
����������
�������

Citation: Nguyen, T.A.; Lee, J.

Simplified Two-Dimensional

Generalized Partial Response Target

of Holographic Data Storage Channel.

Appl. Sci. 2022, 12, 4070. https://

doi.org/10.3390/app12084070

Academic Editors: Andrés Márquez

and Motoharu Fujigaki

Received: 25 February 2022

Accepted: 17 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Simplified Two-Dimensional Generalized Partial Response
Target of Holographic Data Storage Channel
Thien An Nguyen and Jaejin Lee *

Department of Information Communication Convergence Technology, Soongsil University, Seoul 06978, Korea;
anthienng1995@soongsil.ac.kr
* Correspondence: zlee@ssu.ac.kr; Tel.: +82-2-820-0901

Abstract: With a high capacity and fast data access rate, holographic data storage (HDS) is a potential
candidate for future storage systems. However, for page-oriented data processing, two-dimensional
(2D) interference appears intensely in the HDS systems. Therefore, the new 2D generalized partial
response (GPR) target is introduced to estimate the 2D interference. In addition, we also propose a
method to analyze the 2D GPR target into two serial one-dimensional (1D) GPR targets. It makes us
design a simple detection scheme composed of two serial 1D detectors instead of a complicated 2D
detector. In simulations, the results show that our proposed scheme can improve the BER performance
compared to the conventional 1D GPR target model.

Keywords: holographic data storage; estimating interference; remove interference; detection; decomposing
interference

1. Introduction

Due to the demand for storage increasing at a high rate, devices with high capacity
and fast transfer are a matter of common interest. At present, semiconductor memories [1]
and magnetic hard disk drives [2] are widely used in many devices. However, unlike
semiconductor memories and magnetic hard disk drives, holographic data storage systems
can read out 2D data page bits at the same time [3]. Therefore, holographic data storage
achieves a high data transfer rate. In addition, many researchers have proposed methods
to multiplex multiple pages of data by changing the angle [4], wavelength [5,6], or phase
code [7,8] of the reference beam. This helps to improve the capacity of the HDS and meet
the requirements of greater capacity and fast transfer [3,9].

Therefore, the holographic data storage (HDS) system is a promising candidate for
mass-storage devices. In HDS systems, the data are converted into the beam and stored
on the holographic medium. Then, to read back the data, we use the reference beam to
reconstruct the beam from the holographic medium. The image of the data is captured
by a charge-coupled device (CCD). The data page suffers from blurring effects; therefore,
the read-back data always face two serious problems. One is inter-page interference (IPI)
between the pages, and another is two-dimensional (2D) inter-symbol interference (ISI)
that appears on the data page of the HDS systems. To avoid IPI, the numbers of one
and zero pixels must be almost equal on each page [10]. To implement this, we can use
balanced coding, which ensures the intensity level of each page is the same [11]. Among
these factors, 2D ISI is regarded as the main causative reason. To combat ISI, based on
the one-dimensional (1D) partial response maximum likelihood (PRML) detection scheme
in [12], Kim and Lee proposed the 2D soft-output Viterbi algorithm (SOVA) as the 2D
detection for the HDS systems [13]. Then, the 2D SOVA is improved and applied to the
bit-patterned media recording (BPMR) channel [14,15]. In 2D SOVA, the authors use two
parallel 1D PRML to remove the 1D interference from the horizontal and vertical directions.
In addition, Nabavi and Kumar [16] propose a general partial response (GPR) target, which
achieves better performance than PRML. Then, the GPR target is developed and utilized
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in [17–22]. However, the authors only estimate 1D interference (i.e., designing a 1D GPR
target) to avoid the 2D detection in [16]. In [22], to handle 2D interference, the authors
introduce the estimator interference with a parallel structure to convert 2D interference
into 1D interference. Although achieving high performance, the model in [22] has high
complexity. In [23], the authors propose the decision feedback equalizer (DFE) to recover
the original from the received signal, which is distorted by the 2D ISI. The DFE model is
a simple method to solve 2D ISI, but the performance of the DFE model is unsatisfactory
because of the simple detection scheme. Therefore, in this paper, we improve the GPR
target for 2D interference. From the estimated 2D GPR target, we propose a simple method
to decompose 2D ISI into two serial 1D vertical direction ISI and 1D horizontal direction
ISI. From here, we can use the serial detection [21] to recover the original data from the
HDS systems. In simulation, the result shows that our proposed model achieves a gain of
2.5 dB at the BER 10−3 compared to the 1D GPR target in [16].

In the remainder of this paper, we explain the 2D GPR target and serial detection in
Section 2. In Section 3, we present the proposed model. Section 4 presents and discusses
the simulations and results. Finally, in Section 5, the conclusions are drawn.

2. 2D GPR Target and Serial Detection
2.1. 2D GPR Target

First, we estimate the coefficients of the 2D GPR target and 2D equalizer in the training
process. The model for the training process is presented in Figure 1.
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Figure 1. Training process model.

To design and implement the 2D GPR target and equalizer, we use the GPR target G
with a size of 3 × 3, and the equalizer F with a size of 5 × 5; these are presented as in the
below matrices.

G =

 g−1,−1 g−1,0 g−1,1
g0,−1 g0,0 g0,1
g1,−1 g1,0 g1,1

, (1)

F =


f−2,−2 f−2,−1 f−2,0 f−2,1 f−2,2
f−1,−2 f−1,−1 f−1,0 f−1,1 f−1,2
f0,−2 f0,−1 f0,0 f0,1 f0,2
f1,−2 f1,−1 f1,0 f1,1 f1,2
f2,−2 f2,−1 f2,0 f2,1 f2,2

. (2)

With matrices G and F, we can achieve the signals d[j,k] and z[j,k], as follows:

d[j, k] =
1
∑

m=−1

1
∑

n=−1
a[j − m, k − n]gm,n

=
[

a[j + 1, k + 1] . . . a[j, k] . . . a[j − 1, k − 1]
]


g−1,−1
g−1,0

...
g1,1


(3)
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z[j, k] =
2
∑

m=−2

2
∑

n=−2
y[j − m, k − n] fm,n

=
[

y[j + 2, k + 2] . . . y[j, k] . . . a[j − 2, k − 2]
]


f−2,−2
f−2,−1

...
f2,2


(4)

We assign the vectors as follows:

a =
[

a[j + 1, k + 1] . . . a[j − 1, k − 1]
]T , (5)

g =
[

g−1,−1 g−1,0 . . . g1,1
]T , (6)

y =
[

y[j + 2, k + 2] . . . y[j − 2, k − 2]
]T , and (7)

f =
[

f−2,−2 f−2,−1 . . . f2,2
]T . (8)

Using the definitions from (5) to (8), we can rewrite (3) and (4) as follows:

d[j, k] = gTa, (9)

z[j, k] = fTy. (10)

We find g and f in order that z[j,k] is close to d[j,k]. To implement this, we apply the
minimum mean square error (MMSE) algorithm. This problem is presented as follows:

argmin
f,g

E
{
(z[j, k]− d[j, k])2

}
= argmin

f,g
E
{(

gTa − fTy
)2
}

, (11)

where E denotes the expectation. We can expand (11) as follows:

argmin
f,g

(
fTE

{
yyT

}
f − 2fTE

{
yaT

}
g + gTE

{
aaT
}

g
)

(12)

Since the trivial answer for minimizing (12) is f = g = 0, we must impose the constraint
on f or g. The constraint is represented by the below expression.

ETg = c, (13)

where c is an estimated multiplier of the center data and investigated in Section 4, and

ET =
[

0 0 0 0 1 0 0 0 0
]
. (14)

With the above constraints, we can rewrite the optimal problem (12) as follows:

argmin
f,g

(
fTE

{
yyT}f − 2fTE

{
yaT}g + gTE

{
aaT}g

)
s.t. ETg = c

(15)

To solve (15), we use the Lagrange function, as follows:

J = fTE
{

yyT
}

f − 2fTE
{

yaT
}

g + gTE
{

aaT
}

g − 2λ
(

ETg − c
)

. (16)

where λ is a vector containing the Lagrange multipliers. By setting the gradients of J with
respect to f, g, and λ to zero vectors, we achieve the answers to (15) as follows:

λ =

(
ET
(

A − TTR−1T
)−1

E
)−1

c, (17)
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g =
(

A − TTR−1T
)−1

Eλ, and (18)

f = R−1Tg. (19)

where A = E{aaT}, R = E{yyT}, and T = E{yaT}.

2.2. Proposed Serial Detection

After the coefficients of the GPR target are estimated by the MMSE algorithm, the GPR
target has a matrix form like (1). In the HDS channel, the read-back signal is the Gaussian
beam. Therefore, the interference coefficients from the adjacent pixels can be given by the
values from the Gaussian function. Based on these coefficients, we assume the conditions:
g−1,0 = g1,0 = g0,1 = g0,−1 and g−1,−1 = g−1,1 = g1,−1 = g1,1. Then, we can decompose G as
given below.

G =

 g−1,−1 g−1,0 g−1,1
g0,−1 g0,0 g0,1
g1,−1 g1,0 g1,1

 =

 p
l1
p

[ r l2 r
]
. (20)

where r and p are the horizontal and vertical interferences, respectively; l1 and l2 are the
general parameters to fit the form of the GPR target G. In other words, the 2D GPR target
G with 2D ISI is decomposed into a series of 1D vertical direction interference vector
v = [p l1 p]T and 1D horizontal direction interference vector b = [r l2 r]. Then, v and b act
like the outer and inner encoders, respectively. Therefore, we detect the horizontal direction
first and the vertical direction next. The serial detection of the ideal channel model is
illustrated in Figure 2.
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Figure 2. Ideal channel and detection model.

With the proposed form v and b, we achieve the following expression:

G =

 rp l2 p rp
rl1 l1l2 rl1
rp l2 p rp

, (21)

Since (l2p)(rl1) = (l1l2)(rp), the parameters of the matrix G must satisfy the condition
g0,0g−1,1 = g−1,0g0,1. When we implement the estimation of the GPR target for the HDS
channel, the coefficients of the GPR target shows g0,0g−1,1 ≈ g−1,0g0,1, which is close to the
above condition. Therefore, we can match the parameters between the GPR target G and
the matrix vb to determine the elements of the vector v and b. To simplify, we choose the
parameter l1 = 1 and determine other parameters with the formulas:

r = g0,1, (22)

p =
g1,0

g0,0
, (23)

l2 = g0,0. (24)

With the parameters r, p, l1, and l2, we can achieve the vector v and b. Therefore, we
can apply two 1D Viterbi detectors for the serial detection [18,20,21] with the interference
coefficient supplied from the target vector v and b to recover the original data.
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In addition, when misalignment occurs in the HDS channel, the vectors v and b have
the asymmetric form as below.

G =

 g−1,−1 g−1,0 g−1,1
g0,−1 g0,0 g0,1
g1,−1 g1,0 g1,1

 =

 p1
l1
p2

[ r1 l2 r2
]
=

 r1 p1 l2 p1 r2 p1
r1l1 l1l2 r2l1
r1 p2 l2 p2 r2 p2

. (25)

Similarly, we can achieve the approximated parameters as below.

l1 = 1; l2 = g0,0, (26)

r1 = g0,−1; r2 = g0,1, (27)

p1 =
g−1,0

l2
; p2 =

g1,0

l2
. (28)

3. Proposed Model

Figure 3 shows the simulation model of the proposed scheme exploiting two 1D Viterbi
detections based on the two target vectors v and b.
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In this model, using a spatial light modulator (SLM), the original data u[k] are encoded
into the data a[j,k] and stored on the holographic medium. To read back the data, we apply
the reference beam onto the holographic medium. The data page is displayed and read by
a CCD [23]. Then, the read-back signal suffers from blurring effects (2D ISI), additive noise,
and misalignment. Thus, the signal y[j,k] is presented as follows [23–25]:

y[j, k] = a[j, k]⊗ h[j, k] + w[j, k], (29)

where [j,k] is the position on the data page, w[j,k] is the additive Gaussian noise with zero
mean and variance σ2, and the discrete point spread function (PSF) h[j,k] is given by:

h[j, k] =

j+1/2∫
j−1/2

k+1/2∫
k−1/2

h(x, y)dxdy. (30)

The continuous PSF is modeled by:

h(x, y) =
1
σ2

b
sin c2

(
x − mx

σb
,

y − my

σb

)
, (31)

where sinc(x,y) = (sin(πx)/πx) (sin(πy)/πy), σb is the grade of blur in the resultant diffracted
signals, and mx and my are x and y axis misalignments, respectively.

Then, the read-back signal y[j,k] goes through the 2D equalizer, which is updated by
the MMSE algorithm. The output of the equalizer z[j,k] is close to the desired signal from
the GPR target (i.e., z[j,k] ≈ d[j,k] = a[j,k]⊗G). With the GPR target estimated earlier, the
signal z[j,k] is detected by the serial detection and restored into the signal â[j,k]. Finally, the
signal â[j,k] is decoded into the original signal û[k].
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4. Simulation Results
4.1. Results of Proposed Model

For the training process, the original data u[k] are randomly created with the size of
1,440,000 and the same probabilities for 0 and 1. Then, u[k] is encoded into a page-data
a[j,k] with a size of 1200 × 1200. The signal a[j,k] and the read-back signal y[j,k] are collected
and used to estimate the coefficients of the GPR target and equalizer with the MMSE
algorithm in Section 2. Then, these coefficients are used for the testing process. In the
testing process, the coefficients from the GPR target are supplied to the serial detection
in [13]. Simultaneously, we created 10 pages to evaluate the bit error rate (BER) performance
of the system. In the first experiment, we investigate the constant c in (13). The results are
presented in Figure 4. During this experiment, we fixed the blur at 1.8, SNR = 16 dB, and
0% misalignment.
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Figure 4. BER vs. the values of c.

With the results from Figure 4, we chose c = 0.85 and achieved the parameters of
vectors v and b as in Tables 1 and 2.

Table 1. Parameters of the target v and b with 1.8 blur and 0% misalignment.

SNR G v b

10 dB
 0.2 0.4 0.2

0.4 0.85 0.4
0.2 0.4 0.2

  0.4709
1

0.4709

 [
0.4023 0.85 0.4023

]
11 dB

 0.199 0.4 0.199
0.4 0.85 0.4

0.199 0.4 0.199

  0.4743
1

0.4743

 [
0.4047 0.85 0.4047

]
12 dB

 0.196 0.4 0.196
0.4 0.85 0.4

0.196 0.4 0.196

  0.4744
1

0.4744

 [
0.4053 0.85 0.4053

]
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Table 2. Parameters of the target v and b with 1.8 blur and 10% misalignment.

SNR G v b

10 dB
 0.21 0.41 0.2

0.41 0.85 0.4
0.2 0.4 0.199

  0.4877
1

0.4732

 [
0.41 0.85 0.4

]
11 dB

 0.214 0.417 0.2
0.417 0.85 0.4

0.2 0.4 0.197

  0.4905
1

0.4705

 [
0.417 0.85 0.4

]
12 dB

 0.212 0.4189 0.2038
0.4189 0.85 0.4045
0.2038 0.4045 0.1925

  0.4928
1

0.4758

 [
0.4189 0.85 0.4045

]

Next, we compared our proposed model with the 1D GPR target in [16] and the 2D
SOVA in [13]. The BER performances are presented in Figures 5 and 6.
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In Figures 5 and 6, the 1D GPR target model in [16] achieves similar BER performance
at 0% and 10% misalignment, while the BER performance of the 2D SOVA model in [13]
is significantly degraded at 10% misalignment. However, the proposed model performs
almost the same, with 10% misalignment. These results show that the 2D GPR target
can estimate the interference of the channel even if the misalignment effect appears. The
1D GPR target model in [13] used the partial response (PR) target, which has the fixed
parameter of the target. Thus, when the misalignment appears, it cannot estimate the
interference appropriately compared to the 2D GPR target. In addition, the proposed model
is also compared to the DFE with reliability factor in [23], and the interference estimator
with parallel structure in [22]. The interference estimator with parallel structure scheme
achieves better BER performance compared to the proposed model because it is designed
with the SOVA algorithm, which requires more complexity, instead of the simple VA used
in the proposed model. Therefore, the proposed model can give a margin to the system
designer for selecting a simple detection architecture. (Section 4.2 compares the complexity
of various detection schemes.)
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In the next experiment, to investigate the effect of the blur, we changed the blur from
1.8 to 3 with SNR = 20 dB and the results are shown in Figures 7 and 8. The proposed 2D
GPR target model performs well compared to other methods.
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4.2. Complexity of Proposed Model

In this section, we compare the complexity of the proposed model, the methods
in [13,16,22,23], and the complicated 2D Viterbi detector. We count the operators per the
detected bit from the equalizer to the detection in each method and list them in Table 3.

Table 3. The complexity of the proposed and other methods.

Methods Mul/Div Add/Sub

Our model 252 700
2D SOVA [13] 123 94
1D GPR [16] 33 48
Model in [22] 571 1229

DFE [23] >36 >34
Complicated 2D Viterbi >537 >1560

In Table 3, the number of operations of the DFE model are counted for one iteration.
Thus, to achieve the steady state in [23], the number of operations is larger than the
numbers in Table 3. In addition, we used the general GPR target in (1) to estimate the
operations for the complicated 2D Viterbi. For the GPR target in (1), the trellis of the
detector has 64 states and eight input branches in each state. The proposed model takes
more calculations compared to the model in [13,16]. However, our proposed model requires
fewer calculations compared to the complicated 2D Viterbi and the interference estimator
with parallel structure schemes.

5. Conclusions

In this paper, we proposed a method to decompose the 2D ISI GPR target into two
serial 1D vertical and horizontal targets. Firstly, we used the general 2D GPR target to
estimate the 2D interference from the HDS channel. Then, based on these interferences, we
approximated the general 2D GPR target to two serial 1D targets, which includes horizontal
and vertical interferences. Therefore, we can exploit the serial detection with two 1D
Viterbi detectors for the HDS systems. This makes the detector very simple compared with
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the complicated 2D Viterbi detector and significantly improves the performance of the
HDS system.

The proposed 2D GPR target achieves similar BER performance at 0% and 10% mis-
alignment, which means that the proposed 2D GPR target can resist the misalignment effect.
The proposed 2D GPR target can provide gains of approximately 2.5 dB at 10−3 compared
to the 1D GPR target [16] with 1.8 blur and 0% and 10% misalignments. In addition, our
proposed method can still achieve the best performance when the blur increases.
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