
����������
�������

Citation: Pencheva, E.; Atanasov, I.;

Trifonov, V. Towards Intelligent,

Programmable, and Open Railway

Networks. Appl. Sci. 2022, 12, 4062.

https://doi.org/10.3390/

app12084062

Academic Editors: Valerio De

Martinis and Raimond

Matthias Wüst

Received: 23 March 2022

Accepted: 15 April 2022

Published: 17 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Towards Intelligent, Programmable, and Open Railway Networks
Evelina Pencheva 1,*, Ivaylo Atanasov 2 and Ventsislav Trifonov 2

1 Telecommunications Department, Faculty of Telecommunications and Electrical Equipment in Transport,
“Todor Kableshkov” University of Transport, 1574 Sofia, Bulgaria

2 Communication Networks Department, Faculty of Telecommunications, Technical University of Sofia,
1756 Sofia, Bulgaria; iia@tu-sofia.bg (I.A.); vgt@tu-sofia.bg (V.T.)

* Correspondence: evelina.nik.pencheva@gmail.com

Abstract: The virtualization and automation of network functions will be key features of future
high-speed railway networks, which have to provide dependable, safe, and secure services. The
virtualization of railway network functions will enable functions such as train control, train integrity
protection, shunting control, and trackside monitoring and maintenance to be virtualized and to be
run on general-purpose hardware. Network function virtualization combined with edge computing
can deliver dynamic, low-latency, and reliable services. The automation of railway operations
can be achieved by embedding intelligence into the network to optimize the railway operation
performance and to enhance the passenger experience. This paper presents an innovative railway
network architecture that features distributed intelligence, function cloudification and virtualization,
openness, and programmability. The focus is on time-tolerant and time-sensitive intelligent services
designed to follow the principles of service-oriented architecture. The interaction between identified
logical identities is illustrated by use cases. The paper provides some details of the design of the
interface between distributed intelligent services and presents the results of an emulation of the
interface performance.

Keywords: European Train Control System; artificial intelligence; network function virtualization;
service-oriented architecture; concurrent process modeling; key performance indicators

1. Introduction

The digitalization and embedding of innovation technologies are expected to enhance
the capacity and optimize the performance of railway operations and to improve the quality
of experience for passengers [1]. At the same time, the environmental requirements of
society for transport operations have significantly increased, and the criteria for mechanical
and acoustic pollution of the environment and carbon footprints have become crucial. To
protect the environment and to address the ever-increasing demands for high-efficiency
railway transport, all processes related to train control, train protection and supervision,
trackside monitoring, and passenger services need to be automated. The automation
of data-exchange processes reduces the possibility of human errors, decreases delays or
bottlenecks in emergencies, streamlines data transfer, conserves resources, and increases
automated reporting transparency and control [2,3].

The European Railway Traffic Management System (ERTMS) was designed to provide
a highly reliable, fail-safe, and interoperable European solution for proper operation of
railways and an enhanced passenger experience [4]. The project was developed to deploy a
single control, command, and signaling system [5]. Soon, the ERTMS gained popularity and
was deployed not only in Europe, but also in Asia, Africa, and South America as one of the
pillars of transport decarbonization policy. The ERTMS is composed of the European Train
Control System (ETCS) and the Global System for Mobile Communications on Railways
(GSM-R). The ETCS consists of onboard equipment for supervising the train’s movements
and trackside-deployed balises that store data on the railway’s infrastructure. The GSM-R

Appl. Sci. 2022, 12, 4062. https://doi.org/10.3390/app12084062 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12084062
https://doi.org/10.3390/app12084062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12084062
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12084062?type=check_update&version=2

Appl. Sci. 2022, 12, 4062 2 of 17

is intended to provide mobile communications between trains, trackside equipment, and a
traffic control center. The interfaces installed onboard the train and the trackside system
exchange information to control and operate at the maximum allowed train speed.

The ERTMS/ETCS can be configured to operate on different levels related to the
trackside equipment deployed, the way the information from the trackside is presented to
the onboard units, and the distribution of functions between the onboard and trackside
equipment. The radio block center (RBC) is an essential ETCS component on Level 2 and
Level 3. It is responsible for train guidance and monitoring by receiving the necessary
information from the train and trackside equipment and by generating the ETCS travel
permits that are sent via the communication network [6,7].

The Future Railway Mobile Communication System (FRMSC) is the successor of
the GSM-R, with the objective of becoming a worldwide standard [8,9]. The work on
the standardization of the FRMCS started with identifying user requirements and went
through defining typical use cases and describing the principle FRMCS architecture. The
FRMCS will use the public telecommunication networks to connect onboard users, such as
automatic train control (ATC)/automatic train protection (ATP), train drivers, shunting
staff, passengers, security staff, sensors, and SOS stations, with ground users in data
centers for ATC/ATP, in railway offices, at stations and platforms, at depots, and on the
trackside. Current fifth-generation (5G) communications can address the requirements of
the FRMCS by offering enhanced broadband service, ultrareliable and low-latency services,
and massive machine-type services [10–12].

Fifth-generation (5G) communications and artificial intelligence (AI) are two essential
ingredients that drive future innovations in the railway industry [13,14]. 5G communications
make it possible to provide connectivity, and AI can provide the ability of onboard, trackside,
and ground devices to not only perceive, reason, and act intuitively, but also to solve technical
challenges. AI advancements can help to improve railways’ performance and efficiency, while
5G connectivity of railway assets can fuel distributed intelligence at the edge. Edge intelligence
can satisfy the rising requirements of critical railway applications [15–17].

The authors’ previous research presented the idea of the disaggregation of the ETCS’s
radio block center functionality following the principles of openness and intelligence [18]. In
this paper, the authors elaborate the idea for a cloud-based, virtualized, programmable, and
disaggregated railway network architecture. The separation of control functions from the
hardware equipment and the usage of standardized control interfaces have the potential to
empower the definition of customized closed control loops that will embed real-time analytics
and intelligence in railway operations and, thus, pave the way towards autonomation.

The rest of the paper is organized as follows. The next section provides a brief descrip-
tion of the ETCS levels and the ERTMS/ETCS system architecture, with a focus on the radio
block center as a main control point in ETCS Levels 2 and 3. Section 3 gives an overview
of AI use cases in the railway sector. Sections 4 and 5 discuss how the intelligence may
be distributed in the ETCS system architecture, thus making it programmable, open, and
virtualized, and then present some issues related to the modeling of distributed intelligence.
Section 6 discusses the results from an emulation of the interface between distributed
intelligent control functions. The conclusions summarize the authors’ contributions.

2. ETCS Levels and Architecture

The deployment of ETCS application levels depends on the existing railway infrastructure.
ETCS Level 1 provides train cab signaling where movement authorities can be pro-

vided through switchable, fixed Eurobalises and Euroloops. The Eurobalises installed on
the trackside send data about the train route to the onboard equipment, and based on
the data, the maximum train speed and breaking curves are calculated. In addition, the
Euroloops (loop infill) or radio-infill solutions are used for transmission of distant signal
data to trains over a long distance.

ETCS Level 2, the radio block center (RBC), sends movement authorities to the onboard
equipment using the GSM-R, so no line-side signals are required. Eurobalises, acting as

Appl. Sci. 2022, 12, 4062 3 of 17

passive positioning beacons, help the train to calculate its position, which is refined by
additional sensors.

In ETCS Level 3, the trains continuously monitor their own position and provide
train position data to the RBC. Level 3 is a fully radio-based system without track-based
detection equipment. Based on the received train positioning data, the RBC calculates the
smallest safe train distance at any time. The role of the train integrity functions is crucial as
the trackside equipment disappears. ETCS Level 3 is under standardization.

The ERTMS/ETCS system architecture includes onboard ETCS equipment and track-
side ETCS equipment [19,20]. The onboard equipment consists of a central logic unit, rail
path sensors, control devices, cab displays, and a module for radio communications. The
trackside equipment is a fixed part of the ETCS installation, and depending on the ETCS
level, it can be composed of Eurobalises, Euroloops, a lineside electronic unit (LEU), radio
infill unit (RIU), key management center (KMC), interlocking system, and RBC.

AnEurobalise is a system for the transmission of safety-relevant information between
the train and the trackside equipment. It consists of beacons situated along the tracks
that transmit when a train antenna is above them, an onboard balise transmission module
and antenna unit, and a trackside signaling system. Fixed data balises provide special
information, such as speed restrictions and gradients. Transparent data balises are con-
nected to the LEU, which transmits dynamic data to the train, e.g., signal indications. An
Euroloop is a leaky feeder system that transmits the signal aspects to the trains. An RIU is
a radio-based communication system that allows to send the message of the next signal in
the travel direction in advance to the train before passing the relevant information point.
The interlocking system is responsible for the supervision and safety control of routes,
switch points, signals, and track locks. It prevents conflicting train movements through
arrangements of tracks, such as crossings and junctions. The KMC is responsible for the
management (installation, update, and deletion) of the cryptographic keys that are used to
secure radio communications between the ETCS entities.

The main task of the RBC is to monitor and guide the trains in its area. It uses the
train and trackside information to generate movement authorities and to send them to
the trains by radio. The implementation of the RBC function depends on the existing
railway infrastructure and the operator’s requirements. The functions, architecture, and
user interfaces of the RBC are not standardized, are structured differently by various man-
ufacturers, and are centered around safety-relevant functionality. Typical RBC functions
include generating movement authorities, monitoring trains’ movements in the RBC area,
announcing radio gaps, evaluating potential hazardous situations, triggering emergency
stops, the first assignment of a train route, joining and splitting of trains, adaptive speed
control, stop evaluation, sending the national values to trains, determining safe reactions in
case of dangerous situations on a train, etc.

The operation of the RBC essentially enables dispatcher control and maintenance
access. The dispatcher control enables the input, query, and activation of temporary data,
such as changes in ETCS modes, emergency breaks, speed restrictions, etc. The access
to maintenance provides access to and storage of log files, retrieval of information for
malfunctions, and RBC software configurations/updates/restart. The RBC’s user interfaces
make train tracking possible. Depending on the existing trackside infrastructure, the
operation of the RBC may be partially or fully automated. The tendency is towards the full
automation of the RBC operation based on embedded intelligent decisions.

The specifications do not define any details on the implementation of RBC, just the
operating modes and scenarios, and based on operational processes, the railway operator
determines the RBC requirements. So, the current RBC implementations are proprietary
and monolithic solutions.

A possible future evolution of the RBC architecture may be related to disaggregation.
Horizontal disaggregation can be achieved through the separation of time-tolerant RBC
functions from RBC time-sensitive RBC functions using open interfaces. The separation of
the RBC’s functionality aims at running different control loops with distinct latency require-

Appl. Sci. 2022, 12, 4062 4 of 17

ments. Interface openness can be achieved through application programming interfaces
(APIs) that facilitate interoperability. The valuable benefits of APIs are related to a low cost
and easy implementation, more flexible functionality, cloud-based deployment, etc. Vertical
disaggregation decouples hardware and software by applying the virtualization of RBC
functions. Function virtualization can be achieved by transitioning from software running
on proprietary and specialized hardware to software running on general-purpose hardware.
Among the advantages of function virtualization are the reduction of maintenance costs,
easier function upgrades, scalability, greater agility, and flexibility.

The disaggregation of software and data channels by introducing AI/machine learning
(ML) techniques and connectivity to external contextual data sources can contribute to the
optimization of railway operations.

Currently, the AI technologies that are most often used on railways include ML,
robotics, and natural language processing [21]. In the rest of the paper, the focus is on ML
management in railway transport when used to perform tasks or to make predictions based
on experience or example data. In this context, ML can be used for sensing and prediction.
For example, sensing can be useful in image recognition for dangerous situations and
image analysis for obstacle detection, fault detection, and maintenance of tunnels, bridges,
buildings, etc. Prediction is useful in, e.g., preventive maintenance of the equipment, and it
can improve railway safety, punctuality, reliability, and availability.

The next section presents a brief description of the research related to the implementa-
tion of AI with a stress on ML in the railway sector.

3. AI Technologies within the Railway Sector

Use cases of the deployment of AI technologies in railways and perspectives thereof
are described in [21]. ML can be effective in image recognition in the fight against terror-
ism. Data collection and processing using AI algorithms may help to predict abnormal
behavior in passengers [22,23]. ML can be used for predictive maintenance, e.g., on rolling
stocks, infrastructure, and other operational decision support. Rolling stock maintenance is
important for railway service availability, punctuality, and reliability, and ML algorithms
may predict wheel tread defects or recognize anomalies in train bearing temperature,
etc. [24]. Train punctuality and safety, among the other things, depend on the reliability
and availability of railway infrastructure, including tunnels, bridges, tracks, cuttings, and
embankments [25,26]. ML can be used in the optimization of traffic management, train
path allocation, passenger flow management at railway stations, detection of abandoned
luggage, etc. [27].

In addition to the application areas listed above, AI/ML techniques may be used for
autonomous train control and train driving, transferring the responsibilities from manual
operators to an onboard control system [28]. A review on the application of AI in high-
speed railway automatic train control is provided in [29]. The existing research is mainly
focused on speed control, trajectory control, and intelligent monitoring and prediction of
abnormal conditions.

Some of the RBC functions are time sensitive, while others are delay tolerant. Actions
related to ATC and ATP, as well as some measures related to preventive maintenance based
on ML models, must be implemented in near real time, while others are non-real time.
The proposed distributed intelligent railway network architecture disaggregates the RBC’s
functionality into time-sensitive control functions and time-insensitive control functions.

The idea for the disaggregation of the RBC’s functionality is inspired by the concept
of an open radio access network (O-RAN) that is aimed at the provisioning of an open
multi-vendor platform and embedding ML to optimize the RAN’s performance [30].

The next section provides more details on the proposed disaggregated railway network
architecture, which encourages programmability, openness, virtualization, and intelligence.

Appl. Sci. 2022, 12, 4062 5 of 17

4. Intelligent Railway Network Architecture

Figure 1 shows a high-level view of the proposed open, intelligent, and programmable
railway network architecture, with a focus on the separation of time-tolerant RBC func-
tions from time-sensitive RBC functions. Radio communication modules for information
exchange based on the FRMCS are not shown for simplicity.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 18

Figure 1. High-level view of the logical architecture of the intelligent railway network.

The TTICU performs intelligent, non-real-time RBC functions, such as the first route

assignment for the train, train chasing, acquisition of diagnostic information, trackside

maintenance, etc. The TTICU can embed intelligence to optimize railway operation, for

which it may use RMAO services for data collection and provisioning services for an

onboard train control system, an interlocking system, and a control center. The TTICU

contains a framework functionality, which terminates the interface towards the TSICU

and exposes the required services to ttApps. The ttApps are modular applications used

for railway operation optimization. The TTICU is involved in a non-real-time control loop.

The TSICU’s functionality includes time-sensitive monitoring, control, and optimiza-

tion of the onboard train control and trackside equipment functions. It is involved in a

near-real-time control loop (e.g., responsible for setting temporary train speed limits, eval-

uation of potentially dangerous situations, commanding emergency stops, etc.). It hosts

tsApps that use the interfaces toward the ETCS entities to collect time-sensitive infor-

mation (e.g., on a train basis or a track-section basis) and provide value-added services.

The TSICU control steers the ETCS entities (onboard train control system, interlockings,

LEU, RIU, Eurobalise, Euroloop) through policies and enrichment information provided

by the TTICU.

The R1 interface is between the TTICU in the RMAO and the TSICU for railway op-

eration optimization. It enables policy management, information provisioning, and ML

model deployment and updating. It is used to provide the TSICU with enrichment infor-

mation, policies, and ML model updates, as well as to provide feedback information to

the TTICU on how the policy set works. The R1 application protocol is based on the REST

(REpresentational State Transfer) solution and uses hypertext transfer protocol (HTTP)

procedures and JavaScript object notation (JSON) objects. The R1 policies are not critical

to train control and trackside control, have temporary validity, and may be dedicated for

an individual onboard train control system, Euroloop, interlockings, or dynamically de-

fined groups of ETCS entities.

The R2 interface between the RMAO and the REC provides platform resources and

workload management. It enables the deployment and life-cycle management of virtual-

ized functions that run on the REC.

The R3 interface is between the RMAO and the railway network functions for man-

agement support. It is used for functions by which software management, file manage-

ment, configuration management, and fault management may be achieved.

Figure 1. High-level view of the logical architecture of the intelligent railway network.

The vertical disaggregation can be achieved through the virtualization of RBC func-
tions. The virtualization enables software to run on a standard server platform and provides
greater scalability, adaptability, and agility compared to traditional proprietary RBC equip-
ment. The virtualization of the RBC functions can provide an open architecture with
flexible deployment options. Virtualized RBC functions can be implemented as software
applications that deliver specific RBC functions, such as train monitoring and control, track-
side monitoring and management, security, radio communications, etc. These software
applications can be packaged as virtual machines or containers that run on the railway
edge cloud (REC), which is deployed at the edge of the railway network.

The REC is a cloud computing platform that consists of computing, storage, and
networking components that meet the requirements to host the relevant RBC functions,
supporting software components such as a hypervisor, container runtime, etc., as well as
appropriate management and orchestration functions. The REC exports interfaces for cloud
and workload management (e.g., infrastructure discovery, software and workload lifecycle
management, and registration).

The railway management, automation, and orchestration (RMAO) framework is
responsible for the management and orchestration of virtualized RBC functions. It supports
fault, configuration, performance, and software management and initial installation over
the R3 interface. The RMAO hosts a time-tolerant intelligent control unit (TTICU) whose
primary goal is to support intelligent railway operation optimization by providing ML
model management, policy-based guidance, and supplementary information to the time-
sensitive intelligent control unit (TSICU).

The TTICU performs intelligent, non-real-time RBC functions, such as the first route
assignment for the train, train chasing, acquisition of diagnostic information, trackside
maintenance, etc. The TTICU can embed intelligence to optimize railway operation, for
which it may use RMAO services for data collection and provisioning services for an
onboard train control system, an interlocking system, and a control center. The TTICU
contains a framework functionality, which terminates the interface towards the TSICU and

Appl. Sci. 2022, 12, 4062 6 of 17

exposes the required services to ttApps. The ttApps are modular applications used for
railway operation optimization. The TTICU is involved in a non-real-time control loop.

The TSICU’s functionality includes time-sensitive monitoring, control, and optimiza-
tion of the onboard train control and trackside equipment functions. It is involved in
a near-real-time control loop (e.g., responsible for setting temporary train speed limits,
evaluation of potentially dangerous situations, commanding emergency stops, etc.). It
hosts tsApps that use the interfaces toward the ETCS entities to collect time-sensitive
information (e.g., on a train basis or a track-section basis) and provide value-added services.
The TSICU control steers the ETCS entities (onboard train control system, interlockings,
LEU, RIU, Eurobalise, Euroloop) through policies and enrichment information provided by
the TTICU.

The R1 interface is between the TTICU in the RMAO and the TSICU for railway
operation optimization. It enables policy management, information provisioning, and
ML model deployment and updating. It is used to provide the TSICU with enrichment
information, policies, and ML model updates, as well as to provide feedback information to
the TTICU on how the policy set works. The R1 application protocol is based on the REST
(REpresentational State Transfer) solution and uses hypertext transfer protocol (HTTP)
procedures and JavaScript object notation (JSON) objects. The R1 policies are not critical to
train control and trackside control, have temporary validity, and may be dedicated for an
individual onboard train control system, Euroloop, interlockings, or dynamically defined
groups of ETCS entities.

The R2 interface between the RMAO and the REC provides platform resources and
workload management. It enables the deployment and life-cycle management of virtualized
functions that run on the REC.

The R3 interface is between the RMAO and the railway network functions for manage-
ment support. It is used for functions by which software management, file management,
configuration management, and fault management may be achieved.

The IR interfaces connect the onboard train control units, Euroloops, interlockings,
and control center to the TSICU. The procedures executed over the IR interface are related
to the exchange of information between ETCS entities or to notifications about internal
events or events triggered by external entities and the required reaction. These procedures
define the required status and mode changes of the ETCS entities (train driver, the trackside
equipment, the onboard equipment) on a contextual level. Examples of procedures include
mission starting and mission ending, shunting, and overriding, e.g., in case of a failed signal,
train joining or splitting, train orientation changing, and indicating of track conditions. The
full list of procedures and their detailed descriptions may be found in [31].

The proposed intelligent railway network architecture supports at least three control
loops involving different RBC functions:

• Non-real-time control loops running at the TTICU level;
• Near-real-time control loops running at the TSICU level;
• Real-time control loops running at the level of the onboard train control system and

trackside equipment.

The control loops are executed simultaneously at different levels and may or may not
interact with each other depending on the use case. The typical execution time for use cases
involving non-real-time control loops is 1 or more seconds; the near-real-time control loops
are on the order of 10 milliseconds or more; control loops in the ETCS entities can operate
below 10 milliseconds. The timing of the control loops is dependent on the use case.

The following use case illustrates the role of the logical entities in the proposed intelli-
gent railway architecture. The use case describes the motivation and solution for temporary
train speed control based on inspection of railway tracks and preventive maintenance. One
of the top causes of train derailing is track-related issues. ML-based trackside equipment
maintenance can predict fault occurrence before assets fail and can issue train speed com-
mands in the affected area to avoid taking a critical train out of service and disrupting
the system.

Appl. Sci. 2022, 12, 4062 7 of 17

Numerous datasets covering different domains of the railway sector and that have
been used to provide ML-based solutions are reviewed in [32]. One of the ML-based
solutions described gathers information about the mechanical behavior, the railway track
state, and reasons for possible problems. A sensor system using optical fibers monitors
tracks and collects information about track performance. The railway track performance
may vary significantly along the track length, and knowledge about it helps in track
maintenance; in some cases, it may be critical for train speed along the track.

The goal of the use case is to determine the temporary train speed along a track section
based on knowledge about track performance. The entities involved are as follows. The
TTICU is responsible for training, deployment, and updating of ML models related to
track performance in the TSICU, and for rail policy generation and provisioning. The
TSICU executes the deployed ML models, converts the policy related to the temporary
train speed into train commands, and sends train speed and track performance data to
the TTICU for evaluation and optimization. The onboard train control system enforces the
policy by following the commands sent by the TSICU. The trackside equipment provides
measurement data, and the RMAO performs data collection and control as a termination
point of the R3 interface.

Figure 2 illustrates the procedure of the training and deployment of ML models. As
preconditions, the collection and control functionalities in the RMAO have an established
data collection and sharing process, and the TTICU has access to these data. The TTICU
monitors track performance by collecting the relevant track performance events.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18

Figure 2. Training, deployment, and updating of the ML model for track performance.

The railway operator has set a trigger condition related to the monitored track pa-

rameters.

1. Upon detection of the triggered event, the TTICU accesses the track performance and

train speed data from the RMAO and decides either to create a new ML model for

track performance or to modify an existing one.

2. The TTICU performs ML model training, obtains track-performance-related models,

and may internally deploy a train speed model.

3. The TTICU deploys or updates the ML model in the TSICU via the R1 interface.

4. The TSICU stores the received ML model.

5. The TTICU may configure, if required, a specific track performance measurement to

collect the data required to assess the performance of the deployed ML model. Based

on an evaluation of the ML model’s performance and model retraining, the TTICU

may update the ML model in the TSICU.

6. The procedure ends when a trigger condition specified by the railway operator is

satisfied.

As a post-condition, the TSICU stores the received track performance ML model and

train speed model and executes the models for the dynamic optimization of the train

speed control function.

Figure 3 illustrates the procedure for rail policy generation, policy enforcement, and

policy performance evaluation. As a precondition, track-performance-related models and

train speed models have been deployed in the TTICU and TSICU.

Figure 2. Training, deployment, and updating of the ML model for track performance.

The railway operator has set a trigger condition related to the monitored track parameters.

1. Upon detection of the triggered event, the TTICU accesses the track performance and
train speed data from the RMAO and decides either to create a new ML model for
track performance or to modify an existing one.

2. The TTICU performs ML model training, obtains track-performance-related models,
and may internally deploy a train speed model.

3. The TTICU deploys or updates the ML model in the TSICU via the R1 interface.
4. The TSICU stores the received ML model.
5. The TTICU may configure, if required, a specific track performance measurement to

collect the data required to assess the performance of the deployed ML model. Based
on an evaluation of the ML model’s performance and model retraining, the TTICU
may update the ML model in the TSICU.

6. The procedure ends when a trigger condition specified by the railway operator is satisfied.

As a post-condition, the TSICU stores the received track performance ML model and
train speed model and executes the models for the dynamic optimization of the train speed
control function.

Appl. Sci. 2022, 12, 4062 8 of 17

Figure 3 illustrates the procedure for rail policy generation, policy enforcement, and
policy performance evaluation. As a precondition, track-performance-related models and
train speed models have been deployed in the TTICU and TSICU.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18

Figure 3. Train speed policy generation, policy enforcement, and policy performance evaluation.

1. The railway operator wants to generate a temporary train speed policy or to optimize

the ML models.

2. The TTICU sends a train speed policy to the TSICU via the R1 interface.

3. The TSICU receives the train speed policy, infers about the track performance and

train speed based on the ML models, and translates the policy into train speed control

commands.

4. The TSICU sends the train speed control commands to the onboard train control sys-

tem to optimize the train speed.

5. The onboard train control system enforces the commands received from the TSICU.

6. The TTICU may optionally receive policy feedback regarding the train speed from

the TSICU, data from track performance measurements, and performance data of the

train speed optimization function in the TSICU, and it may update the train speed

policy.

7. The procedure ends when a trigger condition specified by the railway operator is

satisfied.

As a post-condition, the TTICU collects and monitors the relevant key performance

indicators from the onboard train control system to observe the performance of the train

speed optimization function in the TSICU.

The research focus is on the R1 interface, so the next section provides more details on

its description.

5. Interface between Time-Tolerant and Time-Sensitive Functions

The TTICU, which resides in the RMAO framework, can be connected to multiple

TSICUs, which, in turn, can control trains, Euroloops, interlockings, and RIUs in their ar-

eas, as shown in Figure 4. As an alternative, the TSICU may be implemented in one phys-

ical node consisting of more logical TSICUs with specialized functions for train control

and trackside equipment control.

Figure 3. Train speed policy generation, policy enforcement, and policy performance evaluation.

1. The railway operator wants to generate a temporary train speed policy or to optimize
the ML models.

2. The TTICU sends a train speed policy to the TSICU via the R1 interface.
3. The TSICU receives the train speed policy, infers about the track performance and

train speed based on the ML models, and translates the policy into train speed
control commands.

4. The TSICU sends the train speed control commands to the onboard train control
system to optimize the train speed.

5. The onboard train control system enforces the commands received from the TSICU.
6. The TTICU may optionally receive policy feedback regarding the train speed from the

TSICU, data from track performance measurements, and performance data of the train
speed optimization function in the TSICU, and it may update the train speed policy.

7. The procedure ends when a trigger condition specified by the railway operator is satisfied.

As a post-condition, the TTICU collects and monitors the relevant key performance
indicators from the onboard train control system to observe the performance of the train
speed optimization function in the TSICU.

The research focus is on the R1 interface, so the next section provides more details on
its description.

5. Interface between Time-Tolerant and Time-Sensitive Functions

The TTICU, which resides in the RMAO framework, can be connected to multiple
TSICUs, which, in turn, can control trains, Euroloops, interlockings, and RIUs in their areas,
as shown in Figure 4. As an alternative, the TSICU may be implemented in one physical
node consisting of more logical TSICUs with specialized functions for train control and
trackside equipment control.

Appl. Sci. 2022, 12, 4062 9 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18

Figure 4. Deployment of time-tolerant and time-sensitive intelligence.

The purpose of the R1 interface is to enable the TTICU functions to provide policy-

based guidance, ML model management, and enrichment information to the TSICU func-

tions so that the railway operation be optimized under certain conditions.

Based on observables such as events and trigger conditions provided via the R3 in-

terface, the TTICU may define policies that are provided to the TSICU via the R1 interface.

The TSICU enforces the policy and collects train and trackside equipment data via the R3

interface and provides the policy feedback to the TTICU via the R1 interface. The TTICU

uses this information to continuously evaluate the impact of the R1 policies towards the

fulfillment of railway intent. Based on internal conditions, the TTICU may decide to issue

new policies or to update existing policies.

The ML models can be trained and executed at different places in the intelligent rail-

way network architecture.

In one scenario, the ML models may be trained on the RMAO layer and then used by

the TTICU to improve the performance monitoring and guidance of the train and track-

side equipment based on the R3 observability. The training and deployment of the ML

model may be handled by the internal RMAO functions and the same training data to be

used for TTICU inference.

In another scenario, the ML models may be trained in the RMAO layer and then used

by the TTICU to optimize the train and trackside equipment performance. The training

and deployment of the ML model may be handled by the internal RMAO functions, and

the training data used for the TSICU inference are the same. The trained ML models may

be deployed by the RMAO layer via the R3 interface. The performance evaluation of the

ML model and the handling of explicit feedback from the ML model itself are based on

the R3 observability.

The TSICU’s functions are based on its internal functionality or tsApps, the configu-

ration received via R3, and the R1 policies. The R1 enrichment information service can be

used to support the policy enforcement in the TSICU. The enrichment information, which

is provided in addition to the generally available information, may enhance railway op-

eration performance and may be gathered by the RMAO from different internal and ex-

ternal sources. The TTICU provides enrichment information to the TSICU via the R1 in-

terface.

Following the service-oriented approach, the time-tolerant intelligent services and

time-sensitive intelligent services may be defined according to the REST principles. REST

is an architectural style for distributed applications that recognizes everything as a re-

source. The resource is uniquely identified, supports a standard interface, and has a JSON

representation that is exchanged across the network over hypertext transfer protocol se-

cure (HTTPS). The protocol stack of the R1 interface is shown in Figure 5.

Figure 4. Deployment of time-tolerant and time-sensitive intelligence.

The purpose of the R1 interface is to enable the TTICU functions to provide policy-
based guidance, ML model management, and enrichment information to the TSICU func-
tions so that the railway operation be optimized under certain conditions.

Based on observables such as events and trigger conditions provided via the R3
interface, the TTICU may define policies that are provided to the TSICU via the R1 interface.
The TSICU enforces the policy and collects train and trackside equipment data via the R3
interface and provides the policy feedback to the TTICU via the R1 interface. The TTICU
uses this information to continuously evaluate the impact of the R1 policies towards the
fulfillment of railway intent. Based on internal conditions, the TTICU may decide to issue
new policies or to update existing policies.

The ML models can be trained and executed at different places in the intelligent
railway network architecture.

In one scenario, the ML models may be trained on the RMAO layer and then used by
the TTICU to improve the performance monitoring and guidance of the train and trackside
equipment based on the R3 observability. The training and deployment of the ML model
may be handled by the internal RMAO functions and the same training data to be used for
TTICU inference.

In another scenario, the ML models may be trained in the RMAO layer and then used
by the TTICU to optimize the train and trackside equipment performance. The training
and deployment of the ML model may be handled by the internal RMAO functions, and
the training data used for the TSICU inference are the same. The trained ML models may
be deployed by the RMAO layer via the R3 interface. The performance evaluation of the
ML model and the handling of explicit feedback from the ML model itself are based on the
R3 observability.

The TSICU’s functions are based on its internal functionality or tsApps, the configura-
tion received via R3, and the R1 policies. The R1 enrichment information service can be
used to support the policy enforcement in the TSICU. The enrichment information, which
is provided in addition to the generally available information, may enhance railway opera-
tion performance and may be gathered by the RMAO from different internal and external
sources. The TTICU provides enrichment information to the TSICU via the R1 interface.

Following the service-oriented approach, the time-tolerant intelligent services and
time-sensitive intelligent services may be defined according to the REST principles. REST is
an architectural style for distributed applications that recognizes everything as a resource.
The resource is uniquely identified, supports a standard interface, and has a JSON rep-
resentation that is exchanged across the network over hypertext transfer protocol secure
(HTTPS). The protocol stack of the R1 interface is shown in Figure 5.

Appl. Sci. 2022, 12, 4062 10 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18

Figure 5. Protocol stack of the R1 interface.

In REST, any resources can be created (HTTP POST method), updated (HTTP PUT

method), deleted (HTTP DELETE method), and read (HTTP GET method).

Figure 6 shows the uniform resource identifier (URI) structure of the railway policy

resources.

Figure 6. Structure of URI of the railway policy resources.

The railPolicyTypes resource is a container of all policy types. It supports an HTTP

GET method that retrieves a list of rail policy identifiers. The railPolicyTypeID resource

represents an individual rail policy type, and an HTTP GET method applied on the re-

source retrieves the respective policy type information. The railPolicies resource repre-

sents all rail policies from a certain type, and the list of policies may be retrieved using an

HTTP GET method, while an HTTP POST method creates a new rail policy. The railPoli-

cyID method represents an individual rail policy. The HTTP methods supported by the

railPolicyID resource include PUT, which updates an existing rail policy, GET, which re-

trieves information about the rail policy, and DELETE, which is used to remove the rail

policy.

Figure 7 shows the flow of the rail policy creation procedure. The TTICU generates

the rail policy identifier and sends an HTTP POST request to the TSICU. The target URI

identifies the resource under which a new rail policy has to be created. The message body

carries the JSON policy description. On success, the TSICU returns a “201 Created” re-

sponse. On failure, the respective error code is returned.

Figure 7. Flow of the rail policy creation procedure.

Figure 5. Protocol stack of the R1 interface.

In REST, any resources can be created (HTTP POST method), updated (HTTP PUT
method), deleted (HTTP DELETE method), and read (HTTP GET method).

Figure 6 shows the uniform resource identifier (URI) structure of the railway policy resources.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18

Figure 5. Protocol stack of the R1 interface.

In REST, any resources can be created (HTTP POST method), updated (HTTP PUT

method), deleted (HTTP DELETE method), and read (HTTP GET method).

Figure 6 shows the uniform resource identifier (URI) structure of the railway policy

resources.

Figure 6. Structure of URI of the railway policy resources.

The railPolicyTypes resource is a container of all policy types. It supports an HTTP

GET method that retrieves a list of rail policy identifiers. The railPolicyTypeID resource

represents an individual rail policy type, and an HTTP GET method applied on the re-

source retrieves the respective policy type information. The railPolicies resource repre-

sents all rail policies from a certain type, and the list of policies may be retrieved using an

HTTP GET method, while an HTTP POST method creates a new rail policy. The railPoli-

cyID method represents an individual rail policy. The HTTP methods supported by the

railPolicyID resource include PUT, which updates an existing rail policy, GET, which re-

trieves information about the rail policy, and DELETE, which is used to remove the rail

policy.

Figure 7 shows the flow of the rail policy creation procedure. The TTICU generates

the rail policy identifier and sends an HTTP POST request to the TSICU. The target URI

identifies the resource under which a new rail policy has to be created. The message body

carries the JSON policy description. On success, the TSICU returns a “201 Created” re-

sponse. On failure, the respective error code is returned.

Figure 7. Flow of the rail policy creation procedure.

Figure 6. Structure of URI of the railway policy resources.

The railPolicyTypes resource is a container of all policy types. It supports an HTTP
GET method that retrieves a list of rail policy identifiers. The railPolicyTypeID resource
represents an individual rail policy type, and an HTTP GET method applied on the resource
retrieves the respective policy type information. The railPolicies resource represents all
rail policies from a certain type, and the list of policies may be retrieved using an HTTP
GET method, while an HTTP POST method creates a new rail policy. The railPolicyID
method represents an individual rail policy. The HTTP methods supported by the railPol-
icyID resource include PUT, which updates an existing rail policy, GET, which retrieves
information about the rail policy, and DELETE, which is used to remove the rail policy.

Figure 7 shows the flow of the rail policy creation procedure. The TTICU generates
the rail policy identifier and sends an HTTP POST request to the TSICU. The target URI
identifies the resource under which a new rail policy has to be created. The message
body carries the JSON policy description. On success, the TSICU returns a “201 Created”
response. On failure, the respective error code is returned.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18

Figure 5. Protocol stack of the R1 interface.

In REST, any resources can be created (HTTP POST method), updated (HTTP PUT

method), deleted (HTTP DELETE method), and read (HTTP GET method).

Figure 6 shows the uniform resource identifier (URI) structure of the railway policy

resources.

Figure 6. Structure of URI of the railway policy resources.

The railPolicyTypes resource is a container of all policy types. It supports an HTTP

GET method that retrieves a list of rail policy identifiers. The railPolicyTypeID resource

represents an individual rail policy type, and an HTTP GET method applied on the re-

source retrieves the respective policy type information. The railPolicies resource repre-

sents all rail policies from a certain type, and the list of policies may be retrieved using an

HTTP GET method, while an HTTP POST method creates a new rail policy. The railPoli-

cyID method represents an individual rail policy. The HTTP methods supported by the

railPolicyID resource include PUT, which updates an existing rail policy, GET, which re-

trieves information about the rail policy, and DELETE, which is used to remove the rail

policy.

Figure 7 shows the flow of the rail policy creation procedure. The TTICU generates

the rail policy identifier and sends an HTTP POST request to the TSICU. The target URI

identifies the resource under which a new rail policy has to be created. The message body

carries the JSON policy description. On success, the TSICU returns a “201 Created” re-

sponse. On failure, the respective error code is returned.

Figure 7. Flow of the rail policy creation procedure. Figure 7. Flow of the rail policy creation procedure.

Figure 8 shows the flow to query a single rail policy. The TTICU queries about
an individual rail policy by sending an HTTP GET method with a URI pointing to the
resource representing the rail policy of interest. The response returns the policy description
and status.

Appl. Sci. 2022, 12, 4062 11 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18

Figure 8 shows the flow to query a single rail policy. The TTICU queries about an

individual rail policy by sending an HTTP GET method with a URI pointing to the re-

source representing the rail policy of interest. The response returns the policy description

and status.

Figure 8. Flow of the rail policy query procedure.

To provide policy feedback, subscriptions to rail policies have to be supported. The

policySubscriptions resource represents all subscriptions for notifications related to an in-

dividual rail policy. The list of all policy subscriptions may be retrieved by the HTTP GET

method. The TTICU creates a new subscription by sending an HTTP POST method with

a message body describing the criteria for notifications and the callback address at which

it wants to receive notifications. The policySubscriptionID resource represents an individ-

ual subscription for a specific rail policy. It supports the HTTP GET method, which is used

to retrieve subscription information, the HTTP PUT method, which is used to modify the

subscription, and the HTTP DELETE method, which is used to terminate the subscription.

Figure 9 shows the flow of the subscription creation procedure. Figure 10 shows the

flow of the notification procedure, which provides policy feedback to the callback address

indicated earlier in the subscription request.

Figure 9. Flow of the subscription creation procedure.

Figure 10. Flow of the notification procedure.

The TTICU and TSICU must have synchronized views on the railway policy status.

Figure 11 shows a model representing the railway policy lifecycle as seen by the

TTICU, and Figure 12 shows a model representing the policy state supported by the

TSICU. Both models are simplified, as they do not describe the behavior related to sub-

scriptions and notifications.

Figure 8. Flow of the rail policy query procedure.

To provide policy feedback, subscriptions to rail policies have to be supported. The
policySubscriptions resource represents all subscriptions for notifications related to an
individual rail policy. The list of all policy subscriptions may be retrieved by the HTTP GET
method. The TTICU creates a new subscription by sending an HTTP POST method with a
message body describing the criteria for notifications and the callback address at which it
wants to receive notifications. The policySubscriptionID resource represents an individual
subscription for a specific rail policy. It supports the HTTP GET method, which is used
to retrieve subscription information, the HTTP PUT method, which is used to modify the
subscription, and the HTTP DELETE method, which is used to terminate the subscription.

Figure 9 shows the flow of the subscription creation procedure. Figure 10 shows the
flow of the notification procedure, which provides policy feedback to the callback address
indicated earlier in the subscription request.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18

Figure 8 shows the flow to query a single rail policy. The TTICU queries about an

individual rail policy by sending an HTTP GET method with a URI pointing to the re-

source representing the rail policy of interest. The response returns the policy description

and status.

Figure 8. Flow of the rail policy query procedure.

To provide policy feedback, subscriptions to rail policies have to be supported. The

policySubscriptions resource represents all subscriptions for notifications related to an in-

dividual rail policy. The list of all policy subscriptions may be retrieved by the HTTP GET

method. The TTICU creates a new subscription by sending an HTTP POST method with

a message body describing the criteria for notifications and the callback address at which

it wants to receive notifications. The policySubscriptionID resource represents an individ-

ual subscription for a specific rail policy. It supports the HTTP GET method, which is used

to retrieve subscription information, the HTTP PUT method, which is used to modify the

subscription, and the HTTP DELETE method, which is used to terminate the subscription.

Figure 9 shows the flow of the subscription creation procedure. Figure 10 shows the

flow of the notification procedure, which provides policy feedback to the callback address

indicated earlier in the subscription request.

Figure 9. Flow of the subscription creation procedure.

Figure 10. Flow of the notification procedure.

The TTICU and TSICU must have synchronized views on the railway policy status.

Figure 11 shows a model representing the railway policy lifecycle as seen by the

TTICU, and Figure 12 shows a model representing the policy state supported by the

TSICU. Both models are simplified, as they do not describe the behavior related to sub-

scriptions and notifications.

Figure 9. Flow of the subscription creation procedure.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18

Figure 8 shows the flow to query a single rail policy. The TTICU queries about an

individual rail policy by sending an HTTP GET method with a URI pointing to the re-

source representing the rail policy of interest. The response returns the policy description

and status.

Figure 8. Flow of the rail policy query procedure.

To provide policy feedback, subscriptions to rail policies have to be supported. The

policySubscriptions resource represents all subscriptions for notifications related to an in-

dividual rail policy. The list of all policy subscriptions may be retrieved by the HTTP GET

method. The TTICU creates a new subscription by sending an HTTP POST method with

a message body describing the criteria for notifications and the callback address at which

it wants to receive notifications. The policySubscriptionID resource represents an individ-

ual subscription for a specific rail policy. It supports the HTTP GET method, which is used

to retrieve subscription information, the HTTP PUT method, which is used to modify the

subscription, and the HTTP DELETE method, which is used to terminate the subscription.

Figure 9 shows the flow of the subscription creation procedure. Figure 10 shows the

flow of the notification procedure, which provides policy feedback to the callback address

indicated earlier in the subscription request.

Figure 9. Flow of the subscription creation procedure.

Figure 10. Flow of the notification procedure.

The TTICU and TSICU must have synchronized views on the railway policy status.

Figure 11 shows a model representing the railway policy lifecycle as seen by the

TTICU, and Figure 12 shows a model representing the policy state supported by the

TSICU. Both models are simplified, as they do not describe the behavior related to sub-

scriptions and notifications.

Figure 10. Flow of the notification procedure.

The TTICU and TSICU must have synchronized views on the railway policy status.
Figure 11 shows a model representing the railway policy lifecycle as seen by the

TTICU, and Figure 12 shows a model representing the policy state supported by the TSICU.
Both models are simplified, as they do not describe the behavior related to subscriptions
and notifications.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18

Figure 8 shows the flow to query a single rail policy. The TTICU queries about an

individual rail policy by sending an HTTP GET method with a URI pointing to the re-

source representing the rail policy of interest. The response returns the policy description

and status.

Figure 8. Flow of the rail policy query procedure.

To provide policy feedback, subscriptions to rail policies have to be supported. The

policySubscriptions resource represents all subscriptions for notifications related to an in-

dividual rail policy. The list of all policy subscriptions may be retrieved by the HTTP GET

method. The TTICU creates a new subscription by sending an HTTP POST method with

a message body describing the criteria for notifications and the callback address at which

it wants to receive notifications. The policySubscriptionID resource represents an individ-

ual subscription for a specific rail policy. It supports the HTTP GET method, which is used

to retrieve subscription information, the HTTP PUT method, which is used to modify the

subscription, and the HTTP DELETE method, which is used to terminate the subscription.

Figure 9 shows the flow of the subscription creation procedure. Figure 10 shows the

flow of the notification procedure, which provides policy feedback to the callback address

indicated earlier in the subscription request.

Figure 9. Flow of the subscription creation procedure.

Figure 10. Flow of the notification procedure.

The TTICU and TSICU must have synchronized views on the railway policy status.

Figure 11 shows a model representing the railway policy lifecycle as seen by the

TTICU, and Figure 12 shows a model representing the policy state supported by the

TSICU. Both models are simplified, as they do not describe the behavior related to sub-

scriptions and notifications.

Figure 11. Model representing the rail policy lifecycle supported by the TTICU.

Appl. Sci. 2022, 12, 4062 12 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18

Figure 11. Model representing the rail policy lifecycle supported by the TTICU.

Figure 12. Model representing the rail policy state as seen by the TSICU.

From the TTICU’s point of view, a policy may be created, updated, or deleted when

predefined measurement thresholds are reached. The TTICU can request the enforcement

of a newly created or updated policy or a policy deletion. Upon receiving a request from

the TTICU, the TSICU converts the policy into corresponding commands, enforces the

commands via the IR interface, and sends back the result.

To prove that both state machines expose equivalent behaviors, they are formally

described as labeled transition systems (LTSs), and the mathematical formalism of a weak

bi-simulation is used. An LTS is defined as a quadruple of a set of states, a set of stimuli

that trigger transitions, a set of transitions, and a set of initial states [33,34].

By TTT = {STT, ATT, → TT, sTT}, an LTS is denoted, which represents the state machine of

a policy lifecycle supported by the TTICU, where:

STT = {Void [sTT1], PolicyCreation [sTT2], PolicyEnforcement [sTT3], PolicyEnforced [sTT4],

PolicyNotEnforced [sTT5], PolicyUpdate [sTT6], PolicyDeletion [sTT7], PolicyDeleted [sTT8]}.

ATT = {measurementThreshold(create) [aTT1], policyCreated [aTT2], applyPolicyAck

[aTT3], applyPolicyNoAck [aTT4], measurementThreshold(update) [aTT5], updatePolicyAck

[aTT6], updatePolicyNoAck [aTT7], measurementThreshold (delete) [aTT8], deletePolicyAck

[aTT9]}.

→ TT = {(sTT1 aTT1 sTT2), (sTT2 aTT2 sTT3), (sTT3 aTT3 sTT4), (sTT3 aTT4 sTT5), (sTT4 aTT5 sTT6), (sTT5 aTT5

sTT6), (sTT6 aTT7 sTT5), (sTT6 aTT6 sTT3), (sTT4 aTT8 sTT7), (sTT5 aTT8 sTT7), (sTT7 aTT9 sTT8)}.

sTT = sTT1.

Short notations for the names of states, stimuli, and transitions are given in brackets.

By TTS = {STS, ATS, → TST, sTS}, an LTS is denoted, which represents the state machine of

a policy supported by the TSICU, where:

STS = {Void [sTS1], Enforced [sTS2], NotEnforced[sTS3], Deleted [sTS4]}.

ATS = {applyPolicy [aTS1], updatePolicy [aTS2], deletePolicy [aTS3]}.

→ TS = {(sTS1 aTS1 sTS2), (sTS1 aTS1 sTS3), (sTS2 aTS2 sTS3), (sTS3 aTS2 sTS3), (sTS3 aTS1 sTS3), (sTS3 aTS1 sTS2),

(sTS2 aTS3 sTS4), (sTS3 aTS3 sTS4)}.

sTS = sTS1.

Bi-simulation is a binary relationship between the states of two LTSs that associates

the LTSs’ behavior as equivalent, i.e., one LTS simulates the other LTS and vice versa. The

concept is used to prove the behavioral equivalence of concurrent processes [35,36]. While

a strong bi-simulation requires а strict correspondence between the states of the two LTSs,

a weak bi-simulation means that there may be internal states and transitions that are not

visible to external observers.

Proposition 1. TTT and TTS have a weak bi-simulation relationship.

Proof. By R, a relationship between the states of TTT and TTS is denoted where:

R = {(sTT1, sTS1), (sTT4, sTS2), (sTT5, sTS3), (sTT8, sTS4)}.

To prove the existence of a weak bi-simulation between TTT and TTS, it is necessary to

show that all transitions from states in a couple in R terminate into states in a couple of R.

The following transition mapping may be identified:

Figure 12. Model representing the rail policy state as seen by the TSICU.

From the TTICU’s point of view, a policy may be created, updated, or deleted when
predefined measurement thresholds are reached. The TTICU can request the enforcement
of a newly created or updated policy or a policy deletion. Upon receiving a request from
the TTICU, the TSICU converts the policy into corresponding commands, enforces the
commands via the IR interface, and sends back the result.

To prove that both state machines expose equivalent behaviors, they are formally
described as labeled transition systems (LTSs), and the mathematical formalism of a weak
bi-simulation is used. An LTS is defined as a quadruple of a set of states, a set of stimuli
that trigger transitions, a set of transitions, and a set of initial states [33,34].

By TTT = {STT, ATT,→ TT, sTT}, an LTS is denoted, which represents the state machine
of a policy lifecycle supported by the TTICU, where:

STT = {Void [sTT
1], PolicyCreation [sTT

2], PolicyEnforcement [sTT
3], PolicyEnforced

[sTT
4], PolicyNotEnforced [sTT

5], PolicyUpdate [sTT
6], PolicyDeletion [sTT

7], PolicyDeleted
[sTT

8]}.
ATT = {measurementThreshold(create) [aTT

1], policyCreated [aTT
2], applyPolicyAck

[aTT
3], applyPolicyNoAck [aTT

4], measurementThreshold(update) [aTT
5], updatePolicyAck

[aTT
6], updatePolicyNoAck [aTT

7], measurementThreshold (delete) [aTT
8], deletePolicyAck

[aTT
9]}.
TT = {(sTT

1 aTT
1 sTT

2), (sTT
2 aTT

2 sTT
3), (sTT

3 aTT
3 sTT

4), (sTT
3 aTT

4 sTT
5), (sTT

4 aTT
5

sTT
6), (sTT

5 aTT
5 sTT

6), (sTT
6 aTT

7 sTT
5), (sTT

6 aTT
6 sTT

3), (sTT
4 aTT

8 sTT
7), (sTT

5 aTT
8 sTT

7),
(sTT

7 aTT
9 sTT

8)}.
sTT = sTT

1.
Short notations for the names of states, stimuli, and transitions are given in brackets.
By TTS = {STS, ATS,→ TST, sTS}, an LTS is denoted, which represents the state machine

of a policy supported by the TSICU, where:
STS = {Void [sTS

1], Enforced [sTS
2], NotEnforced [sTS

3], Deleted [sTS
4]}.

ATS = {applyPolicy [aTS
1], updatePolicy [aTS

2], deletePolicy [aTS
3]}.

TS = {(sTS
1 aTS

1 sTS
2), (sTS

1 aTS
1 sTS

3), (sTS
2 aTS

2 sTS
3), (sTS

3 aTS
2 sTS

3), (sTS
3 aTS

1 sTS
3),

(sTS
3 aTS

1 sTS
2), (sTS

2 aTS
3 sTS

4), (sTS
3 aTS

3 sTS
4)}.

sTS = sTS
1.

Bi-simulation is a binary relationship between the states of two LTSs that associates
the LTSs’ behavior as equivalent, i.e., one LTS simulates the other LTS and vice versa. The
concept is used to prove the behavioral equivalence of concurrent processes [35,36]. While
a strong bi-simulation requires a strict correspondence between the states of the two LTSs,
a weak bi-simulation means that there may be internal states and transitions that are not
visible to external observers.

Proposition 1. TTT and TTS have a weak bi-simulation relationship.

Proof. By R, a relationship between the states of TTT and TTS is denoted where:
R = {(sTT

1, sTS
1), (sTT

4, sTS
2), (sTT

5, sTS
3), (sTT

8, sTS
4)}.

To prove the existence of a weak bi-simulation between TTT and TTS, it is necessary to show
that all transitions from states in a couple in R terminate into states in a couple of R.
The following transition mapping may be identified:

Appl. Sci. 2022, 12, 4062 13 of 17

1. The TTICU creates a new policy and requests policy enforcement, and the TSICU re-
sponds with a policy enforcement acknowledgement: for ∀ (sTT

1 aTT
1 sTT

2),
(sTT

2 aTT
2 sTT

3), (sTT
3 aTT

3 sTT
4) ∃ (sTS

1 aTS
1 sTS

2).
2. The TTICU creates a new policy and requests policy enforcement, and the TSICU

does not acknowledge the policy enforcement: for ∀ (sTT
1 aTT

1 sTT
2), (sTT

2 aTT
2 sTT

3),
(sTT

3 aTT
4 sTT

5) ∃ (sTS
1 aTS

1 sTS
3).

3. The TTICU updates a policy that has been enforced and requests the enforcement
of the updated policy, and the TSICU acknowledges the policy enforcement: for
∀ (sTT

4 aTT
5 sTT

6), (sTT
6 aTT

6 sTT
3), (sTT

3 aTT
3 sTT

4) ∃ (sTS
2 aTS

2 sTS
3), (sTS

3 aTS
1 sTS

2).
4. The TTICU updates a policy that has not been enforced and requests the enforcement

of the updated policy, and the TSICU acknowledges the policy enforcement: for
∀ (sTT

5 aTT
5 sTT

6), (sTT
6 aTT

6 sTT
3), (sTT

3 aTT
3 sTT

4) ∃ (sTS
3 aTS

2 sTS
3), (sTS

3 aTS
1 sTS

2).
5. The TTICU requests an update of a policy that has been enforced and the TSICU does not

acknowledge the policy update: for ∀ (sTT
4 aTT

5 sTT
6), (sTT

6 aTT
7 sTT

4) ∃ (sTS
2 aTS

2 sTS
3).

6. The TTICU requests an update of a policy that has not been enforced and the TSICU
does not acknowledge the policy update: for ∀ (sTT

5 aTT
5 sTT

6), (sTT
6 aTT

7 sTT
5) ∃

(sTS
3 aTS

2 sTS
3).

7. The TTICU deletes an enforced policy: for ∀ (sTT
4 aTT

8 sTT
7), (sTT

7 aTT
9 sTT

8) ∃
(sTS

2 aTS
3 sTS

4).
8. The TTICU deletes a policy that is not enforced: for ∀ (sTT

5 aTT
8 sTT

7), (sTT
7 aTT

9 sTT
8) ∃

(sTS
3 aTS

3 sTS
4).

Therefore, TTT and TTS have a weak bi-simulation relationship, i.e., they expose equiva-
lent behaviors. �

In addition to policy management, the R1 interface also provides railway enrichment
information services. The RMAO gathers information from ETCS entities and from external
information sources. Using this information, the TTICU can derive information that can
help the internal functions or applications of both the TTICU and the TSICU. The purpose
of R1 enrichment information is to enable the TSICU to improve the optimization of the
railway operation performance by utilizing information that is not available in the railway
network. The information sources can be derived by external sources and provided by the
TTICU via the R1 interface. There may exist different types of enrichment information, and
by identifying the enrichment information type, the TSICU may request the delivery of
such information. The application programming interfaces of the enrichment information
service may also follow the REST principles.

6. An Experiment and Discussions

To emulate the R1 policy management service, a numerical experiment is set up. In
particular, the experiment is aimed at evaluating the latency in provisioning feedback
policy data from different TSICUs to a TTICU.

The RESTful approach that is adopted here imposes the well-known client–server
pattern, and the setup for the numerical experiment is shown in Figure 13.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18

1. The TTICU creates a new policy and requests policy enforcement, and the TSICU

responds with a policy enforcement acknowledgement: for  (sTT1 aTT1 sTT2), (sTT2 aTT2

sTT3), (sTT3 aTT3 sTT4)  (sTS1 aTS1 sTS2).

2. The TTICU creates a new policy and requests policy enforcement, and the TSICU

does not acknowledge the policy enforcement: for  (sTT1 aTT1 sTT2), (sTT2 aTT2 sTT3), (sTT3

aTT4 sTT5)  (sTS1 aTS1 sTS3).

3. The TTICU updates a policy that has been enforced and requests the enforcement of

the updated policy, and the TSICU acknowledges the policy enforcement: for  (sTT4

aTT5 sTT6), (sTT6 aTT6 sTT3), (sTT3 aTT3 sTT4)  (sTS2 aTS2 sTS3), (sTS3 aTS1 sTS2).

4. The TTICU updates a policy that has not been enforced and requests the enforcement

of the updated policy, and the TSICU acknowledges the policy enforcement: for 

(sTT5 aTT5 sTT6), (sTT6 aTT6 sTT3), (sTT3 aTT3 sTT4)  (sTS3 aTS2 sTS3), (sTS3 aTS1 sTS2).

5. The TTICU requests an update of a policy that has been enforced and the TSICU does

not acknowledge the policy update: for  (sTT4 aTT5 sTT6), (sTT6 aTT7 sTT4)  (sTS2 aTS2 sTS3).

6. The TTICU requests an update of a policy that has not been enforced and the TSICU

does not acknowledge the policy update: for  (sTT5 aTT5 sTT6), (sTT6 aTT7 sTT5)  (sTS3 aTS2

sTS3).

7. The TTICU deletes an enforced policy: for  (sTT4 aTT8 sTT7), (sTT7 aTT9 sTT8)  (sTS2 aTS3 sTS4).

8. The TTICU deletes a policy that is not enforced: for  (sTT5 aTT8 sTT7), (sTT7 aTT9 sTT8) 

(sTS3 aTS3 sTS4).

Therefore, TTT and TTS have a weak bi-simulation relationship, i.e., they expose equiv-

alent behaviors. □

In addition to policy management, the R1 interface also provides railway enrichment

information services. The RMAO gathers information from ETCS entities and from exter-

nal information sources. Using this information, the TTICU can derive information that

can help the internal functions or applications of both the TTICU and the TSICU. The pur-

pose of R1 enrichment information is to enable the TSICU to improve the optimization of

the railway operation performance by utilizing information that is not available in the

railway network. The information sources can be derived by external sources and pro-

vided by the TTICU via the R1 interface. There may exist different types of enrichment

information, and by identifying the enrichment information type, the TSICU may request

the delivery of such information. The application programming interfaces of the enrich-

ment information service may also follow the REST principles.

6. An Experiment and Discussions

To emulate the R1 policy management service, a numerical experiment is set up. In

particular, the experiment is aimed at evaluating the latency in provisioning feedback pol-

icy data from different TSICUs to a TTICU.

The RESTful approach that is adopted here imposes the well-known client–server

pattern, and the setup for the numerical experiment is shown in Figure 13.

Figure 13. Setup of the numerical experiment—traffic from TSICUs to a TTICU.

The RESTful endpoint (EP) that is exposed by the policy management service is im-

plemented using Vertx [37]. This toolkit has proven properties, such as multi-language

support, flexibility etc., and aside from that, it includes an Apache Cassandra [38] client

Figure 13. Setup of the numerical experiment—traffic from TSICUs to a TTICU.

The RESTful endpoint (EP) that is exposed by the policy management service is
implemented using Vertx [37]. This toolkit has proven properties, such as multi-language
support, flexibility etc., and aside from that, it includes an Apache Cassandra [38] client

Appl. Sci. 2022, 12, 4062 14 of 17

in order to facilitate the integration. Moreover, a core component within the toolkit is the
event bus, which makes internal message exchange possible in a very resource-efficient
and asynchronous way.

The choice of Apache Cassandra as a NoSql distributed database backend is based
on its maturity, high availability, and scalability. The service virtualization as whole is
achieved by the use of Docker [39] container instances for the lightness and robustness that
it shows.

The RESTful service EP is used over HTTP/TCP/IPv6/GbE, where the interface and
the IPv6 addresses are isolated in order to allow the experiment to be as unaffected by any
other traffic as possible. The clients access the operations of the service in a multi-threaded
way, and the clients’ traffic is consisted of notification operations, i.e., POST requests, such
as the request/response pattern shown in Figure 10.

The notification operation shown in Figure 10 consists of a request, which includes the
EP’s URI, headers such as Host, Content-type, Accept, etc., plus an experimental header
to keep track of the moment that the request is created (it is subsequently copied into the
response as it is received by the EP) in a local location for the respective client nano-time
scale, and the JSON description of the operation placed in the request body part.

The traffic, that is generated for latency estimation purposes, is of a volume of twenty
thousand operations of the notification type, i.e., request/response pairs.

Thus, the recorded latency for each operation is stored in nanoseconds, where the
latencies of the fifth and 15th time frames of one thousand operation are shown in
Figures 14 and 15, respectively.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18

in order to facilitate the integration. Moreover, a core component within the toolkit is the

event bus, which makes internal message exchange possible in a very resource-efficient

and asynchronous way.

The choice of Apache Cassandra as a NoSql distributed database backend is based

on its maturity, high availability, and scalability. The service virtualization as whole is

achieved by the use of Docker [39] container instances for the lightness and robustness

that it shows.

The RESTful service EP is used over HTTP/TCP/IPv6/GbE, where the interface and

the IPv6 addresses are isolated in order to allow the experiment to be as unaffected by any

other traffic as possible. The clients access the operations of the service in a multi-threaded

way, and the clients’ traffic is consisted of notification operations, i.e., POST requests, such

as the request/response pattern shown in Figure 10.

The notification operation shown in Figure 10 consists of a request, which includes

the EP’s URI, headers such as Host, Content-type, Accept, etc., plus an experimental

header to keep track of the moment that the request is created (it is subsequently copied

into the response as it is received by the EP) in a local location for the respective client

nano-time scale, and the JSON description of the operation placed in the request body

part.

The traffic, that is generated for latency estimation purposes, is of a volume of twenty

thousand operations of the notification type, i.e., request/response pairs.

Thus, the recorded latency for each operation is stored in nanoseconds, where the

latencies of the fifth and 15th time frames of one thousand operation are shown in Figures

14 and 15, respectively.

Figure 14. Sequence of latency values measured within the fifth group of one thousand operations.

Figure 15. Sequence of latency values measured within the 15th group of one thousand operations.

The sequence of latency values might be seen as a stochastic process; thus, a typical

tool for depicting such a process is the creation of the respective probability density func-

tions, as shown in Figure 16.

Figure 14. Sequence of latency values measured within the fifth group of one thousand operations.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18

in order to facilitate the integration. Moreover, a core component within the toolkit is the

event bus, which makes internal message exchange possible in a very resource-efficient

and asynchronous way.

The choice of Apache Cassandra as a NoSql distributed database backend is based

on its maturity, high availability, and scalability. The service virtualization as whole is

achieved by the use of Docker [39] container instances for the lightness and robustness

that it shows.

The RESTful service EP is used over HTTP/TCP/IPv6/GbE, where the interface and

the IPv6 addresses are isolated in order to allow the experiment to be as unaffected by any

other traffic as possible. The clients access the operations of the service in a multi-threaded

way, and the clients’ traffic is consisted of notification operations, i.e., POST requests, such

as the request/response pattern shown in Figure 10.

The notification operation shown in Figure 10 consists of a request, which includes

the EP’s URI, headers such as Host, Content-type, Accept, etc., plus an experimental

header to keep track of the moment that the request is created (it is subsequently copied

into the response as it is received by the EP) in a local location for the respective client

nano-time scale, and the JSON description of the operation placed in the request body

part.

The traffic, that is generated for latency estimation purposes, is of a volume of twenty

thousand operations of the notification type, i.e., request/response pairs.

Thus, the recorded latency for each operation is stored in nanoseconds, where the

latencies of the fifth and 15th time frames of one thousand operation are shown in Figures

14 and 15, respectively.

Figure 14. Sequence of latency values measured within the fifth group of one thousand operations.

Figure 15. Sequence of latency values measured within the 15th group of one thousand operations.

The sequence of latency values might be seen as a stochastic process; thus, a typical

tool for depicting such a process is the creation of the respective probability density func-

tions, as shown in Figure 16.

Figure 15. Sequence of latency values measured within the 15th group of one thousand operations.

The sequence of latency values might be seen as a stochastic process; thus, a typical tool
for depicting such a process is the creation of the respective probability density functions,
as shown in Figure 16.

Appl. Sci. 2022, 12, 4062 15 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 18

Figure 16. Probability density functions for latency values measured in the fifth and 15th groups of

one thousand operations.

Despite of the observable similarity of the curves in their shapes, one must rather

conclude that the process is quite far from the definition for a stationary one.

The average latency values, which are shown in Table 1, are within the limit of 2–4

ms when averaged over the whole time frame, but it is easy to notice that the top 5% of

latency values gave a higher average than that of the lower 95%; in some cases, the values

were up to almost 10 times worse.

Table 1. Average latency values in milliseconds for the time frames.

Time frame number
0–95% of latency

samples

95–100% of latency

samples

0–100% of latency

samples

5th 1.381 3.702 1.613

15th 2.222 19.516 3.951

7. Conclusions

The paper presents a new intelligent railway network architecture that applies the

principles of disaggregation, programmability, and openness. The proposed architecture

embeds intelligence in the RBC’s functionality, which is disaggregated into time-tolerant

functions and time-sensitive functions. The interaction between time-tolerant and time-

sensitive services is defined in an application programming interface that follows the

REST principles. This programmability can improve efficiency, reliability, and flexibility,

and it simplifies the implementation of railway functions.

The proposed intelligent railway network architecture supports open interfaces be-

tween logical functions that can be implemented on general-purpose hardware. It also

allows software and hardware from different vendors for the TTICU and TSICU. The dis-

aggregation and open interfaces between the decoupled railway network components

provide efficient interoperability between multiple vendors. Another major principle of

the proposed intelligent architecture is the virtualization of railway network functions,

which reduces costs.

This paper illustrates the role of identified logical components of an intelligent rail-

way network with a use case. Some details of the application programming interface be-

tween time-tolerant and time-sensitive services are discussed. The latency over the inter-

face, as one of its key performance indicators, was evaluated with an emulation.

Author Contributions: Conceptualization, E.P. and V.T.; methodology, E.P.; software, I.A.; valida-

tion, I.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Bulgarian National Science Fund under Grant No. KP-

06-H37/33.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 16. Probability density functions for latency values measured in the fifth and 15th groups of
one thousand operations.

Despite of the observable similarity of the curves in their shapes, one must rather
conclude that the process is quite far from the definition for a stationary one.

The average latency values, which are shown in Table 1, are within the limit of 2–4 ms
when averaged over the whole time frame, but it is easy to notice that the top 5% of latency
values gave a higher average than that of the lower 95%; in some cases, the values were up
to almost 10 times worse.

Table 1. Average latency values in milliseconds for the time frames.

Time Frame Number 0–95% of Latency
Samples

95–100% of Latency
Samples

0–100% of Latency
Samples

5th 1.381 3.702 1.613

15th 2.222 19.516 3.951

7. Conclusions

The paper presents a new intelligent railway network architecture that applies the
principles of disaggregation, programmability, and openness. The proposed architecture
embeds intelligence in the RBC’s functionality, which is disaggregated into time-tolerant
functions and time-sensitive functions. The interaction between time-tolerant and time-
sensitive services is defined in an application programming interface that follows the REST
principles. This programmability can improve efficiency, reliability, and flexibility, and it
simplifies the implementation of railway functions.

The proposed intelligent railway network architecture supports open interfaces be-
tween logical functions that can be implemented on general-purpose hardware. It also
allows software and hardware from different vendors for the TTICU and TSICU. The
disaggregation and open interfaces between the decoupled railway network components
provide efficient interoperability between multiple vendors. Another major principle of the
proposed intelligent architecture is the virtualization of railway network functions, which
reduces costs.

This paper illustrates the role of identified logical components of an intelligent railway
network with a use case. Some details of the application programming interface between
time-tolerant and time-sensitive services are discussed. The latency over the interface, as
one of its key performance indicators, was evaluated with an emulation.

Author Contributions: Conceptualization, E.P. and V.T.; methodology, E.P.; software, I.A.; validation, I.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Bulgarian National Science Fund under Grant No. KP-06-
H37/33.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 4062 16 of 17

References
1. Gerhatova, Z.; Zitricky, V.; Klapita, V. Industry 4.0 Implementation Options in Railway Transport. Transp. Res. Procedia 2021, 53,

23–30. [CrossRef]
2. Bešinović., N.; De Donato, L.; Flammini, F.; Goverde, R.M.P.; Lin, Z.; Liu, R.; Marrone, S.; Nardone, R.; Tang, T.; Vittorini, V.

Artificial Intelligence in Railway Transport: Taxonomy, Regulations and Applications. IEEE Trans. Intell. Transp. Syst. 2021, 1–14.
[CrossRef]

3. Mulongo, N.Y.; Mnkandla, E.; Kanakana-Katumba, G. Artificial Intelligence as Key Driver for Competitiveness in the Railway
Industry: Review. In Proceedings of the 62nd International Scientific Conference on Information Technology and Management
Science of Riga Technical University (ITMS), Riga, Latvia, 14–15 October 2021; pp. 1–6. [CrossRef]

4. Calderone, A.; Giuliano, R. Emulation of Rail and Automotive Applications based on Adaptable Communication System. In Pro-
ceedings of the AEIT International Conference on Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE),
Torino, Italy, 17–19 November 2021; pp. 1–6. [CrossRef]

5. Barandica, I. Report on Railway Safety and Signaling: Assessing the State of Play of the European Rail Traffic Management
System (ERTMS) Deployment 2019/2191(INI). Available online: https://www.europarl.europa.eu/doceo/document/A-9-2021
-0181_EN.html (accessed on 1 March 2022).

6. Vojtek, M.; Matuska, J.; Siroky, J.; Kugler, J.; Kendra, M. Possibilities of Railway Safety Improvement on Regional Lines. Transp.
Res. Proc. 2021, 53, 8–15. [CrossRef]

7. Martinez, L.; Martin, U. Terminology, Differences, and Challenges of Communications-based Train Control and European Train
Control Systems. WIT Trans. Built Environ. 2020, 199, 15–26. [CrossRef]

8. Sambas, M.H.M.; Ridwanuddin, A.K.; Anwar, K.; Rangkuti, I.A.; Adriansyah, N.M. Performances of Future Railway Mobile Com-
munication Systems Under Indonesia Railway Channel Model. In Proceedings of the Symposium on Future Telecommunication
Technologies (SOFTT), Kuala Lumpur, Malaysia, 18–19 November 2019; pp. 1–6. [CrossRef]

9. UIC International Union of Railways. FRMCS Migration Scenarios: Telecom On-Board Architecture Workgroup: Description and
Evaluation of Possible Migration Variants for Existing ETCS and Cab Radio On-Board Units; Version 1.2; UIC International Union of
Railways: Paris, France, 2019.

10. UIC International Union of Railways. FRMCS and 5G for Rail: Challenges, Achievements, and Opportunities; UIC International Union
of Railways: Paris, France, 2020.

11. Soldani, D. 6G Fundamentals: Vision and Enabling Technologies: From 5G to 6G Trustworthy and Resilient Systems. J. Telecommun.
Digit. Econ. 2021, 9, 58–86. [CrossRef]

12. Trifonov, V.; Atanasov, I.; Dimitrova, E.; Pencheva, E. Enabling Technologies for Safety Critical Communications. In Proceedings
of the 12th National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 27–28 May 2021; pp. 1–4.
[CrossRef]

13. Xue, R.; Ma, Z.; MA, X.; DAI, M. 5G Enabling Technologies in Rail. In Proceedings of the 2nd International Conference on
Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; pp. 372–375. [CrossRef]

14. Ai, B.; Molisch, A.F.; Rupp, M.; Zhong, Z. -D. 5G Key Technologies for Smart Railways. Proc. IEEE 2020, 108, 856–893. [CrossRef]
15. Asad, S.; Tahir, A.; Bin Rais, R.N.; Ansari, S.; Abubakar, A.I.; Hussain, S.; Abbasi, Q.H.; Imran, M.A. Edge Intelligence in Private

Mobile Networks for Next Generation Railway Systems. Front. Commun. Net. 2021, 2, 769299. [CrossRef]
16. Wisultschew, C.; Mujica, G.; Lanza-Gutierrez, J.M.; Portilla, J. 3D-LIDAR Based Object Detection and Tracking on the Edge of IoT

for Railway Level Crossing. IEEE Access 2021, 9, 35718–35729. [CrossRef]
17. Zhao, Y.; Yu, X.; Chen, M.; Zhang, M.; Chen, Y.; Niu, X.; Sha, X.; Zhan, Z.; Li, W.J. Continuous Monitoring of Train Parameters

Using IoT Sensor and Edge Computing. IEEE Sensors 2021, 21, 15458–15468. [CrossRef]
18. Pencheva, E.; Trifonov, V.; Atanasov, I. Towards Intelligent Train Control Systems. In Proceedings of the 31st FRUCT Conference,

Helsinki, Finland, 27–29 April 2022; pp. 1–8.
19. ERA UNISIG EEIG ERMTS Users group. ERTMS/ETCS System Requirements Specification, Chapter 2, Basic System Description,

SUBSET-026-2; Issue 3.6.0; 2016; Available online: http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%2
0ETCS%20baseline%203%20and%20GSM-R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-2%20v360.pdf
(accessed on 22 March 2022).

20. Ranjbar, V.; Olsson, N. Key challenges of European Rail Traffic Management System. In Proceedings of the TRA2020, the 8th Trans-
port Research Arena: Rethinking Transport—Towards Clean and Inclusive Mobility, Helsinki, Finland, 27–30 April 2020; Available
online: https://www.researchgate.net/publication/351854445_Key_challenges_of_European_Rail_traffic_Management_System
(accessed on 1 March 2022).

21. International Union of Railways. Artificial Intelligence Case of the Railway Sector: State of Play and Perspectives; International Union
of Railways: Paris, France, 2021; ISBN 978-2-7461-3065-4.

22. Jing, Z.; Yin, X. Neural Network-Based Prediction Model for Passenger Flow in a Large Passenger Station: An Exploratory Study.
IEEE Access 2020, 8, 36876–36884. [CrossRef]

23. Appoh, F.; Yunusa-Kaltungo, A. Composite Hybrid Framework for Through-Life Multi-Objective Failure Analysis and Optimisa-
tion. IEEE Access 2021, 9, 71505–71520. [CrossRef]

24. Sikora, P.; Malina, L.; Kiac, M.; Martinasek, Z.; Riha, K.; Prinosil, J.; Jirik, L.; Srivastava, G. Artificial Intelligence-Based Surveillance
System for Railway Crossing Traffic. IEEE Sensors J. 2021, 21, 15515–15526. [CrossRef]

http://doi.org/10.1016/j.trpro.2021.02.003
http://doi.org/10.1109/TITS.2021.3131637
http://doi.org/10.1109/ITMS52826.2021.9615314
http://doi.org/10.23919/AEITAUTOMOTIVE52815.2021.9662904
https://www.europarl.europa.eu/doceo/document/A-9-2021-0181_EN.html
https://www.europarl.europa.eu/doceo/document/A-9-2021-0181_EN.html
http://doi.org/10.1016/j.trpro.2021.02.001
http://doi.org/10.2495/CR200021
http://doi.org/10.1109/SOFTT48120.2019.9068648
http://doi.org/10.18080/jtde.v9n3.418
http://doi.org/10.1109/ELECTRONICA52725.2021.9513681
http://doi.org/10.1109/ITCA52113.2020.00084
http://doi.org/10.1109/JPROC.2020.2988595
http://doi.org/10.3389/frcmn.2021.769299
http://doi.org/10.1109/ACCESS.2021.3062220
http://doi.org/10.1109/JSEN.2020.3026643
http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%20ETCS%20baseline%203%20and%20GSM-R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-2%20v360.pdf
http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%20ETCS%20baseline%203%20and%20GSM-R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-2%20v360.pdf
https://www.researchgate.net/publication/351854445_Key_challenges_of_European_Rail_traffic_Management_System
http://doi.org/10.1109/ACCESS.2020.2972130
http://doi.org/10.1109/ACCESS.2021.3077284
http://doi.org/10.1109/JSEN.2020.3031861

Appl. Sci. 2022, 12, 4062 17 of 17

25. Jahan, K.; Niemeijer, J.; Kornfeld, N.; Roth, M. Deep Neural Networks for Railway Switch Detection and Classification Using
On-board Camera Images. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL,
USA, 5–7 December 2021; pp. 1–7. [CrossRef]

26. Sheikh, A.; Naidu, H. A Novel Robotics and MEMS Artificial Intelligence based Train Safety Device. In Proceedings of the 2nd
International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 1–5. [CrossRef]

27. Makarov, I.; Gorbachev, R.; Novikov, A.; Zakharova, E. Research and Development of an Intelligent System for Rapid Train
Schedule Adjustment Based on Step-by-Step Neural Control. In Proceedings of the International Conference Engineering and
Telecommunication (En&T), Dolgoprudny, Russia, 25–26 November 2020; pp. 1–5. [CrossRef]

28. Milburn, D.; Erskine, M. Digital Train Control. Functional Safety for AI Based Systems. In Proceedings of the International
Railway Safety Council Conference, Perth, Australia, 13–18 October 2019; pp. 1–24.

29. Yin, M.; Li, K.; Cheng, X. A review on artificial intelligence in high-speed rail. J. Transp. Saf. Secur. 2020, 2, 247–259. [CrossRef]
30. Garcia-Saavedra, A.; Costa-Pérez, X. O-RAN: Disrupting the Virtualized RAN Ecosystem. ISO4 2021, 5, 96–103. [CrossRef]
31. ERA UNSIG EEIG ERTMS USERS GROUP. ERTMS/ETCS System Requirements Specification, Chapter 5, Procedures, Ref. SUBSET-

026-5; Issue 3.6.0; 2016; Available online: http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%2
0ETCS%20baseline%203%20and%20GSM-R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-5%20v360.pdf
(accessed on 22 March 2022).

32. Pappaterra, M.; Flammini, F.; Vittorini, V.; Bešinović, N. Systematic Review of Artificial Intelligence Public Datasets for Railway
Applications. Infrastructures 2021, 6, 136. [CrossRef]

33. Zhang, K.; Liu, T.; Cheng, D. Observability of Finite Labeled Transition Systems. IEEE Trans. Automat. Contr. 2018, 63, 1591–1602.
[CrossRef]

34. Gorrieri, R. Labeled Transition Systems: Process Algebras for Petri Nets; Monographs in Theoretical Computer Science: An EATCS
Series; Springer: Cham, Switzerland, 2017. [CrossRef]

35. Schaft, A.J. Equivalence of dynamical systems by bisimulation. IEEE Trans. Automat. Contr. 2004, 49, 2160–2172. [CrossRef]
36. Hermida, C.; Reddy, U.; Robinson, E.; Santamaria, A. Bisimulation as a Logical Relation. arXiv 2020, arXiv:2003.13542v1.

[CrossRef]
37. Eclipse Foundation. Vertx. Available online: https://vertx.io/ (accessed on 1 March 2022).
38. Apache Foundation. Cassandra. Available online: https://cassandra.apache.org/ (accessed on 1 March 2022).
39. Docker Inc. Docker Community Edition. Available online: https://www.docker.com/ (accessed on 1 March 2022).

http://doi.org/10.1109/SSCI50451.2021.9659983
http://doi.org/10.1109/ICOSEC51865.2021.9591761
http://doi.org/10.1109/EnT50437.2020.9431284
http://doi.org/10.1093/tse/tdaa022
http://doi.org/10.1109/MCOMSTD.101.2000014
http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%20ETCS%20baseline%203%20and%20GSM-R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-5%20v360.pdf
http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%20ETCS%20baseline%203%20and%20GSM-R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-5%20v360.pdf
http://doi.org/10.3390/infrastructures6100136
http://doi.org/10.1109/TAC.2017.2749380
http://doi.org/10.1007/978-3-319-55559-1_2
http://doi.org/10.1109/TAC.2004.838497
http://doi.org/10.1017/S0960129522000020
https://vertx.io/
https://cassandra.apache.org/
https://www.docker.com/

	Introduction
	ETCS Levels and Architecture
	AI Technologies within the Railway Sector
	Intelligent Railway Network Architecture
	Interface between Time-Tolerant and Time-Sensitive Functions
	An Experiment and Discussions
	Conclusions
	References

