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Featured Application: The method proposed in this paper can quickly identify the time-varying
cable tension and have the potential for condition monitoring and performance evaluation of
cables under special events, such as typhoons, earthquakes and heavy traffic.

Abstract: Cables have been increasingly utilized in modern long-span or tied-arch bridges as the main
bearing structures. Real-time identification of time-varying cable tension is essential for assessing
the service performance of bridges. Vibration-based methods have been an increasing research
focus in recent decades. However, a long time interval is needed to estimate structural frequency
using vibration-based methods, increasing the calculating time of cable tension. The time-varying
cable tension is thus difficult to extract. This study proposes a time-frequency reassignment-based
algorithm to reduce the detection time to address this issue. Combined with a time-frequency analysis
tool and vibration theory of cables, the algorithm can identify the time-varying frequency and further
quickly calculate the time-varying cable tension within 12.8 s. The features of the proposed algorithm
are mainly threefold: identifying the time-varying frequencies with high precision; without some prior
knowledge of vibration; having no other requirements for sensor modes. Moreover, the experimental
validation is conducted using a quasi-static loading in a workshop and a dynamic field test on
Sutong Bridge, respectively. The results show that the proposed algorithm can be used to identify
time-varying tension and assess the service performance of cables, providing a new path for real-time
condition monitoring of bridges in service.

Keywords: cable tension; dynamic responses; time-frequency reassignment; field experiment;
structural health monitoring

1. Introduction

As the main load bearing structures, cables have been widely used in many long-
span bridges or large-scale space buildings in recent decades due to their superb material
properties, low costs and advanced design theories [1–5]. However, unfavorable factors,
such as environmental erosion and fatigue loads do inevitably result in damage, including
corrosion, abrasion, fatigue crack, or broken wire [6–10]. The accumulation of damage
can weaken the service performance, bringing potential hazards and may cause a serious
accident. Therefore, condition monitoring of cables plays an important role in keeping the
integrity of entire structures [11–14].

Tension is a straightforward and key parameter to assess the operating conditions
of cables. Currently, various structural health monitoring (SHM) methods are applied
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to identify the cable tension, including the load cell method [15], fiber Bragg grating
method [16,17], elasto-magnetic method [18], elasto-magneto-electric method [19], and
vibration-based method. The load cell and fiber Bragg grating method need to be pre-
installed and calibrated during the construction stage and can online measure the tension
with high precision. However, the reliability will gradually decrease over time due to sensor
debonding or biological bite damage. The elasto-magnetic method can be used to measure
the tension and detect the broken wire damage of cables. However, the test equipment
is relatively expensive, and the method is time-consuming during the excitation process.
The elasto-magneto-electric method is an emerging method with significant advantages
in identifying cable tension, but it has high requirements for measurement conditions
(e.g., stationary temperature and humidity). Among the above evaluation methods,
vibration-based methods have been proven as cost-effective in tension identification due
to the advantages of explicit mechanical formulation, facilitation in acquiring dynamic
response, and abundant application cases [20–22]. The foundation of this method is accord-
ing to vibration theory which represents the physical relationship between tension and
vibration frequency [23–27]. Many studies clarify this relationship in various models by
considering the effect of sag, inclination, or bending stiffness [27–29]. In particular, struc-
tural frequencies can be identified by the measured dynamic responses such as acceleration.
Afterward, the cable tension can be indirectly calculated using structural frequencies based
on the mechanical models.

Generally, the vibration-based method requires a sampling interval for frequency
identification via some time-frequency analysis tools such as the Fourier transform (FT).
The cable tension is supposed to be a constant during this time interval. However,
in practical engineering, cable tension is associated with the variation of loads and thus is
a time-varying parameter under different operating conditions. The time-varying cable
tension is an important indication and thus is the main concern of bridge management
departments. Therefore, to reflect the time-varying tension, the measurement interval
for frequency identification should be made as soon as possible, i.e., the time-varying
instantaneous frequency of structures is necessary.

To approach this purpose, many existing studies have been focused on identifying the
time-varying instantaneous frequency of cables, including the extended Kalman filter [30],
complexity pursuit [31], adaptive sparse time-frequency analysis [32], an extended analyt-
ical mode decomposition-Hilbert transform-zoom synchrosqueezing wavelet transform
combined method [33], conjugate-pair decomposition [34], and variational mode decom-
position [35]. In particular, the extended Kalman filter-based method is firstly proposed
to address the key problem of time-varying tension identification in the research field.
The effectiveness of the method is verified by both numerical examples and experimental
verification in the laboratory. Then, the complexity pursuit algorithm can also identify
the time-varying tension with high accuracy but requires at least two acceleration sensors
to implement the process of independent component analysis. Next, the adaptive sparse
time-frequency analysis is used to identify the time-varying tension, yet the initial phase
of vibration should be determined before time-frequency analysis. Moreover, the men-
tioned combined method can identify the time-varying first order frequency and further
calculate the tension with excellent results, although the algorithm has a complex iden-
tification process in dealing with a narrowband signal. In addition, the effectiveness of
the conjugate-pair decomposition is proved by the numerical examples, but still needs
further experimental verification in the future. Finally, the variational mode decomposition
can extract the instantaneous change of cable tension with acceptable results. However,
the number of decomposition layers is an artificial setting parameter that impacts the
identification results.

The time-varying instantaneous tension is well identified using the above methods
with both numerical and experimental verification. However, these methods are only
applied in the laboratory and lack a field experiment verification in practical engineering.
Meanwhile, the identified time-varying tension is not used to evaluate the operating
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conditions of cables in bridge engineering. Therefore, it is essential to develop a method to
real-time identify the cable tension and assess the service performance of cables in practical
bridge engineering.

This study proposes a time-frequency reassignment (TFR)-based algorithm for identi-
fying time-varying cable tension. The proposed algorithm, combined with a time-frequency
analysis tool and the vibration theory of cables, can identify the time-varying instantaneous
frequency and further calculate the time-varying cable tension with satisfactory results.
Compared with existing methods, this work is a different attempt, especially focusing on
the applicability of the algorithms to practical engineering. The main innovation of the
proposed algorithm lies in three parts: (a) the reassignment operator can give the algorithm
the ability to identify the time-varying frequencies with high precision; (b) the algorithm is
developed without some prior knowledge of vibration; (c) the application of the algorithm
is verified using concrete engineering tests and have no other requirements on sensor
modes. One accelerometer is enough for the implementation of the proposed algorithm.

The rest of the paper is organized as follows: Section 2 briefly introduces the basic
theory and features of TFR. Section 3 formulates an identification algorithm with a concrete
implementation process. Section 4 experimentally demonstrates the algorithm through
a large-scale cable with loading and unloading tests in a workshop. Section 5 further
investigates the proposed algorithm for practical bridge engineering using an in situ field
experiment. The service performance of the measured cable is also evaluated using the
identified time-varying tension. Section 6 presents the conclusions of this study.

2. TFR Techniques
2.1. Short-Time Fourier Transform

Without loss of generality, it is supposed that an integrable multi-component signal
can be expressed as:

s(t) =
n

∑
k=1

sk(t), (1)

sk(t) = Ak(t)eiφk(t), (2)

where Ak(t) and φk(t) are the amplitude and phase function of sk(t), respectively. In order
to extract local time-frequency characteristics Ak(t) and φk(t), short-time Fourier transform
(STFT) has been utilized broadly in various scientific fields. The STFT of a signal s(t) is
defined as [36]

Fg
s (t, ω) =

∫
R

s(τ)g∗(τ − t)e−iωτdτ, (3)

where g(t) is the window function, g∗(t) is the complex conjugate of g(t). The parameters
t and ω are the time and frequency variables, respectively. Afterward, the time-frequency
spectrogram Pg

s (t, ω) is then defined as

Pg
s (t, ω) =

∣∣∣Fg
s (t, ω)

∣∣∣2. (4)

2.2. Uncertainty Principle

The significant issue in signal processing is the uncertainty principle, also named the
Heisenberg–Gabor limit, which clarifies that one cannot simultaneously localize a signal
with an arbitrary precision both in the time and frequency domains. There is a trade-
off between the time resolution and frequency resolution depending on a key control
parameter, e.g., the length of window function g(t) in STFT. In other words, it is difficult
to identify the frequency in a concise time interval because the frequency resolution is
relatively low under these conditions.

Many time-frequency analysis tools are proposed to address this trade-off problem,
such as quadratic representations using the Wigner–Ville distribution (WVD) [37] or other
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autoregressive methods [38]. The frequency resolution is improved using these methods
but may produce undesirable artifacts.

2.3. Time-Frequency Analysis Using TFR

TFR techniques offer another approach to sharpening the time-frequency representa-
tion while keeping the temporal localization and can extract improved frequency resolu-
tion [39,40]. Based on the STFT frame, the implementation process is as follows.

First, the spectrogram Pg
s (t, ω) of signals can also be expressed as

Pg
s (t, ω) =

x

R2

Ws(τ, υ)Wg(τ − t, υ−ω)
dτdυ

2π
, (5)

where Ws and Wg are the WVD of signal s(t) and window function g(t), defined as the FT
of instantaneous correlation function:

Ws(t, ω) =
∫

R
s(t +

π

2
)s∗(t− π

2
)e−iωτdτ, (6)

WVD can reflect the instantaneous time-frequency relationship of the signal, especially
for a single component signal. However, the quadratic representations may produce cross-
term interference for multi-component signals. Therefore, the spectrogram function is thus
the two-dimensional smoothing function to reduce adverse effects. Then, the reassignment
method is used to redefine the time-frequency spectrogram Pg

s (t, ω) based on the principle
of centroid distribution:

Pg
s (t, ω) =

x

R2

Pg
s (t, ω)δ(ω−ωs(τ, υ))δ(t− ts(τ, υ))dτdυ, (7)

where Pg
s (t, ω) is the reassignment spectrogram of a signal s(t). ωs(τ, υ) and ts(τ, υ) are

calculated by

ωs(τ, υ) = ω− Im

[
Fg′

s (t, ω)

Fg
s (t, ω)

]
, ts(τ, υ) = t + Re

[
Ftg

s (t, ω)

Fg
s (t, ω)

]
, (8)

where g′ is the derivative of the window function g(t) and tg represents the factor t · g(t).
Based on Equations (7) and (8), the energy is reassigned in the time-frequency plane.

Thus, the local time-frequency characteristic is easy to follow from the reassignment spectro-
gram Pg

s (t, ω). The TFR techniques provide a new approach to identifying the time-varying
frequency, particularly well adapted to multi-component signals.

3. Identification of Cable Tension Using TFR Techniques
3.1. Dynamic Response of Cables

Generally, structural deflection can be divided into several modal shapes that corre-
spond to each natural frequency [41]. The modal shapes are deflection conditions of free
vibration. The higher-order mode shape is pretty low and can be ignored. Therefore, the
first N order modal shapes can determine the whole vibration characteristics of structural
dynamic responses.

Without loss of generality, the in-plane acceleration response of a uniform cable can be
expressed as

ax0(t) =
M

∑
k=1

ϕk
x0 sin(2π fkt + µk), (9)

where x0, ϕk
x0 , fk, and µk are installation position of sensors, amplitude, frequency and

phase of the k-th modal shape, respectively.
It can be seen from Equation (9) that the measured dynamic response can be regarded

as a superposition of different modal shapes. The acceleration signal is thus a multi-
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component signal consistent with the assumptions of Equation (1). In particular, according
to string theory or other modified models, the higher-order frequencies are multiples of
the fundamental frequency with small corrections. Therefore, the TFR technique is very
suitable to solve the problem of time-frequency analysis for the vibration signals of cables,
which is the original intention of this study.

3.2. Identification of Time-Varying Frequency

To identify the structural time-varying frequency of multi-component signals, the
acceleration responses are then processed using TFR techniques. Firstly, the STFT of the
acceleration signal is given by

Fg
a (t, ω) =

∫
R

ax0(τ)g∗(τ − t)e−iωτdτ, (10)

where the Gaussian window function is used in this study.
Then, it does not need to calculate the WVD of acceleration response. Based on the

discussion in Section 2.3, three STFTs can be used to estimate the centroid frequency and
calculate the time-frequency spectrogram Pg

a (t, ω) according to Equations (4) and (8). In
the process of STFT, a suit length of the window function g(t) should be determined by
a parameter study.

Finally, the reassignment spectrogram Pg
a(t, ω) of acceleration is rewritten as

Pg
a(t, ω) =

x

R2

Pg
a (t, ω)δ(ω−ωa(τ, υ))δ(t− ta(τ, υ))dτdυ, (11)

where ωa(τ, υ) and ta(τ, υ) are calculated by Equations (3) and (8). The reassignment
spectrogram Pg

a(t, ω) provides sharp time-frequency characteristics of the measured signals.

3.3. Identification of Time-Varying Cable Tension

Based on the results of the reassignment spectrogram Pg
a(t, ω), the time-varying

frequencies of cables are identified with the following process: First, the time-varying
frequency on each sampling point j is picked up from the peak value point, where N is the
number of the sampling points. Subsequently, the basic material parameters of the cable,
such as length, mass per unit length, etc., need to be tested or referred to in the design
data. Finally, the cable tension can be identified via measured frequency based on the
relationship between the tension and frequency. Particularly, the string theory is used to
calculate the tension in this study:

T = 4mL2 fk
j2

k2 (k = 1, 2, · · · , ∞), (12)

where T, m, L, fk
j, and k are taut tension, mass per unit length, length, the k-th frequency

of sampling point j, and frequency order of the cable, respectively. In Equation (12), m
and L are constant parameters for specific cables. Thus, cable tension T can be explicitly
represented as a function with respect to fk

j and k.
The detailed implementation process of the TFR-based algorithm is combined with

the signal processing theory and mechanics theory. The identification algorithm can be
divided into several steps, as shown in Figure 1.

Step 1: Measure the dynamic response of cables from health monitoring systems;
Step 2: Choose a suitable length of the window function g(t), calculate three STFT spectro-

grams Fg
a (t, ω), Fg′

a (t, ω), and Ftg
a (t, ω);

Step 3: Calculate the time-frequency reassignment spectrogram Pg
a(t, ω) from three STFTs

and compare the time-frequency resolution using the different length of window
function in parameter studies;
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Step 4: Identify the time-varying frequency from the reassignment spectrogram Pg
a(t, ω)

by picking the peak ridge;
Step 5: Calculate the time-varying tension based on the vibration theory of cables by

Equation (12).
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4. Experimental Validation
4.1. Experimental Descriptions

The proposed tension identification algorithm, based on TFR techniques, was verified
experimentally using a workshop test. A cable of parallel steel wires was prepared in the
test pit as the experimental sample, as shown in Figure 2. The experimental cable consists
of 127 steel wires with a diameter of 5.2 mm per each and a double protective layer made of
polyethylene, as shown in Figure 3. The length and mass per unit length of the experimental
cable are 191.9 m and 22 kg/m, respectively. The detailed parameters of cables are shown
in Table 1. The structural system had one fixed end and one end connected with a hydraulic
jack. Several rubber rollers were placed under the cable to prevent it from being broken at
low-level loads.
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Table 1. Parameters of the experimental cable.

Length (m) Mass per Unit
(kg/m)

Specification
(mm)

Anchorage
Length (m)

Protective Sleeve
Material

191.9 22.0 127 × Φ5.2 1.0 Polyethylene

4.2. Data Acquisition

The data acquisition and assessment systems consist of five accelerometers, a load
cell, a data acquisition instrument, and a computer, as shown in Figure 2. The DH-1A202E
voltage output accelerometers were adopted in the experiment. The accelerometers have
the characteristics of a no zero offset and strong anti-interference ability, which is suitable
to measure low-frequency vibration. The sampling frequency, measuring range, sensi-
tivity, dimensions and weight of the accelerometers are 20 Hz, 50 m·s−2, 10 mV/m·s−2,
Φ31.5 × 34 mm and 172 g, respectively. Meanwhile, a load cell was installed on the hy-
draulic jack, and the sampling frequency of the load cell is 1 Hz. The detailed layout of
the sensors is shown in Figure 2. Five accelerometers were installed 10 m away from the
loading side, with a space of 20 m. The data acquisition instrument converted the voltage
signals into digital signals and then saved them in the computer for analysis.

The loading process of the experiment was divided into three stages: loading, slow
unloading, and fast unloading. The loading force was measured by the load cell, as shown
in Figure 4. Firstly, the longitudinal loading tension increased gradually from 2255.8 kN to
2458.1 kN in 27 s. Then, the loading tension decreased with a slow unloading speed from
2458.1 kN to 2450.3 kN in 135 s. Finally, the loads drop rapidly to 2305.9 kN in 17 s.
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Using the accelerometers, the in-plane dynamic responses of the cable were collected,
as shown in Figure 5. Except for the loads and environment noise, no other excitation force
was applied to the structural system. Therefore, the acceleration conforms to free vibration
with the amplitude of gradual attenuation.
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4.3. Results
4.3.1. Optimal Selection of Window Function Length

The length of the window function is an optional parameter in the TFR frame. Gener-
ally, the sampling point is selected as the nth power of 2 in order to ensure the convenience
of the algorithm. In order to find an optimal window length, the time-frequency reassign-
ment spectrogram Pg

a(t, ω) is calculated by different lengths, such as 64, 128, 256, and 512,
corresponding to the sampling intervals 3.2 s, 6.4 s, 12.8 s, and 25.6 s, as shown in Figure 6.
It is obvious to see from the figure that the time-frequency resolution of length 64 is very
low, hard to extract the frequency along the time axis. The resolution becomes better when
using 128 sampling points, but still represents a zigzag fluctuation in the time-frequency
spectrogram, especially in the low-frequency region. Hence, the time-frequency resolutions
of 256 and 512 are much preferable to the previous results. Therefore, the length of the
window function is chosen as 256 in the time-frequency analysis.
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4.3.2. Time-Varying Frequency Extract Based on TFR

The TFR-based algorithm is implemented for the identification of cable tension based
on measured acceleration responses. Firstly, the reassignment spectrograms of acceleration
responses are shown in Figure 7. The window function length used in STFT is 256 based
on the discussion in Section 4.3.1. It is obvious to see from Figure 7a that the first eight
order frequencies are identified in the time-frequency plane. The energy of the 1st and 2nd
order modal shapes is relatively low and almost unrecognizable. The zoom-in views of
each sensor are shown in Figure 7b–f, respectively. The overall variation of frequencies is
relatively consistent, corresponding to the loading process step by step.
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For comparison, traditional STFT analysis is also applied to deal with the acceleration
signals. The STFT result is shown in Figure 8. The window function with the length of
256 sampling points, i.e., a time interval of 12.8 s, was used to extract the time-frequency
characteristics simultaneously in the STFT frame. However, as mentioned in the introduc-
tion, the frequency resolution is pretty low if the length of the window function is short.
Obviously, the time-frequency resolution is not as clear as the TFR-based algorithm shown
in Figure 7. There is strong interference on the spectrum in Figure 8, so it can only roughly
find the range of frequency distribution.
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4.3.3. Time-Varying Cable Tension and Error Analysis

The proposed algorithm then processed the identified 4th to 8th frequencies to calculate
the tension by Equation (12). The results are shown in Figure 9a. By comparison, the actual
loads are also marked with red color in Figure 9a. The tension calculated by the low-order
frequencies changes more than the higher-order frequencies. Meanwhile, each sensor
identified the tension using the 8th order frequency, as shown in Figure 9b. Almost all the
sensors get the same results and are close to the actual loads.
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Moreover, the average error (AE) and maximum error (ME) are shown in Table 2 and
Figure 10. The definitions of the errors can be expressed as

AE = (
1
N

N

∑
j=1

∣∣Ti,j − Ta,j
∣∣

Ta,j
)× 100%, (13)

ME = max
j=1,2,··· ,N

∣∣Ti,j − Ta,j
∣∣

Ta,j
× 100%, (14)

where j is the sampling points varying from 1 to N. It can be seen from Table 2 and Figure 10
that the AE of the TFR-based algorithm is between 0.16% to 0.59%, while the ME within
5.70% usually appears at the boundary of the signals or calculated results by the low-order
frequencies (e.g., 4th order result marked with cyan color in Figure 9a). The error of higher-
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order frequency is lower than that of low-order frequency. Almost all the ME are within
5%, which is in accord with the application requirements in engineering.

Table 2. Error of tension calculated by each order frequencies.

Frequency Order Error Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

4
AE (%) 0.51 0.49 0.44 0.47 0.59
ME (%) 5.70 5.16 2.49 3.10 5.06

5
AE (%) 0.40 0.42 0.42 0.40 0.38
ME (%) 5.16 4.95 4.95 4.78 5.04

6
AE (%) 0.27 0.29 0.29 0.28 0.30
ME (%) 2.68 2.68 2.68 3.14 2.32

7
AE (%) 0.27 0.27 0.25 0.25 0.28
ME (%) 1.82 1.88 2.16 1.37 3.43

8
AE (%) 0.16 0.17 0.16 0.17 0.17
ME (%) 0.62 0.89 0.60 0.60 0.62
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5. Engineering Validation
5.1. Experiement Descriptions

To further verify the proposed TFR-based algorithm, a field experiment was designed
and carried out on Sutong Bridge, a long-span cable-stayed bridge with 272 cables. This
bridge locates at the entrance of the Yangtze River in China, connecting two cities Nantong
and Suzhou. The main girder consists of three spans with lengths of 500 m + 1088 m + 500 m,
as shown in Figure 11. The height of the tower is about 300 m.
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A special cable A18 in the south side span (downstream side) was chosen as the
experimental object, as re-marked with red color in Figure 12. Specifically, the length and



Appl. Sci. 2022, 12, 4008 13 of 18

mass per unit length of the cable are 336.811 m and 77.70 kg/m, respectively. These cable
parameters were measured in the construction stage [42]. The experimental cable connects
the tower and the main girder at the auxiliary pier. A series of strain gauges have also
been installed at the bottom of the cable. The measured stress is a reference to validate the
proposed method.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

A special cable A18 in the south side span (downstream side) was chosen as the 
experimental object, as re-marked with red color in Figure 12. Specifically, the length and 
mass per unit length of the cable are 336.811 m and 77.70 kg/m, respectively. These cable 
parameters were measured in the construction stage [42]. The experimental cable connects 
the tower and the main girder at the auxiliary pier. A series of strain gauges have also 
been installed at the bottom of the cable. The measured stress is a reference to validate the 
proposed method. 

 
Figure 12. Basic information on the experimental bridge and sensors. 

In contrast to the loading experiment in the workshop, the moving loads were 
adopted in the field experiment instead of the static loads. The photograph of the loading 
trucks is shown in Figure 13. In particular, four trucks full of sand and stones were used 
as applied loads in the dynamic test. The trucks started from the North Tower and moved 
towards the South Tower at a constant designed speed of 30 km/h (Case 1) and 40 km/h 
(Case 2), respectively. 

 
Figure 13. Loading trucks in the field experiment. 

5.2. Data Acquisition from Sensing Subsystem 
Structural health monitoring systems were installed on the bridge for about ten years. 

From the sensing subsystems, the dynamic responses of cables and the main structure 
were measured by sensors. The type of accelerometer is the same as that in the workshop 
test. An accelerometer was installed near the 1/3 location of the cable. The sampling 
frequency of the accelerometer is 20 Hz. The measured acceleration response of the cable 
is shown in Figure 14. 
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In contrast to the loading experiment in the workshop, the moving loads were adopted in
the field experiment instead of the static loads. The photograph of the loading trucks is shown
in Figure 13. In particular, four trucks full of sand and stones were used as applied loads in
the dynamic test. The trucks started from the North Tower and moved towards the South
Tower at a constant designed speed of 30 km/h (Case 1) and 40 km/h (Case 2), respectively.
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Figure 13. Loading trucks in the field experiment.

5.2. Data Acquisition from Sensing Subsystem

Structural health monitoring systems were installed on the bridge for about ten years.
From the sensing subsystems, the dynamic responses of cables and the main structure were
measured by sensors. The type of accelerometer is the same as that in the workshop test.
An accelerometer was installed near the 1/3 location of the cable. The sampling frequency
of the accelerometer is 20 Hz. The measured acceleration response of the cable is shown
in Figure 14.
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Figure 14. Acceleration of the experimental cable.

Limited to the in-service conditions, it is difficult to install a load cell or other sensors
on the cable to acquire the cable tension directly. In this situation, a GPS sensor and a strain
gauge were installed on the top of the South Tower and the girder near the bottom of the
experimental cable as a reference, respectively. Stress was calculated from the strain data
based on the calibration in the construction stage. The sampling frequencies of the GPS
sensor and strain gauge are 1 Hz and 20 Hz, respectively. The GPS displacement of the
tower and the stress of the girder are shown in Figure 15a,b, respectively.
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5.3. Identification Results and Discussion

The dynamic response was used to identify the tension based on the proposed algo-
rithm. Firstly, the time-varying frequency of the acceleration signal was extracted using TFR
techniques. The window function in STFT was also chosen as 256 based on the discussion
in the workshop experiment. Moreover, the best identification range is between 5.0 to
7.0 Hz. Thus, the 15th, 16th, and 17th frequencies of cables were identified clearly from
the reassignment spectrogram, as shown in Figure 16a. It is clear to see from Figure 16a
that the structural frequency changes more frequently than the results of the workshop
environment. Moreover, the identified time-varying frequency was used to calculate the
tension by the 15th order frequency based on Equation (12), as shown in Figure 16b.
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Figure 16. (a) TFR spectrogram of measured acceleration responses and (b) identified cable tension
using 15th frequency.

The cable tension increased from 4325 ± 30 kN to 4425 ± 25 kN as the trucks moved
over the bridge, as shown in Figure 16b. The tension variation was smaller than the truck’s
static weight of 117.6 ± 3.92 kN because the loads were spread over two cables upstream
and downstream. Moreover, the increasing moment of cable tension during Stage 1 in
two cases coincided with the stress results, as shown in Figure 17a. The loading trucks
passed through the mid-span area and moved to the South Tower during this period.
Meanwhile, there was a sudden jump at about 200–225 s (Stage 2 in Case 1) when the trucks
crossed the bottom region of the cable. The stress simultaneously decreased due to the
compression of the steel box girder by the trucks. Therefore, the variation of identified
tension is simultaneously changed with the stress of the girder. It is proved that the time-
varying characteristics of cable tension can be extracted based on the proposed algorithm.
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Figure 17. Comparison of cable tension to (a) stress and (b) GPS displacement.

For the GPS displacement shown in Figure 17b, there is still a high correlation between
the GPS displacement and the trend of cable tension. However, the variation of GPS
displacement was ahead of the identified tension because the displacement of the tower
is a global parameter controlled by other cables. It can be found from the figure that the
time to change in advance will be reduced as the truck gets closer to the location of the
measured cable.

5.4. Assessment of Cable Tension

The identified time-varying tension can be used to assess the service performance
of cables. The two indices are introduced to evaluate the operating condition of the
measured cable, the 40% ultimate bearing tension, and the initial cable tension. The 40%
ultimate bearing tension is the maximum allowable tension in the design stage to ensure
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a safety coefficient within 2.5. The initial cable tension was measured when the bridge
was completed in 2008. It is found in Figure 18a that the measured tension in the field
experiment is between the middle of these two indices, 5732 kN and 4284 kN. There is still
a large allowable range of cable tension under such a loading case.
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Figure 18. Assessment of service performance of the cable. (a) Results of the field experiment and
(b) identified cable tension from 2017 to 2019 and an abnormal condition during strong winds.

The identified cable tension can also be used to reflect the deterioration or abnormal
conditions of cables. Firstly, the time-varying tension is identified at 12 o’clock on March
31 from 2017 to 2019, as shown in Figure 18b. The identified tensions in 2017, 2018, and
2019 are marked with orange, pink and blue colors, respectively. The average values of
these three years are all about 4500 ± 150 kN. The cable tension is mainly controlled by
the moving loads. The operating condition of the cable is pretty healthy, and no obvious
deterioration is found. Then, an abnormal condition is chosen to show the applications
of the proposed algorithm during a strong wind in the summer of 2018, as marked with
purple color in Figure 18b. The maximum wind speed at the height of the tower is
more than 50 m/s during this server tropical storm. The cable tension increases to about
5100 ± 50 kN, much greater than the initial cable tension of 4284 kN. Fortunately, the cable
tension remains within the designed 40% ultimate bearing tension of 5732 kN, showing
that the service performance of the cable is under safety conditions.

6. Conclusions

In this study, the proposed TFR-based algorithm is proven to be effective in identifying
time-varying cable tension, addressing the issue of insufficient efficiency and low resolution
in the vibration-based method. Based on the results of the workshop tests and the dynamic
experiment on the Sutong Bridge, the conclusions are remarked as follows:

(1) The proposed algorithm can identify the time-varying instantaneously from reassign-
ment spectrograms of acceleration responses. The measured time interval for the identifi-
cation of frequency is within 12.8 s. Compared with the STFT results, the time-frequency
resolution of the proposed algorithm is clear and has a satisfactory accuracy.

(2) The experimental results show that the identification accuracy had a controllable
error from the actual loads. The average error is between 0.16% and 0.59%, while the
maximum error is 5.70%. The error usually appears at the boundary of the signals or
calculated results by the low-order frequencies.

(3) The identified tension has a synchronous trend with the adjacent structural responses,
such as the GPS displacement of the tower and the stress of the girder. The identified
results are consistent with the applied moving loads.

(4) The proposed method can assess the deterioration or abnormal conditions of cables
with two important indices, the 40% ultimate bearing tension and the initial cable
tension measured in the construction stage.
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For future research, the algorithm has potential application in the real-time struc-
tural health monitoring of the service performance of cables in extreme events, such as
earthquakes, typhoons and accident predictions.
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