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Abstract: The infrared image of power equipment plays a crucial role in identifying faults, monitoring
equipment condition, and so on. The low resolution and low definition of infrared images in
applications contribute to the low accuracy of infrared diagnosis. A super-resolution reconstruction
method of infrared image, based on compressed sensing theory, is proposed. Firstly, by analyzing
the variation of high-frequency information in infrared images with different blurring degrees, the
image gradient norm ratio is introduced to estimate the blur kernel matrix in the degradation model
a priori. Then, in the process of image reconstruction, we add the full variational regularization
term to the traditional compressed sensing model, and design a two-step full variational sparse
reconstruction algorithm. Experimental results verify the effectiveness of the method. Compared
with the existing classical super-resolution methods, this method offers improvement in subjective
visual effect and objective evaluation index. In addition, the final image recognition and infrared
diagnosis experiments show that this method is helpful to improve the accuracy of infrared diagnosis
of power equipment.

Keywords: compressed sensing; super-resolution; fault diagnosis; infrared image; power equipment

1. Introduction

With the proposal of the concept of the Internet of Things and the continuous pro-
motion of the construction of the smart grid, the use of infrared diagnosis technology for
real-time monitoring and fault diagnosis of power equipment can effectively improve the
operation reliability of the power grid [1–3]. However, there is a wide range of electrical
equipment in the power grid, and the large-scale deployment of expensive traditional high-
resolution infrared sensors will cause enterprises to incur unbearable costs [4,5]. Therefore,
how to use low-cost, low-resolution infrared sensors to achieve the effect of high-resolution
infrared sensors is the key to promote the application of infrared diagnosis technology in
the Internet of Things power system [6].

The main purpose of super resolution (SR) imaging technology is to overcome the
limitations of low-cost and low-precision image acquisition devices. Through single- frame
or multi-frame low resolution (LR) image input, it is necessary to complete image recon-
struction according to different prior knowledge, obtain high resolution (HR) images, and
recover high-frequency information lost in the process of image acquisition [7]. Accord-
ing to the number of LR images inputted during reconstruction, super-resolution can be
divided into single-frame and multi-frame image super-resolution. Among these, multi-
frame image super-resolution methods include the interpolation method [8,9], iterative
back projection method [10], maximum likelihood estimation method [11], sparse coding
method [12] and learning-based method [13,14]. The super-resolution method of multiple
images uses complementary information contained in different images to improve the
resolution by registering multiple images obtained at similar time positions in the same
scene. The single-frame super-resolution method only uses a single image in a scene, which
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is more difficult. For the specific objective of infrared imaging of electrical equipment, the
focus of super-resolution image reconstruction is not only clear structure and easy recogni-
tion, but also accurate response to equipment temperature. Multi-image super-resolution
can easily cause the reflection of the reconstructed image to the temperature to lose accuracy,
because the input low-resolution infrared images do not strictly come at the same time.
This problem is particularly serious in the case of rapid change in equipment temperature,
which is more concerning in the power industry. Therefore, the super-resolution method
based on a single image can ensure accuracy of reconstruction.

The super-resolution methods based on a single image are mainly divided into three
categories: interpolation-based, reconstruction-based and learning-based super-resolution
methods. Among them, the super-resolution method based on interpolation is the simplest,
but due to its inherent smoothing benefits, it is easy to lose details and blur the edges of the
reconstructed image. Researchers have put forward various improvement measures for this
problem [15–17]. The super-resolution method based on reconstruction [11,18,19] completes
the inverse iterative solution, based on the image degradation model, by introducing a
priori knowledge as the limiting condition. Reference [18] proposed a super-resolution
algorithm based on nonlocal information. Shao et al. [19] calculated the blur kernel and
high-resolution image at the same time. In the process of alternating iteration, a normalized
sparsity measure is adopted, which is a generalized integral of relative total variation. It
is used to represent the heavy tailed a priori characteristics of the image. For the accurate
processing of a local image, Li et al. [11] adopted local structure self-similarity in the natural
image to put forward the notion of turning kernel regression total variational, which is
supplemented by the non-local total variational regular term to complete the establishment
of the SR model. The main goal of the learning-based method is to find the corresponding
relationship between HR image and LR image, usually by training an isomorphic dictionary
or establishing both mapping relationships [20]. Kim et al. [21] proposed a low complexity
adaptive single image super-resolution method. This method analyzes the input image and
the corresponding low-resolution image to determine the intensity of the high-frequency
component, while establishing the relationship between them. The effective addition of
high-frequency information and high-quality image reconstruction are realized. Wang
et al. [22] proposed the SFT-GAN model, which takes the image segmentation mask as the
prior knowledge of single image super-resolutions to guide the texture reconstruction of
different regions in single-image super-resolutions. Literature [23] offers a kind of latest
method. It uses reinforcement learning to find the optimal network, which can reduce
the influence of the manual on model design. This kind of method first defines a search
space, uses the corresponding controller to process the search, outputs the reconstruction
results after evaluation, and automatically adjusts them through network training until the
network converges to get good reconstruction results.

The learning-based super-resolution method requires a large number of high-resolution
infrared image samples. In super-resolution, the up-sampling rate is limited by the con-
structed model or isomorphic dictionary. The flexibility of the algorithm is low. In addition,
the current super-resolution methods pay more attention to the accurate estimation of im-
age degradation process. Efrat et al. [24] pointed out that in the super-resolution problem,
the accurate estimation of the blur kernel representing the degradation process has a greater
impact than the selection of the model. Therefore, in order to reconstruct infrared images
with higher quality and accuracy, before establishing an accurate reconstruction model, we
need to estimate the blur kernel.

Aiming at the problem of low resolution of infrared images obtained by infrared
sensors of power equipment, this paper adopts the method based on reconstruction under
the framework of compressed sensing. We analyze the change law of high-frequency
information in the stage of blur degradation. For blur kernel estimation, an image gradient
norm ratio is introduced as a priori information to realize the accurate estimation of the
image degradation process. After obtaining the blur kernel, we use the compressed sensing
model, with full variational regularization term, as the reconstruction objective function.
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It is optimized by sparse total variational quadratic iteration. The final experimental
results show that our method can reconstruct the infrared image of power equipment with
high quality.

2. SR Basic Model of Compressed Sensing

Compressed sensing theory gives a method to reconstruct the down-sampled signal
through nonlinear optimization technology [25]. Suppose that the desired high-resolution
image is represented as an n-dimensional column vector x ∈ Rn, where n is a larger value.
Theoretically, x can represent any one-dimensional signal. For this problem, x is an n-pixel
gray image (or an n-pixel image of a channel of RGB image) that has been converted into
an n× 1 dimensional vector. SR is to obtain the HR image x from the LR image y ∈ Rm,
where m� n. The goal of this paper is to recover the high-resolution signal x using only y
as the input.

This problem is ill posed. Due to the reduction of resolution and the loss of infor-
mation, an LR image can be mapped to multiple potential high-resolution images. In
this case, the key assumption of compressed sensing theory needs to be applied, that is,
the transformation shape x̃ of signal x is sparse under a certain base D, and there are k
non-zero factors in x̃. It is a reasonable assumption that high-resolution images can be
compressed in different transform domains, such as the wavelet domain, Fourier domain
or artificially constructed dictionary. At this time, according to the rationality of the above
assumptions, combined with the image degradation process, we can write the compressed
sensing super-resolution model thus:

y = CHDx̃ (1)

where C is the subsample matrix corresponding to the degradation process; H is the matrix
multiplication form of blur kernel h; and D is the sparse basis.

3. Blur Kernel Estimation

According to Formula (1) in Section 2, if we want to obtain the blur matrix H, you first
need to model according to the image degradation principle to estimate the blur kernel
h. To improve the accuracy of blur kernel estimation, the most commonly used method
is the maximum a posteriori probability estimation method. The accuracy of estimation
is improved by adding reasonable prior information to the known degradation model.
Therefore, we introduce the gradient norm ratio a priori into the blur kernel estimation
under the super-resolution problem.

3.1. Gradient Norm Ratio Priori

The essence of image degradation is the loss and aliasing of pixel information. This
process will result in the loss of high-frequency information of the image, which is reflected
in the intuitive visual effect, that is, the edge texture of the low-resolution image is not clear
and the contrast is low. Therefore, it is necessary to find an index as a constraint. When
the reconstructed image tends to blur latent image, the index increases, and when it tends
to clear latent image, the index decreases. As a result, the restored image in the iterative
process is close to the latent HR image, achieving an accurate estimation of blur kernel.

In optimization problems, the most common constraints are L1 norm, L2 norm and Lp
norm. Generally, 0 < p < 1. Taking L1 norm as an example, this is mostly used to punish
the high frequency band in image processing. When the image contains noise, the noise can
be removed by minimizing the L1 norm. When the image is degraded, the high-frequency
band itself will decay, and minimizing the L1 norm of the high-frequency component of the
image will lead to further blur of the reconstructed image. For the other norms, because
its mechanism is similar to the L1 norm, if the norm constraint is directly introduced as
the regular term, it cannot improve the quality of image reconstruction. However, it is
found that although the cost decreases with the decrease of the resolution of the input
image, that is, the blur of the reconstructed image, the cost reduction speed of different
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norms is different, and the cost reduction speed of L2 norm is significantly higher than
that of L1 norm. Therefore, the introduction of high-frequency information norm ratio
as a priori information can ensure that the penalty cost increases with the reduction of
reconstructed image quality. In other words, the purpose of improving reconstructed image
quality can be achieved by reducing the cost. The image high-frequency information can be
obtained in many ways. In this paper, the transverse and longitudinal gradient is selected
as an example to constrain the reconstructed image in the form of norm ratio. Figure 1 is a
schematic diagram of the change of the high-frequency information cost of reconstructed
images when different constraints are adopted at twice the down-sampling ratio.
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Figure 1. Reconstruction of high frequency information cost chart of image with different 
constraints: (a) high-frequency information is obtained by the transverse difference operator; (b) 
high-frequency information is obtained by longitudinal difference operator. 
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operator 𝑓𝑓2 = [1 − 1]𝑇𝑇 , respectively. The reconstructed image is a series of images 
obtained from the infrared image of typical power equipment, which is reconstructed 
back to the original size through cubic interpolation after Gaussian kernel action with 
different width and 2 times down sampling. It can be clearly seen from Figure 1 that with 
the increase of ambiguity, the cost of high-frequency information under each norm 
constraint is decreasing, while the cost of the ratio of 𝐿𝐿1 norm to 𝐿𝐿2 norm is increasing. 
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Figure 1. Reconstruction of high frequency information cost chart of image with different constraints:
(a) high-frequency information is obtained by the transverse difference operator; (b) high-frequency
information is obtained by longitudinal difference operator.

High-frequency information is obtained by convoluting the reconstructed image with
the transverse difference operator f1 = [1− 1] and the longitudinal difference operator
f2 = [1− 1]T , respectively. The reconstructed image is a series of images obtained from the
infrared image of typical power equipment, which is reconstructed back to the original size
through cubic interpolation after Gaussian kernel action with different width and 2 times
down sampling. It can be clearly seen from Figure 1 that with the increase of ambiguity,
the cost of high-frequency information under each norm constraint is decreasing, while
the cost of the ratio of L1 norm to L2 norm is increasing. Define GNR(x) =‖ x1 ‖ / ‖ x2 ‖.
GNR(x) is introduced into the objective function as a constraint term. During the process
of minimizing an objective function, the closeness of the intermediate latent image to the
clear image can help estimate blur kernels more accurately.

The estimation model of the blur kernel is:(
X̂, ĥ

)
= argmin

X,h
‖ Y− Sl(h⊗ X)Sr ‖ 2

2 + λ(GNR( f1 ⊗ X) + GNR( f2 ⊗ X))

+γ ‖ h ‖2
2 +δ ‖ ΨTX ‖1

(2)

where λ, δ, and γ are weighting coefficients; Sl is a row sampling matrix; Sr is a column sam-
pling matrix; X and Y is the two-dimensional form corresponding to x and y respectively;
Ψ is sparse basis. The first to fourth terms in the equation are the data fidelity term, gradient
norm ratio prior information term and constraint term to ensure the sparsity of blur kernel
and image sparsity coefficient. The addition of the last two items is determined by the
sparsity of blur kernel and the application requirements of compressed sensing theory.



Appl. Sci. 2022, 12, 4046 5 of 19

3.2. Blure Kernel Estimation Algorithm
3.2.1. Intermediate Latent Image X Estimation

In order to solve Equation (2), we first need to use the semi-quadratic splitting algo-
rithm [26] to introduce auxiliary variables. Then it is solved by alternating minimization.
After introducing auxiliary variables, the equation is shown in Equation (3).

(X′, h′) = argmin
X,h
‖ Y− SlGSr ‖ 2

2 + λ(GNR( f1 ⊗ X) + GNR( f2 ⊗ X))

+γ ‖ h ‖2
2 +δ ‖ ΨTX ‖1 +ε ‖ h⊗ X− G ‖2

2

(3)

When solving the intermediate latent image x, we only need to pay attention to the
following parts of the Equation (3).(

X′, h′
)
= argmin

X,h
λ(GNR( f1 ⊗ X) + GNR( f2 ⊗ X))+δ ‖ ΨTX ‖1 +ε ‖ h⊗ X− G ‖2

2 (4)

Equation (4) contains the GNR function and the L1 norm. We cannot solve it directly
with fast Fourier transform, so auxiliary variables Wi and X̃ are introduced. Where W
corresponds to fi ⊗ X and X̃ corresponds to ΨTX. Then, (4) can be transformed into (5):(

X′, W ′i , X̃′
)
= arg min

X,Wi ,X̃
λ′ ‖ fi ⊗ X−Wi ‖ 2

2 + λGNR(wi)

+δ′ ‖ X̃−ΨTX ‖2
2 +δ ‖ X̃ ‖1 +ε ‖ h⊗ X− G ‖2

2

(5)

where λ′ and δ′ are the regularization parameters; i = 1, 2. The above optimization
problem can be solved by minimizing X and Wi and X̃, respectively. First, fix the other
variables, and X solves the equation as:

X′ = argmin
X

λ′ ‖ fi ⊗ X−Wi ‖2
2 +δ′ ‖ X̃−ΨTX ‖2

2 +ε ‖ h⊗ X− G ‖2
2 (6)

where ‖ fi ⊗ X −Wi ‖2
2=‖ f1 ⊗ X −W1 ‖2

2 + ‖ f2 ⊗ X −W2 ‖2
2. We use fast Fourier

transform to solve Equation (6):

X = F−1

λ′FW + δ′F
(

ΨX̃
)
+ εF(h) ◦ F(G)

λ′Ff + δ′ + εF(h) ◦ F(h)

 (7)

where FW is F( f1) ◦ F(W1) + F( f2) ◦ F(W2); Ff is F( f1) ◦ F( f1) + F( f2) ◦ F( f2); F(·) and
F−1(·) denote the fast Fourier transform and inverse fast Fourier transform, respectively;
F(·) is the complex conjugate operator; ◦ denotes component multiplication, and the
division in Equation (7) is component division. After the calculation of X, the X̃ can be
obtained by:

X̃′ = argmin
X̃

δ′ ‖ X̃−ΨTX ‖2
2 +δ ‖ X̃ ‖1 (8)

We solve for X̃ by soft-threshold contraction:

X̃ = max
{∣∣∣ΨTX

∣∣∣− δ

2δ′
, 0
}
◦ sign

(
ΨTX

)
(9)

where sign(·) is a sign function. Next, the solution to the subproblem of Wi can be ex-
pressed as:

W ′i = argmin
Wi

λ′ ‖ fi ⊗ X−Wi ‖2
2 +λGNR(Wi) (10)
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Expansion function GNR (Wi):

W ′i = argmin
Wi

λ′ ‖ fi ⊗ X−Wi ‖2
2 +λ

‖Wi ‖1

‖Wi ‖2
(11)

Due to the existence of GNR (Wi) term, the Wi subproblem is nonconvex. However,
Equation (11) can be changed into a convex optimization problem by fixing Wi in the
denominator ‖ Wi ‖2 as the value of the last iteration. At this time, the problem shown in
Equation (11) can be solved by soft threshold like Equation (8):

Wi = max
{
| fi ⊗ X| − λ

2λ′
, 0
}
◦ sign( fi ⊗ X) (12)

After solving the above variables, the variable G is solved before solving the blur
kernel h. When solving h later, G is substituted as a known quantity. The solution to G is:

G′ = argmin
G
‖ Y− SlGSr ‖2

2 +ε ‖ h⊗ X− G ‖2
2 (13)

For Equation (13), it can be solved using gradient descent. The iterative step size is
determined by a non-monotonic linear search method [27].

3.2.2. Blur Kernel h Estimation

When solving variable h. It has been pointed out in the literature [28] that directly
using the intermediate latent image estimated above for calculation will reduce the accuracy
of the results. Using gradient image for calculation can more effectively ensure the accuracy
of estimation. So, we can get h by solving the following:

h′ = argmin
h

ε ‖ h⊗∇X−∇G ‖2
2 +γ ‖ h ‖2

2 (14)

Using fast Fourier transform solution (14):

h = F−1

(
F(∇X)F(∇G)

F(∇X)F(∇X) + γ

)
(15)

Since the blur kernel element is non-zero, and the sum is 1, for the negative elements
produced by each iteration of h, we set them to zero and normalize h at last. As suggested
by [28], we decrease λ gradually to make more information available for kernel estimation.

To sum up, the flow of the blur kernel estimation algorithm is shown in Figure 2.
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4. Image SR Reconstruction

We will build a super-resolution image reconstruction model based on the relationship
between high resolution image and low-resolution image put forward by combining
compressed sensing theory and the image SR model. An optimization method named
Two-step Total Variation Sparse Iteration (TwTVSI) is proposed. We lead a regular term of
Total Variation (TV) into the objective function of the L1 norm, so that the finite variation
feature of the image can be used to remove boundary effects from the BCS reconstruction
method. In this way, we do not use a single minimum total variation model. Our model
can reflect the sparseness of the image gradient domain and make full use of the sparseness
of the image, with short time consumption and good reconstruction effect.

4.1. Objective Function

On the basis of the principle of image degradation and compressed sensing, the
objective function of SR can be written as follows [29].

argmin
x̃
‖ x̃ ‖1

s.t. y = CHDx̃
(16)

Since the SR reconstruction of the whole image requires a large storage space and
is very complicated to calculate, we choose the BCS method to reconstruct the image in
blocks. We segment an image as follows:

Y =


Yb(1,1) Yb(1,2) · · · Yb(1,J)
Yb(2,1) Yb(2,2) · · · Yb(2,J)

...
...

. . .
...

Yb(I,1) Yb(I,2) · · · Yb(I,J)

 (17)

where Y is an LR image. Yb(i,j) is an LR image block; Y is divided into I × J image blocks.
Xb(i,j) is the HR image block at the corresponding position of Yb(i,j), and the size of Xb(i,j) is
S× S.

The reconstruction of blocked compressed sensing approach will bring about the
problem of “block effect”, so we introduce a TV regular term into the objective function.
In this way, the minimum variation constraint can be applied to the whole image, thereby
eliminating the reconstructed image block effect. The image total variation is calculated as
follows:

‖ X ‖TV=

∑
i,j

√
(X(i, j)− X(i− 1, j))2 + (X(i, j)− X(i, j− 1))2 (18)

where X(i, j) represents the value contained in row i and column j of the image matrix X.
The image is segmented and a TV regular term is introduced. So, the objective function
becomes:

argmin λ
X̃
‖ X ‖TV +

I
∑

i=1

J
∑

j=1
‖ X̃(i,j) ‖1

s.t. y(i,j) = CHDX̃(i,j), i = 1, 2, . . . I, j = 1, 2, . . . , J
(19)

where X̃(i,j) is the sparse representation of the column vector obtained by expanding Xb(i,j),
and y(i,j) is the row-expanded column vector corresponding to Yb(i,j).

In the solution process of Equation (19), it is a difficult problem to obtain X̃(i,j) from X
when we perform sparse constraints on the updated X under the constraint of ‖ X ‖TV . D
as an overcomplete dictionary makes the sparse coefficient dimension of the image much
larger than its own dimension. Therefore, we use the sparse coefficient matrix X̃ for the
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image matrix X with the expression X = Ar
(

DX̃
)

. The objective function is improved and
expressed as:

argmin λ
X̃
‖ Ar

(
DX̃

)
‖TV +

I
∑

i=1

J
∑

j=1
‖ X̃(i,j) ‖1

s.t. y(i,j) = CHDX̃(i,j), i = 1, 2, . . . I, j = 1, 2, . . . , J
(20)

where X̃ =
(

X̃(1,1), X̃(1,2), · · · , X̃(1,J), X̃(2,1), · · · X̃(I,J)

)
is the sparse coefficient matrix. The

function Ar(z) indicates that the column vectors in z are sequentially stitched into corre-
sponding images.

4.2. Optimization Solution

We adopt the Lagrange multiplier method to transform Equation (20) into:

arg min λ
X̃
‖ Ar

(
DX̃

)
‖TV

X̃

+
I

∑
i=1

j
∑

j=1

β(i,j)
2 ‖ y(i,j) − CHDX̃(i,j) ‖2

2 + ‖ X̃(i,j) ‖1

(21)

where β(i,j) is the Lagrangian multiplier. We put forward the TwTVSI optimization method
to solve Equation (21). Iterative solutions are expressed as follows:

X̃(K+1) = X̃(K) − µ(K)
{

λ
∂‖Ar(DX̃)‖TV

∂X̃(K) +

1
2

∂ ∑I
i=1 ∑J

j=1

β(i,j)
2 ‖y(i,j)−CHDX̃(i,j)‖2

2+2‖X̃(i,j)‖1

∂X̃(K)

}
= X̃(K) − µ(K)

{
λg1

(
X̃(K)

)
+ 1

2 g2

(
X̃(K)

)} (22)

where µ(K) is the iteration step size; and g1

(
X̃(K)

)
is the gradient derivative of Ar

(
DX̃

)
TV

to the sparse coefficient matrix X̃(K), which can be solved by the gradient descent method di-
rectly.

g1

(
X̃(K)

)
=

∂ ‖ Ar
(

DX̃
)
‖TV

∂X̃(K)
=

∂ ‖ Ar
(

DX̃
)
‖TV

∂X̃(K)
(1,1)

, . . . ,
∂ ‖ Ar

(
DX̃

)
‖TV

∂X̃(K)
(i,j)

, . . . ,
∂ ‖ Ar

(
DX̃

)
‖TV

∂X̃(K)
(I,J)

 (23)

∂‖Ar(DX̃)‖TV

∂X̃(K)
(i,j)

=
S
∑

m=1

S
∑

n=1
Pd
(

m, n, X̃(K)
(i,j), X̃(K)

(i,j)

)
+

S
∑

m=1

1
∑

n=1
Pd
(

m, n, X̃(K)
(i,j+1), X̃(K)

(i,j)

)
+

1
∑

m=1

S
∑

n=1
Pd
(

m, n, X̃(K)
(i+1,j), X̃(K)

(i,j)

) (24)

Pd
(

m, n, X̃a, X̃b

)
=

∂Dr(m,n,X̃a)
∂X̃b

×Dr
(

m, n, X̃a

)
+

∂Dc(m,n,X̃a)
∂X̃b

×Dc
(

m, n, X̃a

)
√{

Dr
(

m, n, X̃a

)}2
+ Dr

(
m, n, X̃a

)}2
+ 10−6

(25)

where Dr
(

m, n, X̃(K)
(i,j)

)
and Dc

(
m, n, X̃(K)

(i,j)

)
are, respectively, image row and column differ-

ence operation functions.
Since we use the block SR model for the image, the cross operation of edge elements be-

tween adjacent image blocks is involved in the row–column direction difference operation.
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By derivation, we can use a periodically recurring sparse dictionary matrix to represent the
difference operation between adjacent image patches. Let θ be a cyclic matrix with a period
of S, i.e., θ(m, n) = θ(m + S, n) = θ(m, n + S), and its matrix structure is as follows:

θ =


1 2 · · · S

S + 1 S + 2 · · · 2S
...

...
. . .

...
S2 − S + 1 S2 − S + 2 · · · S2

 (26)

where k is the value corresponding to the m-th row and n-th column in the matrix θ,
denoted as θ(m, n); Dθ(m,n) is the k-th row vector of the sparse dictionary D. Therefore, the
high-resolution image block Xb(i,j) can be represented by the sparse coefficients as:

Xb(i,j) =


Dθ(1,1)X̃(i,j) Dθ(1,2)X̃(i,j) · · · Dθ(1,S)X̃(i,j)
Dθ(2,1)X̃(i,j) Dθ(2,2)X̃(i,j) · · · Dθ(2,S)X̃(i,j)

...
...

. . .
...

Dθ(S,1)X̃(i,j) Dθ(S,2)X̃(i,j) · · · Dθ(S,S)X̃(i,j)


Then, Dr

(
m, n, X̃(K)

(i,j)

)
and Dr

(
m, n, X̃(K)

(i,j)

)
can be calculated by the following method: Dr

(
m, n, X̃(K)

(i,j)

)
= Dθ(m,n)X̃

(K)
(i,j) − Dθ(m−1,n)X̃

(K)
(i−¬(m−1),j)

Dc
(

m, n, X̃(K)
(i,j)

)
= Dθ(m,n)X̃

(K)
(i,j) − Dθ(m,n−1)X̃

(K)
(i,j−¬(n−1))

where ¬ is the negation operator, and the operation method is ¬(z) =
{

0 z 6= 0
1 z = 0

.

As for g2

(
X̃(K)

)
, ‖ X̃(K)

(i,j) ‖1 is a nondifferentiable convex function about X̃(K)
(i,j), and

‖ y(i,j) − CHDX̃(K)
(i,j) ‖

2
2 is a differentiable convex function about X̃(K)

(i,j).Therefore, g2

(
X̃(K)

)
cannot be directly calculated by the gradient descent method, so it is solved by the proximal
gradient (PG) method:

Z(K)
(i,j) = X̃(K)

(i,j) − β
(K)
(i,j)D

T HTCT
(

y(i,j) − CHDX̃(K)
(i,j)

)
X̃(K+1)
(i,j) = Shrink

(
Z(K)
(i,j), β

(K)
(i,j)

)
= max

{∣∣∣Z(K)
(i,j)

∣∣∣− β
(K)
(i,j), 0

}
◦ sign

(
Z(K)
(i,j)

) (27)

where Shrink(·) represents the soft threshold shrink function; β
(K)
(i,j) is actually the step size

factor, and we can use the backtracking line search method to calculate its size.
According to the above elaboration, the TwTVSI algorithm flow is summarized as

shown in Figure 3.
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The specific calculation steps of the TwTVSI algorithm are as follows:

Initialize K and X̃ separately.
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The first iteration: Use gradient descent to solve the TV regular term to get X̃(k,1), X̃(k,1) =

X̃(K,0) − λµ(K)g1

(
X̃(K,0)

)
.

The second iteration: X̃(K+1,0) is obtained by using the proximal gradient method from
X̃(k,1) for the sparse regular term according to Equation (27). Perform the
Judgment: when ‖ Ar

(
DX̃(K+1,0)

)
− Ar

(
DX̃(K,0)

)
‖2

2 is less than the error constraint ε, or
K is greater than the maximum number of iterations Kmax, stop the iteration, when it is
otherwise, we set K = K + 1 and go back to step 2.
Output: high resolution image Ar

(
DX̃(K+1,0)

)
.

5. Experiment and Result Analysis
5.1. Experimental Data and Evaluation Paramenters

All the environments are carried out on a computer with Intel(R) Core (TM)i5-9300H
CPU @2.40 GHz and 16.00 GB RAM. We debugged the following parameters on MATLAB:
λ = 0.004; ε0 = 0.008; γ = 2. The HR image is composed of 32 × 32 blocks. A sparse
dictionary, consisting of 3096 atoms of length 1024, is trained by the high-dimensional
dictionary training method introduced in [26].

We compared our method with the methods proposed by Keys [30], Shao [19], Li [11],
and Kim [21] and adopted the average gradient (AG) and information entropy (IE) as
objective evaluation indicators.

In order to verify the actual application effect of the infrared image reconstructed
by our proposed algorithm, we used the image recognition algorithm proposed in litera-
ture [31] to design a comparative experiment. Through the recognition of infrared images
reconstructed by different SR methods, the performance and practical application value
of our method was verified. Since the basis of the image recognition algorithm lies in the
effective extraction and correct matching of image feature points, the number of feature
points obtained by image extraction and the correct matching rate of feature points were
used as evaluation indicators. In order to more clearly reflect the difference between the
performance of different algorithms, we randomly selected 80 sets of feature point matching
results for visual display.

In addition, we performed the same infrared image diagnosis process on the high-
resolution images reconstructed by different SR algorithms. We sequentially performed
super pixel segmentation, image recognition, super pixel merging, image segmentation,
equipment area extraction, and equipment operating status diagnosis on the reconstructed
infrared image. The super pixel segmentation and merging algorithm adopted the methods
in the literature [32], and the image recognition still used the algorithm proposed in the
literature [31]. The diagnostic process of infrared images is shown in Figure 4.
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5.2. Infrared Image Reconstruction Experiment

We reconstructed low-resolution infrared images, thereby validating the effectiveness
of our method in practical applications. We used 9 infrared images with a resolution of
128 × 128 taken on site for super-resolution reconstruction. The reconstruction results of
image No. 9 using different methods are shown in Figure 5.
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Figure 5. Different methods to reconstruct the real infrared image of No. 9. (a) Real infrared image
(b) Reconstruction results using the method in [30] (AG = 20.705, IE = 6.222) (c) Reconstruction results
using the method in [19] (AG = 28.421, IE = 6.323) (d) Reconstruction results using the method in [11]
(AG = 28.452, IE = 6.362) (e) Reconstruction results using the method in [21] (AG = 31.559, IE = 6.429)
(f) Reconstruction results using our method (AG = 30.784, IE = 6.542).

According to Figure 5, the reconstruction result of the method proposed by Keys et al.
are the most ambiguous. The image details and textures reconstructed by the methods
proposed by Shao and Li are similar. Although they have a significant improvement in
visual quality compared to the original low-resolution blurred images, they are still blurry.
The method proposed by Kim et al. reconstructed some significant textures of the image,
but the textures have obvious defects. In addition, the image reconstructed by Kim et al.
has poor visual quality, due to the ringing effect, but the AG indexes of the image are
relatively high. However, the images reconstructed by our method are the sharpest. In
summary, our method has certain advantages over current methods in handling blurred LR
images. In addition, the blur kernel estimated by our method in the reconstruction process
allows us to discover that image blur is very complex. It is inaccurate to use the standard
Gaussian blur kernel to represent the image blurring process; that is to say, it is necessary
to study the blind SR algorithm. The SR reconstruction results of the other eight infrared
images by different methods are listed in Tables 1 and 2 in the form of AG and IE metrics,
respectively. It can be seen from the data in the tables that the reconstruction results of our
method have certain advantages over these two indicators.
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Table 1. Comparison of AG indexes of images reconstructed using different methods.

Image
Number Keys Shao Li Kim Ours

1 19.775 27.041 30.884 29.349 32.264
2 22.088 29.501 34.080 32.242 35.862
3 21.673 29.864 34.454 35.397 37.037
4 18.224 20.516 23.267 25.403 24.967
5 18.663 26.544 29.113 28.802 30.924
6 17.382 25.653 26.671 26.239 28.594
7 24.436 34.371 35.125 37.538 42.723
8 20.335 26.411 34.929 27.216 32.857

Table 2. Comparison of IE indexes of images reconstructed using different methods.

Image
Number Keys Shao Li Kim Ours

1 5.504 6.203 6.111 6.048 6.276
2 6.597 6.419 6.653 6.706 6.948
3 6.318 6.581 6.738 6.442 6.281
4 5.530 5.603 5.762 5.891 5.806
5 6.103 6.143 6.249 6.543 6.698
6 5.609 5.581 5.609 5.191 5.792
7 6.742 6.764 6.865 6.782 6.876
8 5.713 5.862 5.790 5.983 5.316

5.3. Comparative Experiment of Image Recognition

It can be seen from Figure 6 that the HR infrared image reconstructed by our proposed
method has clearer and richer details. Therefore, the correct matching rate is significantly
improved compared with the contrast method when performing feature point matching
and recognition with the visible light sample image. Tables 3 and 4 respectively show the
number of feature points and the correct recognition rate of the infrared images recon-
structed by different methods. The experimental results are mutually corroborated with
Figure 6, which reflects the superiority of our method.

Table 3. The number of feature points detected in images reconstructed by different methods.

Image
Number LR Keys Shao Li Kim Ours

1 257 278 351 377 385 405
2 219 248 309 328 334 365
3 153 164 210 223 221 252
4 256 276 351 375 379 416
5 185 209 267 282 292 326

Table 4. The correct matching rate of feature points in images reconstructed by different methods.

Reconstruction
Algorithm

Correct Matching Rate of Feature Points

Image 1 Image 2 Image 3 Image 4 Image 5

LR 52.38 48.78 51.15 50.22 53.79
Keys’ 55.95 50.70 52.37 53.84 54.34
Shao’s 61.52 59.56 64.56 61.88 64.75

Li’s 71.03 71.76 71.79 69.75 70.91
Kim’s 74.23 72.62 76.65 76.36 74.48
Ours 82.13 83.40 81.04 83.25 84.21
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5.4. Comparative Experiment of Image Recognition

The intermediate results produced during the image diagnosis process are shown in
Figures 7–12, and the final diagnosis results are shown in Figure 13. It can be seen from
Figure 13 that the detection area obtained by our method has the highest agreement with
the actual device label image, and does not include the base of the transformer bushing.
Compared with the actual device label image, the detection area obtained by other methods
contains different degrees of the base of the transformer bushing. As a result, Figure 13b–e
misdiagnosed the base of transformer bushing as a defective area of transformer bushing.
According to the “Application rules of infrared diagnosis for live electrical equipment”,
the diagnostic standards for different equipment are different. Since the bushing base
is connected to the transformer tank, the internal oil temperature is relatively high, and
the temperature of the bushing base is often higher than the surface temperature of the
bushing. Therefore, the criteria for judging these two defects, i.e., “hot spot temperature
or temperature difference” should be different. The image reconstructed by our method
has clear edges, high contrast, and more obvious contours. Therefore, the image quality
improvement of our method can improve the accuracy of equipment recognition, improve
the accuracy of equipment area extraction, and improve the accuracy of defect diagnosis
in the area to be detected in the infrared image diagnosis of equipment, thereby realizing
accurate judgment of equipment operation.
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6. Conclusions

Based on the background of the power Internet of Things, this paper presents a
compression sensing super resolution method to solve the problem that the accuracy of
infrared sensors is not enough to affect the accuracy of infrared diagnosis. A gradient norm
ratio is used to improve the accuracy of blur kernel estimation, and a TwTVSI method is
designed to achieve high-quality image reconstruction. The experimental part proves the
effectiveness of the super-resolution method proposed in this paper.

In the era of the Internet of Things, the processing of infrared image data will be
carried out automatically by computer. Our method can provide a good data base for
the application of various algorithms, and has a broad application space. Firstly, the
improvement of image quality by this method is helpful to the accurate operation of the
image recognition algorithm. In the reconstructed image, the algorithm can identify more
effective feature points and match them accurately, which is helpful to the classification
and storage of infrared image data. Second, good image quality helps to improve the
recognition accuracy of power equipment in the image. It can be seen from the experiment
carried out in Section 5.4 that when image definition is insufficient, some transformer
bushing cannot be accurately identified. Thirdly, the infrared image reconstructed by the
super-resolution algorithm is more accurate in fault diagnosis, because the reconstruction
results provide a good foundation for the image segmentation algorithm and can locate
the equipment area more accurately. To sum up, the improvement of image quality by
this method is helpful to the accurate realization of various practical applications based on
infrared images of power equipment.

In addition, we believe that in the near future, when 5G communication, cloud com-
puting and other technologies are further applied, the image data collected by infrared
sensors will be analyzed on the cloud platform through cloud computing technology. After
the operation and maintenance personnel obtain the access port of the cloud platform, they
can accurately grasp the operation status of the equipment through mobile phones and
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computers anytime, anywhere, and then complete the operation and maintenance work
according to the platform prompts. Our algorithm will have greater significance for image
preprocessing, which could not only improve the accuracy of various algorithms based on
equipment infrared images, but also provide clearer equipment observation conditions for
operation and maintenance personnel.
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