61)

Frnep2 =
∫ anepc

anpc
Fnep2n′(a)da = Fneccep2mep2

−
dep2
mep2 anec

−
dep2
nep2 λ

nep2[ζ(D1+D2)]

2dep2−ζ(D1+D2)nep2

al
ζ(D1+D2)/2

(
anepc

2dep2−ζ(D1+D2)nep2
2nep2 − anpc

2dep2−ζ(D1+D2)nep2
2nep2

) (62)

Frnep1 =
∫ anec

anepc
Fnep1n′(a)da = Fneccep1mep1

−
dep1
mep1 anec

−
dep1
nep1 λ

nep1[ζ(D1+D2)]

2dep1−ζ(D1+D2)nep1

al
ζ(D1+D2)/2

(
anec

2dep1−ζ(D1+D2)nep1
2nep1 − anepc

2dep1−ζ(D1+D2)nep1
2nep1

) (63)

Combining Equations (15), (22), and (23), the relationship between the contact area
and contact load of the elliptical asperities in the elastic deformation can be obtained as:

Fne(a) =
2 f2(e)E′

3[ f1(e)]
3/2π3/2

(
2(4−D1)π(D1/2)G(D1−1)

1 (ln γ1)
1/2

a(D1−3)/2(1− e2)
D1/4 +

2(4−D2)π(D2/2)G(D2−1)
2 (ln γ2)

1/2

a(D2−3)/2(1− e2)
−D2/4

)
(64)

Therefore, the real contact load of the elliptical asperities in the elastic deformation
can be expressed as:

Frne =
2(5−D1)π(D1−3)/2 f2(e)E′G(D1−1)

1 (ln γ1)
1/2 ζ(D1 + D2)

3[ f1(e)]
3/2 (1− e2)

1/4D1 (3− ζ(D1 + D2)− D1)
al

ζ(D1+D2)
2

(
al

3−ζ(D1+D2)−D1
2 − anec

3−ζ(D1+D2)−D1
2

)

+
2(5−D2)π(D2−3)/2 f2(e)E′G(D2−1)

2 (ln γ2)
1/2 ζ(D1 + D2)

3[ f1(e)]
3/2 (1− e2)

1/4D2 (3− ζ(D1 + D2)− D2)
al

ζ(D1+D2)
2

(
al

3−ζ(D1+D2)−D2
2 − anec

3−ζ(D1+D2)−D2
2

) (65)

4.1.3. The Relationship between the Real Contact Area and the Real Contact Load

When al > anec, the elliptical asperities in the first elastic–plastic deformation, the second
elastic–plastic deformation, plastic deformation, and elastic deformation are significant.
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Fr1 = g1(D1, D2)

[
2− ζ(D1 + D2)

λζ(D1 + D2)
Ar

] ζ(D1+D2)
2

[2− ζ(D1 + D2)

λζ(D1 + D2)
Ar

] 3−ζ(D1+D2)−D1
2

− anec
3−ζ(D1+D2)−D1

2


+g2(D1, D2)

[
2− ζ(D1 + D2)

λζ(D1 + D2)
Ar

] ζ(D1+D2)
2

[2− ζ(D1 + D2)

λζ(D1 + D2)
Ar

] 3−ζ(D1+D2)−D2
2

− anec
3−ζ(D1+D2)−D2

2


+Fneccep1mep1

−
dep1
mep1 anec

−
dep1
nep1 g3(D1, D2)Ar

ζ(D1+D2)
2

(
anec

2dep1−ζ(D1+D2)nep1
2nep1 − anepc

2dep1−ζ(D1+D2)nep1
2nep1

)

+Fneccep2mep2
−

dep2
mep2 anec

−
dep2
nep2 g4(D1, D2)Ar

ζ(D1+D2)
2

(
anepc

2dep2−ζ(D1+D2)nep2
2nep2 − anpc

2dep2−ζ(D1+D2)nep2
2nep2

)

Kσyg5(D1, D2)Ar
ζ(D1+D2)

2 anpc
2−ζ(D1+D2)

2

(66)

g1(D1, D2) =
2(5−D1)π(D1−3)/2 f2(e)E′G(D1−1)

1 (ln γ1)
1/2ζ(D1 + D2)

3[ f1(e)]
3/2(1− e2)

1/4D1(3− ζ(D1 + D2)− D1)
(67)

g2(D1, D2) =
2(5−D2)π(D2−3)/2 f2(e)E′G(D2−1)

2 (ln γ2)
1/2ζ(D1 + D2)

3[ f1(e)]
3/2(1− e2)

1/4D2(3− ζ(D1 + D2)− D2)
(68)

g3(D1, D2) =
λnep1[ζ(D1 + D2)]

2dep1 − ζ(D1 + D2)nep1

[
2− ζ(D1 + D2)

λζ(D1 + D2)

] ζ(D1+D2)
2

(69)

g4(D1, D2) =
λnep2[ζ(D1 + D2)]

2dep2 − ζ(D1 + D2)nep2

[
2− ζ(D1 + D2)

λζ(D1 + D2)

] ζ(D1+D2)
2

(70)

g5(D1, D2) =

[
λζ(D1 + D2)

2− ζ(D1 + D2)

] 2−ζ(D1+D2)
2

(71)

4.2. Calculation of the Contact Stiffness of Rough Tooth Surfaces
4.2.1. Contact Stiffness Model of a Single Elliptical Asperity

When the contact area of the largest contact spot al < anpc, the elliptical asperity is only
in plastic deformation, and the normal contact stiffness knp can be expressed as:

k = knp = 0 (72)

When anepc > al > anpc, the elliptical asperity is in the second elastic–plastic deformation,
and the normal contact stiffness knep2 can be expressed as:

knep2 =
dFnep2

da
da
dω

=
Fneccep2dep2mep2

1−dep2
nep2 anec

1−dep2
nep2

ωnec
a

dep2−1
nep2 (73)

When anec > al > anep, the elliptical asperity is in the first elastic–plastic deformation,
and the normal contact stiffness knep1 can be expressed as:

knep1 =
dFnep1

da
da
dω

=
Fneccep1dep1mep1

1−dep1
nep1 anec

1−dep1
nep1

ωnec
a

dep1−1
nep1 (74)

When al > anec, the elliptical asperity is only in elastic deformation, and the normal
contact stiffness kne can be expressed as:

kne =
dFne

da
da
dω

=
2 f2(e)E′

[ f1(e)]
1/2π1/2

a1/2 (75)
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4.2.2. Contact Stiffness Model of a Rough Surface

When al > anec, the normal contact stiffness K of the rough surface can be expressed as:

K = Knp + Knep2 + Knep1 + Kne (76)

When the elliptical asperity is in the second elastic–plastic deformation, the normal
contact stiffness knep2 can be presented as:

knep2 =
∫ anepc

anpc
knep2n′(a)da =

Fneccep2dep2mep2

1−dep2
nep2 anec

1−dep2
nep2

ωnec

nep2ζ(D1 + D2)al
ζ(D1+D2)/2

2dep2 − 2− nep2[ζ(D1 + D2) + 2] + 2nep2(
anepc

2dep2−2−nep2 [ζ(D1+D2)+2]+2nep2
2nep2 − anpc

2dep2−2−nep2 [ζ(D1+D2)+2]+2nep2
2nep2

) (77)

When the elliptical asperity is in the first elastic–plastic deformation, the normal
contact stiffness knep1 can be presented as:

knep1 =
∫ anec

anepc
knep1n′(a)da =

Fneccep1dep1mep1

1−dep1
nep1 anec

1−dep1
nep1

ωnec

nep2ζ(D1 + D2)al
ζ(D1+D2)/2

2dep1 − 2− nep1[ζ(D1 + D2) + 2] + 2nep1(
anec

2dep1−2−nep1 [ζ(D1+D2)+2]+2nep1
2nep1 − anepc

2dep1−2−nep1 [ζ(D1+D2)+2]+2nep1
2nep1

) (78)

When the elliptical asperity is in the completely elastic deformation, the normal contact
stiffness kne can be presented as:

kne =
∫ al

anec
knen′(a)da =

2 f2(e)

[ f1(e)]
1/2π1/2

ζ(D1 + D2)

1− ζ(D1 + D2)
aζ(D1+D2)/2

l

(
a

1−ζ(D1+D2)
2

l − a
1−ζ(D1+D2)

2
nec

)
(79)

5. Numerical Analysis and Discussion of Results
5.1. Effect of Fractal Parameters and Eccentricity on Contact Area

The above analysis shows that the real contact area is closely related to the fractal di-
mensions D and the eccentricity e of the elliptical asperities as well as the contact coefficient
λ for a certain material parameter of the rough surface and normal contact load. If we take
the material parameters of the equivalent rough surface as shown in Table 1, the fractal
dimension D1 = 1.56, the fractal roughness G1 = G2 = 1.0 × 10−10 m, and the value range of
fractal dimension D2 is 1.3–1.8. Figure 9 shows the relationship curves between different
fractal dimensions D2 and the real contact area of the rough surface.

Table 1. Calculated parameters for the mechanical properties of rough surfaces.

Parameters Profile 1 Profile 2

Fractal dimension D 1.3–1.8 1.3–1.8
Characteristic scale G (m) 1.0 × 10−10 1.0 × 10−10

Young’s modulus E (Pa) 2.06 × 1011

Poisson’s ratio ν 0.26
Plastic yield stress σy (Pa) 235 × 106
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Figure 9. Variations of the dimensionless contact area A∗r with fractal dimension D: (a) different
eccentricity e; (b) different contact coefficient λ.

As seen in Figure 9, the real contact area grows in proportion to the fractal dimen-
sion. This is because the rough surface becomes flatter as the fractal dimension increases,
increasing the real contact area.

As seen in Figure 9a, the real contact area reduces as the eccentricity e increases when
the fractal dimensions are determined. This is because the contact area of a single elliptical
asperity is less than that of a spherical asperity whenever the eccentricity is considered; so,
the real contact area of the rough surface reduces as the eccentricity e increases. As seen in
Figure 9b, the real contact area of the rough surface decreases as the contact coefficients
grow when the fractal dimensions are given. This is because when the contact coefficients
grow, the contact area of the two rough surfaces reduces, resulting in a reduction in the real
contact area.

The relationship between the ratio of the elastic contact area to the real contact area
and the fractal dimension D at different eccentricities e is shown in Figure 10. As can be
demonstrated, although the real contact area decreases as the eccentricity e grows, the
ratio of the elastic contact area to the real contact area almost remains constant. The elastic
contact area ratio increases as the fractal dimension D increases and stabilizes at 1.55.

Figure 10. Relationship between the ratio of the elastic contact area to the real contact area and fractal
dimension D at different eccentricity e.

5.2. Effect of Fractal Parameters on the Contact Load

The mechanical properties of the model presented in this research are compared
to those of the MB contact model in Figure 11. The plastic yield stress of the material
σy = 235 × 106 Pa, the elastic modulus E = 2.06 × 1011 Pa, and the Poisson’s ratio ν = 0.26.
The model in this paper and the revised MB model take the same fractal parameters, namely
the fractal dimension D = D1 = D2 = 1.46, the fractal roughness G = G1 = G2 = 1.0 × 10−10 m,
and the eccentricity of the model in this paper e = 0.2. As can be seen, the mechanical



Appl. Sci. 2022, 12, 4071 16 of 20

curves of the model in this paper deviate from those of the MB model, and the real contact
load calculated by the model in this paper is less than the real contact load calculated by
the MB model at the same real contact area. This is because the eccentricity consequences
of the elliptical asperity are accounted for in the calculation model in this paper; hence,
the dimensionless contact load of the model in this paper is reduced at the same real
contact area.

Figure 11. Comparison of the mechanical properties between the model in this paper and the MB
contact model.

The fractal dimension D1 = 1.36, the fractal roughness G1 = G2 = 1.0 × 10−11 m,
and we set the fractal dimension D2 as 1.36, 1.46, 1.56, 1.66, and 1.76, respectively. The
relationship between the real contact area and the real contact load for different fractal
dimensions can be seen in Figure 12a; it can be observed that the real contact load grows
as the fractal dimension increases. The reason for this is that the fractal dimension D is
positively associated with the rough surface’s smoothness, and as the fractal dimension
rises, the rough surface’s topology performs more finely, decreasing the real contact load
on the rough surface.

Figure 12. Variations in the dimensionless contact area A∗r with fractal dimension D: (a) different
fractal dimensions D; (b) different fractal roughness G.

The fractal dimension D1 = D2 = 1.46, the fractal roughness G1 = 1.0× 10−10 m, and we
set the fractal roughness G2 as 1.0 × 10−10 m, 3.0 × 10−10 m, 5.0 × 10−10 m, 7.0 × 10−10 m,
and 9.0 × 10−10 m, respectively. Figure 12b illustrates the relationship between the real
contact area and the real contact load for various fractal roughness values, demonstrating
that the real contact load reduces as the fractal roughness increases. This is because the
fractal roughness G is inversely related to the rough surface’s smoothness. When the
fractal roughness G is raised, the projections and depressions in the rough surface topology
increase, resulting in a reduction in the rough surface’s real contact load.
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The fractal dimension D1 = D2 = 1.46, the fractal roughness G1 = G2 = 1.0 × 10−11 m,
and we set the eccentricity e of the elliptical asperity to 0.1, 0.3, 0.5, and 0.7, respectively.
The relationship between the real contact area and the real contact load with increasing
eccentricity e can be seen in Figure 13a. As seen in the figure, the real contact load reduces
as the eccentricity e grows. This is because whenever the eccentricity e grows, the contact
area of a single elliptical asperity diminishes, reducing the total contact area of the rough
surface and, hence, reducing the rough surface’s real contact load.

Figure 13. Variations in the dimensionless contact area A∗r with fractal dimension D: (a) different
eccentricity e; (b) different contact coefficient λ.

The fractal dimension D1 = D2 = 1.46, the fractal roughness G1 = G2 = 1.0 × 10−11 m,
and we set the contact coefficient to 0.9, 0.7, 0.5, and 0.3, respectively. The relationship
between the real contact area and the real contact load for different contact coefficients is
shown in Figure 13b. As seen in the figure, the real contact load reduces as the contact
coefficients drop. The reason for this is that when the contact coefficients are reduced,
the real contact area of the rough surfaces decreases, resulting in a decrease in the real
contact load.

5.3. Effect of Fractal Parameters on Normal Contact Stiffness

The fractal dimension D1 = 1.36, the fractal roughness G1 = G2 = 1.0× 10−11 m, and we
set the fractal dimension D2 as 1.36, 1.46, 1.56, 1.66, and 1.76, respectively. The influence of
different fractal dimensions on the relationship between the normal contact stiffness and the
real contact area can be seen in Figure 14a. As a consequence, when the real contact area is
known, the normal contact stiffness is proportional to the fractal dimension, which suggests
that the normal contact stiffness rises as the fractal dimension grows. This is because the
fractal dimension does have a physical significance that pertains to the smoothness of the
rough surface. On a macroscopic level, the larger the fractal dimension, the higher the
roughness value of the rough surface, and the more asperities are present in the contact on
the rough surface, enhancing the rough surface’s normal contact stiffness.

The fractal dimension D1 = D2 = 1.46, the fractal roughness G1 = 1.0× 10−10 m, and we
set the fractal roughness G2 as 1.0 × 10−10 m, 3.0 × 10−10 m, 5.0 × 10−10 m, 7.0 × 10−10 m,
and 9.0 × 10−10 m, respectively. The influence of the specific fractal roughness values on
the relationship between the normal contact stiffness and the real contact area is depicted in
Figure 14b. As can be observed, the normal contact stiffness is inversely related to the fractal
roughness for a given real contact area, namely, the normal contact stiffness decreases as
the fractal roughness grows. This is because when the fractal roughness G value improves,
the rough surface morphology becomes rougher and the number of asperities in the contact
diminishes, decreasing the normal contact stiffness of the rough surface.
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Figure 14. Variations in the dimensionless contact stiffness K∗n with the dimensionless contact area
A∗r : (a) different fractal dimensions D; (b) different fractal roughness G.

The fractal dimension D1 = D2 = 1.46, the fractal roughness G1 = G2 = 1.0 × 10−11 m,
and we set the eccentricity e of the elliptical asperity to 0.1, 0.3, 0.5, and 0.7, respectively.
The influence of varying the eccentricity e on the relationship between the normal contact
stiffness and the real contact area is illustrated in Figure 15a. As shown in the figure,
the normal contact stiffness is inversely proportional to the eccentricity for a given real
contact area, which indicates that the normal contact stiffness diminishes as the eccentricity
increases. This is because when the eccentricity value grows, the contact area of the single
elliptical asperity decreases, resulting in a drop in the rough surface’s total actual contact
area and consequently a decrease in the rough surface’s normal contact stiffness.

Figure 15. Variations in the dimensionless contact stiffness K∗n with the dimensionless contact area
A∗r : (a) different eccentricity e; (b) different contact coefficient λ.

The fractal dimension D1 = D2 = 1.46, the fractal roughness G1 = G2 = 1.0 × 10−11 m,
and we set the contact coefficient to 0.9, 0.7, 0.5, and 0.3, respectively. Figure 15b illustrates
the effect of varying the contact coefficients on the relationship between the normal contact
stiffness and real contact area. As shown in the graphic, the normal contact stiffness is
proportional to the contact coefficients for a given real contact area, which suggests that
normal contact stiffness reduces as contact coefficients decrease. This is because the contact
coefficients’ physical significance is to correct the contact area between two surfaces, and
when the integrated curvature of the elastic surface approaches 0, namely, when the two
elastic surfaces are in intimate interaction, the contact coefficient value approaches 1 at this
time. As the integrated curvature of the elastic surface grows, the contact coefficients and
contact area between the elastic surfaces decrease, reducing normal contact stiffness.
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6. Conclusions

The contact mechanics model for a rough surface with elliptical asperities was estab-
lished in this paper by comprehensively considering the geometric structure and mechanical
properties of elliptical asperities on rough surfaces, which are summarized as follows:

(1) The real contact area of the rough surface is inversely proportional to the fractal
dimensions D1 and D2 and the eccentricity e of the elliptical asperities, as well as the contact
coefficient. D has a direct influence on the real contact area. The real contact area grows
concerning the fractal dimension D. Conversely, when the value of fractal dimensions is
given, the real contact area declines as the eccentricity e increase, and the real contact area
reduces as the contact coefficients decrease;

(2) While the real contact area diminishes as the eccentricity e increases, the ratio of
the elastic contact area to the real contact area remains almost constant. The elastic contact
area ratio grows as the fractal dimension D increases and stabilizes at 1.55;

(3) The fractal dimension, fractal roughness, eccentricity, and contact coefficient always
have an effect on the real contact load and normal contact stiffness of curved surfaces. With
the growing fractal dimension and contact coefficient, the real contact load and normal
contact stiffness of curved surfaces increase. In comparison, the real contact load and
normal contact stiffness diminish as the fractal roughness and eccentricity increase.
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