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Abstract: Personalized learning paths aim to save learning time and improve learning achievements
by providing the most appropriate learning sequence for heterogeneous students. Most existing
methods that construct personalized learning paths focus on students’ characteristics or knowledge
structure, while ignoring the critical roles of learning states. This study describes a dynamic person-
alized learning path planning algorithm to recommend appropriate knowledge points for online
students based on their learning states and the difficulty of each knowledge point. The proposed
method first calculates the difficulty of knowledge points automatically and constructs a knowledge
difficulty model. Then, a dynamic knowledge mastery model is built based on learning behavior
and normalized test scores. Finally, a path that satisfies students’ personalized changing states is
generated. To achieve the aforementioned goal, a novel method that calculates the difficulty of
knowledge points automatically is proposed. Moreover, the personalized learning path planning
method proposed in this research is not limited to a particular course. To evaluate the method, we
use a series of approaches to verify the impact of the personalized path on student learning. The
experimental results demonstrate that the proposed algorithm can effectively generate personalized
learning paths. Results demonstrate that the personalized path proposed by the algorithm can im-
prove effective behavior rates, course completion rates and learning efficiency. Results also show that
the personalized learning paths based on student states would help students to master knowledge.

Keywords: personalized learning path; mastery learning; learning behavior; personalized instruction
scaffolding

1. Introduction

Massive Open Online Courses (MOOCs) are popular among students because of their
low registration threshold and liberal learning time. Learners have the freedom and chances
to choose excellent courses and quality exercises [1]. However, some obstructions, such
as lower completion rates, lower pass rates and lower learning efficiency, hinder MOOCs’
development [2,3].

Fixed learning sequences still exist within a particular course in MOOCs. A predeter-
mined learning sequence is unsuitable for all learners’ studies, as diverse students have
different knowledge structures and learning states. The teachers can easily and expediently
support students in face-to-face classes. However, learning in an online scenario weakens
the teacher’s guidance role. It is challenging for learners to choose appropriate learning ma-
terials or sequences based on their actual learning situations. Thus, heterogeneous learners
have a growing demand for diversified learning guidelines in an online learning scenario.

The formal definition of personalized learning provided by the U.S. Department
of Education in the 2017 National Educational Technology Plan is presented as follows:
“Personalized learning is an instructing strategy that tailors the learning speed and tactics
to the specific needs of each student. Learning objectives, instructional methodologies, and
instructional content (especially its sequencing) can all vary depending on the requirements
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of students” [4]. Previous research works show that personalized learning contributes
to learning achievement and learning satisfaction [5]. Providing tailored scaffolds helps
heterogeneous students to master knowledge better and contributes to improving learners’
subsequent learning [6–8].

This study aims to propose an algorithm that can automatically generate personalized
learning paths based on the learners’ learning states in real-time. Unlike previous studies,
e.g., [6], this research takes learning behaviors as essential parameters for judging students’
learning states. More advanced than previous studies in which teachers have to manually
label the difficulty of knowledge points, this research uses a data-driven scoring model
to measure the difficulty of knowledge points for general students automatically. This
approach lowers time costs and the stress on teachers to a certain extent. Moreover, the
personalized path planning algorithm can popularize all kinds of courses in an online
learning scenario. The research questions and highlights/contributions of this study are
summarized in Section 2.4.

The following are the article’s main sections: Section 2 provides the theoretical foun-
dation and a review of relevant research, and Section 3 describes the theoretical method for
generating a personalized learning path. The critical steps of the dynamic personalized
learning path planning algorithm are described in this section. Section 4 contains the
experimental results and discussions, and the evaluation and conclusions are provided in
Sections 5 and 6.

2. Research Background

Personalized Learning Path (PLP) is a strategy that selects the most suitable learning
sequences for learners. Previous studies show that personalized learning paths contribute
to students’ academic achievements [9–11]. The personalized learning path as an alternative
path aims to replace the predefined learning sequence. While not consistently superior to
the original path, alternative paths provide students with unique learning support in a real
learning environment. The existing personalized learning path planning methods can be
divided into three main categories:

• Personalized Path Planning Based on Student Characteristics;
• Personalized Path Planning Based on Log Data;
• Personalized Path Planning Based on Knowledge Construction.

In the following sections, each category is reviewed in detail.

2.1. Personalized Path Planning Based on Student Characteristics

Most personalized learning paths help to improve learning efficiency [12]. The person-
alized learning path planning method based on student characteristics considers character-
istics such as learning style, and preference is the essential parameter. Researchers rely on
tests or questionnaires to collect learner characteristics [13–15], such as students’ learning
goals [16], learning styles [7,17], and preferences [7,18], to construct learner models. For
example, Vanitha et al. considered learners’ learning goals and knowledge levels to be
significant elements for path planning [19]. Rohloff et al. emphasized the need for path
planning and course recommendations based on diverse learning goals in MOOC learning
scenarios [16]. Nabizadeh et al. used a depth-first search algorithm to locate as many course
sequences as possible by combining the learning goals with a knowledge map [9]. Yang
et al. proposed an attribute-based ant colony algorithm to recommend suitable learning
objects based on learning styles and a learner’s knowledge level [20].

The aforementioned studies show that constructing a personalized learning path
based on the learners’ characteristics is valid and suitable. Nevertheless, constructing
personalized learning paths based on learners’ characteristics is prone to overlooking the
logic of knowledge. Learners are prone to encountering challenges in grasping the whole
knowledge structure during the learning process.
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2.2. Personalized Path Planning Based on Log Data

One of the main studies in online learning is how to provide personalized learning
paths according to learners’ log data [21]. During online learning, these “footprints” can
be used as the basic parameters for constructing a learning path [22]. Collecting learning
behavior data provides opportunities for researchers or teachers to understand the learners’
learning process and to predict their academic achievements [22,23]. For example, Xia et al.
proposed a system that can provide suitable questions based on the history data of other
students in parallel learning scenarios. The system helped learners to obtain customized
and adaptable quiz sequences from a massive question bank [24]. Liu et al. proposed a
learning path combination recommendation method based on log data from learners [25].

The log data-based recommendation system made use of students’ historical behavior
data to grasp their features and recommend the learning objects they need. However, this
kind of path generation methods ignored the knowledge structure and learners’ unique
features. The personalized learning path derived from group data may not be appropriate
for all learners. Moreover, it will be challenging to encounter the cold-start problem when
data are not sufficient.

2.3. Personalized Path Planning Based on Knowledge Construction

Grasping the prerequisite relationships of a kind of knowledge helps students to
master that knowledge. One of the reasons why learners drop out of MOOCs is that
they cannot find the right logical sequence of knowledge [26]. Supporting beginners who
are lost in materials by mining the prerequisite relationships of a kind of knowledge is
thus important.

Fung et al., for example, extracted concept keywords from relevant course materials
and calculated the correlation coefficient matrix between concepts [27]. Zhu et al. proposed
a novel multi-constraint learning path recommendation algorithm based on a knowledge
map to solve the problem that most learners struggle to choose suitable learning materials.
Finally, the validity of the algorithm was confirmed by a questionnaire [28]. This person-
alized learning path, which focuses only on the knowledge structure, ignores learners’
unique features and thus is not conducive to their subsequent learning.

2.4. Brief Summary of References

A high dropout rate, low completion rate, and poor learning effects are problems
that the MOOC platforms needs to solve [29,30]. Forming a customized learning sequence
based on learners’ characteristics is not a new idea. However, the learning paths generated
at once based on learners’ feature or learning data are not adapted to the reality of the
learning situation [31]. It is necessary to consider the learners’ changing state to construct a
personalized learning path.

This study proposes a dynamic learning path planning algorithm for the online
learning scenario. Following previous research [6], this study also pays attention to the sig-
nificant role of learners’ changing states in learning. In contrast to the strategy of manually
labeling the knowledge difficulty used in the previous study, the method proposed in this
study can calculate the difficulty of knowledge points automatically based on a data-driven
scoring model.

Most current personalized learning path recommending systems are applied to a
specific course [32]. Moreover, MOOC platforms, such as XuetangX, cannot provide
personalized learning sequences for learners even in a specific course. Thus, this study
proposes a novel method that can provide personalized learning path planning based
on the timely diagnosis of students’ learning states in an MOOC learning scenario. This
algorithm is a generic method that can be utilized in various courses.

Based on the above analysis, this study focuses on the following research questions:

RQ 1: Is a personalized learning path based on learning states beneficial to MOOC learners’
learning efficiency?
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RQ 2: Is a personalized learning path based on learning status conducive to the continuous
learning of MOOC learners?

Moreover, the research highlights and contributions of this work are summarized as
follows:

• A personalized learning path planning algorithm based on learners’ dynamic learning
state and the difficulty of knowledge points.

• A data-driven scoring model that measures the difficulty level of specific knowledge
points for general students. A knowledge difficulty model is established based on
the scoring model. The knowledge difficulty model is more accurate and convenient
when compared to the previous study on manually marking knowledge difficulty
levels by subject teachers [6].

• A knowledge mastery model based on learners’ learning behavior data and exercise
data, such as MOOCCubeX [33], to dynamically evaluate students’ learning states.

• A feedback strategy to dynamically arrange learning paths by following a circular
learning list based on their real-time state and the knowledge difficulty level. The
importance of “mastering learning” is also emphasized.

3. Method

This study aims to construct a personalized learning path planning method based on
learners’ real-time learning states and knowledge difficulty levels. Unlike the previous
study [6], this work proposes a novel method to automatically calculate the difficulty of
knowledge points. Moreover, the personalized learning path planning method proposed in
this study is not limited to a particular course. This section explains the main method and
terminologies of the whole pipeline in details. The overall steps of generating personalized
learning paths are as follows:

(1) Constructing a knowledge difficulty model and calculating the difficulty of knowledge
points automatically;

(2) Constructing a dynamic knowledge mastery model based on students’ learning be-
haviors and normalized exercise scores;

(3) Generating personalized learning paths for learners based on the knowledge difficulty
model and knowledge mastery model.

3.1. Data Preprocessing

The course and learning data stored inside the MOOC platforms mainly comprise two
parts, i.e., course resource data and students’ learning behavior data. Each course contains
many chapters with videos and exercises. Figure 1 illustrates the hierarchical diagram of
the course resources.

Each course usually contains a few chapters. The data in each course chapter are listed
as follows:

• Course video titles and captions;
• Exercise tests;
• Prerequisite relationships among knowledge points.

The MOOC platforms record all online users’ learning behaviors of watching course
videos, including repetition, fast-forwarding, and skipping. Students need to complete the
chapter exercise after watching the video. The learning data of each student are depicted as
follows:

• Video watching behavior;
• Exercise performance;
• Comments and replies in the comment area.
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Figure 1. Content hierarchy of course resources.

To develop the dynamic learning path planning algorithm, we processed all the
aforementioned data as follows:

(1) Keyword extraction: Extract keywords from video titles, video subtitles, and chapter
exercises.

(2) Exercise classification: Compare the keywords of the chapter exercise with the key-
words of the video titles and subtitles. Each exercise is categorized into the knowledge
points with the most occurrences of its keywords.

(3) Normalization: Normalizing scores of exercise tests.

3.2. Knowledge Difficulty Model

Based on the overall performance of students in MOOC learning scenarios, this section
constructs a scoring model to measure the difficulty of specific knowledge points. The input
parameters of the knowledge point-based difficulty model are the average exercise test
scores of all students who have studied the knowledge point. The output of the knowledge
difficulty model is the difficulty level of knowledge.

di f f (j) = w1[1 − sco(j)] + w2rep(j) + w3com(j) (1)

In Equation (1), w1, w2 and w3 are weights of the input parameters. sco(j), rep(j) and
com(j) are the average test score, average number of repeated watching of the video and
average number of comments of the j-th knowledge point, respectively. The larger the
di f f j value, the more difficult the j-th knowledge is to master.

sco(j) =
∑

Nhistory
j

i=1 scoij

Nhistory
j

(2)
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rep(j) =
∑

Nhistory
j

i=1 repij

Nhistory
j

(3)

com(j) =
∑

Nhistory
j

i=1 comij

Nhistory
j

(4)

In Equations (2)–(4), Nhistory
j is the total number of students who have learned the j-th

knowledge point. scoij, repij and comij are the test score, number of repeated watching in-
stances of the video and the number of comments of the i-th student for the j-th knowledge
point, respectively.

For these three input parameters, i.e., sco(j), rep(j) and com(j), the Analytic Hierarchy
Process (AHP) [34] was used to determine the weights of the score model by professors
majoring in education and working in universities in China to quantify the difficulty of
knowledge mastery.

Table 1 shows the weights of the knowledge difficulty model generated by AHP. After
calculation, the Consistency Ratio (CR) is equal to 0.033, which is less than 0.1. As a
consequence, the result passed the consistency test.

Table 1. Weights of the knowledge difficulty model.

w1 w2 w3

0.633 0.260 0.107

To validate the proposed model, data originating from the MOOCCubeX dataset [33]
were adopted. Student exercise tests scores, student video watching behavior and student
comment data were extracted from this dataset for further testing.

3.3. Knowledge Mastery Model

This study agrees with prior research that learner-specific exercise performance, to
some extent, represents learners’ level of knowledge acquisition. Researchers paid more
attention to learners’ exercise performance in previous studies while ignoring the critical
impact of learning behaviors.

This work developed a knowledge mastery model based on student performance and
learning behavior in MOOCs to dynamically evaluate students’ learning state. The students’
video watching behaviors of specific knowledge points and the normalized exercise test
scores are the input to the knowledge mastery model. The output is the state of the learner.
The specific parameters of this model are depicted in Table 2.

Table 2. Specific parameters of the knowledge mastery model.

Variable Type Illustration

scoij Float The normalized score of the i-th student for the exercise
of the j-th knowledge point.

abnij Bool The i-th student has fast forward or multiple skips behav-
ior when watching the j-th knowledge video.

stateij Int The mastery of the i-th student to the j-th knowledge
point.

Figure 2 illustrates the flow chart of student state judgment. The detailed process are
as follows:

(1) Students study the initial chapters;
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(2) Students complete the video and then perform the chapter exercise tests;
(3) The learners’ states are judged based on the knowledge mastery model;
(4) Suitable knowledge points are recommended for learners based on their learning

states.

Figure 2. Flow chart of student status judgment. Abnormal behaviors include fast-forwarding or
skipping when watching a video, and normal behaviors entail no such operations.

The state mentioned above is divided into four levels, from 1 to 4, which represent
unlearned, unmastered, insu f f iciently mastered and mastered, respectively.

Unlearned (state = 1) means that a student’s normalized test score is lower than
0.6; they fast-forward or skip when watching the video, which is not a normal watching
behavior. The student should be assigned corresponding knowledge points for reviewing.

Unmastered (state = 2) means that the student’s normalized exercise test score is
lower than 0.6, but the entire video is watched without fast-forwarding or skipping. The
student should be assigned corresponding knowledge points for review.

Insu f f iciently mastered (state = 3) means that the student’s normalized exercise test
score is above 0.6 but less than 0.8. The student should also be assigned corresponding
knowledge points for review.

Mastered (state = 4) means that the student’s normalized exercise score is greater
than 0.8 and has mastered most of the knowledge point. The student should be assigned a
new chapter to learn.

Students’ learning behavior was recorded, and students’ exercise test scores were
normalized. When a student fast-forwarded or jumped while watching a video and the
normalized test score was less than 0.6, the model concluded that the student’s state was
unlearned (state = 1). When the students’ video watching behavior was normal, but the
score was also less than 0.6, the model concluded that the student’s state was unmastered
(state = 2). If a student’s score was greater than 0.6 but less than 0.8, the model concluded
that the student’s state was insu f f iciently mastered (state = 3). If a student’s normalized
test score was greater than 0.8, the model concluded that the student’s state was mastered
(state = 4).

4. Experiments and Results
4.1. MOOCCubeX Dataset

The MOOCCubeX [33] is a large scale open-access MOOC dataset originating from the
XuetangX MOOC platform. The database is provided by XuetangX and uses a fine-grained
approach to reorganize the data from a knowledge perspective. The abundant student
learning data and course data strongly supported the completion of this study. For the
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detailed description of the dataset, e.g., data type and format, etc., please refer to the
original paper [33].

4.2. Personalized Learning Path Generation

Experiments of the dynamic learning path planning algorithm were based on the
Application Programming Interfaces (APIs) provided by Tsinghua University, the Xue-
tangX MOOC platform and the MOOCCubeX dataset. Students followed a fundamental
logical sequence of knowledge (i.e., the original path sequence) at the beginning of the
study, as mastery of advanced knowledge depends on mastering prerequisite knowledge.
Consequently, the personalized learning path planning approach proposed in this study
used a feedback strategy to form a personalized learning path based on learning states.

The personalized learning path planning algorithm is based on the knowledge diffi-
culty model and knowledge mastery model mentioned in Sections 3.2 and 3.3, respectively.
The learning path planning procedure is depicted as follows:

(1) Students learn in the original learning sequence.
(2) When students are judged as having completed each chapter, their knowledge mastery

status is automatically updated based on the knowledge mastery model. The algorithm
will automatically assign the corresponding knowledge point for the student if the
algorithm determines that the student has not fully mastered the knowledge.

(3) Unlearned and unmastered knowledge is added to the review list. Moreover, the
knowledge points that are insufficiently mastered for the prerequisite knowledge
(unmastered) are also added to the review list.

(4) Knowledge points at different levels are arranged based on the prerequisite relation-
ship, and knowledge points at the same level are arranged from easy to difficult ranks.

(5) After reviewing the list of knowledge points in the above order, the student completes
the test again, and their state will be updated. If the student’s state is still in unlearned
(state = 1), unmastered (state = 2) or insufficiently mastered (state = 3) states in
this chapter, then the process goes back to Step 3.) If the student fully grasps the
knowledge (state = 4), then the process goes back to Step 1 and continues to the next
suggested chapter.

Figure 3 illustrates three typical learning paths generated by the proposed method.
The learning paths shown in Figure 3a,b significantly differ from the paths planned by
the algorithm, but the learning paths shown in Figure 3c coincide with the algorithm’s
planned paths.

According to Figure 3a, the first typical learning path is in linear style. Students learn
all knowledge points sequentially and without retrospection, resulting in a significant
number of insufficiently mastered, unlearned and unmastered knowledge points in the
learning progress that have not been handled. Therefore, this type of learning progress is
ineffective. According to Figure 3b, the second typical learning path is circular. Throughout
the learning process, students independently reviewed the knowledge points. Knowledge
points that were insufficiently mastered were missed, while some mastered knowledge
was repeatedly reviewed. Therefore, this type of learning progress is inefficient as well.

Compared with Figure 3a,b, the third typical learning path automatically generated
by the algorithm in Figure 3c precisely covers all unlearned, unmastered and insufficiently
mastered knowledge. The knowledge points are also ranked based on prerequisite relation-
ships and difficulty levels. This shows that the learning paths generated by the dynamic
learning path planning algorithm are adaptive for students. The personalized learning
path based on learning states saves time and increases learning efficiency.
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Figure 3. (a–c) is three typical learning paths of MOOC learning. (a) is a typical linear learning path
of student in MOOCCubex; (b) is typical circular learning path of student in MOOCCubex; (c) is a
learning path automatically generated by the algorithm.

5. Evaluation

To evaluate the effectiveness of the proposed approach, evaluation methods proposed
by Nabizadeh et al. [9] are adopted to demonstrate the effectiveness of the algorithm and
the feasibility of its potential applications.

5.1. Offline Evaluation

To evaluate the effectiveness of the proposed personalized learning path algorithm,
the offline evaluation is adopted according to the following three steps:

(1) Path Extraction: Comparing the existing learning paths of students in MOOCCubeX
with the learning paths generated by the proposed algorithm. The fragment of students
whose learning path pattern of the sequence is in accordance with the learning path
generated by the algorithm are extracted.

(2) Student Classification: The students in the database are divided into two categories,
one of which is the students mentioned in Step 1 (i.e., training path group), and the rest
of the students in the dataset are seen as the control group (i.e., general student group).

(3) Contraction: A series of evaluation methods were used to compare the effective
behavior rate, completion rate and learning effect of the two groups of students. The
details are described in the following sections.

5.2. Effective Behavior Rate

We compare the efficiency of learning behaviors in knowledge acquisition progress
between the general student group and the training path group. Furthermore, we classified
students’ online learning behavior into two categories: effective behavior and ineffective
behavior. The behavior of learning unlearned knowledge, unmastered knowledge and
insufficiently mastered knowledge was defined as effective behavior. The behavior of
learning mastered knowledge was defined as ineffective behavior. The learning path’s
efficiency was defined as follows:

Effective behavior rate =
1
N

N

∑
i=1

[
1 −

Lrep
i
Li

]
(5)

In Equation (5), N is the number of students, Li is the length of the i-th student’s learning
path, and Lrep

i is the number of repeated learning of the mastered knowledge in the i-th
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student’s learning path. The greater the effective behavior rate value is, the less ineffective
behavior on the learning path and the greater the learning efficiency.

After calculation, the average effective behavior rate of the training data group was
93%, while the average effective behavior rate of the general student group was only 71%.
This indicates that the proposed dynamic learning path planning algorithm can accurately
locate blind spots of knowledge. It can also develop effective learning paths and improve
the efficiency of learning in MOOCs.

5.3. Completion Rate

To evaluate whether the proposed personalized learning path planning algorithm
contributes to students’ continuous learning in the MOOC, we calculate the completion
rate of the training data group and the general student group.

The following equation is how the MOOC completion rate was calculated:

Completion rate =
1
N

N

∑
i=1

[
1 −

L1
i

K

]
(6)

In Equation (6), N is the number of students, and L1
i is the knowledge point with state = 1

in the i-th student’s learning path, i.e., the unlearned knowledge.
After calculation, the MOOC completion rate of the training path group was 76%,

while the MOOC completion rate of the general student group was only 57%. This indicates
that the dynamic learning path planning algorithm can improve MOOC completion by
monitoring students’ knowledge mastery in real-time during the online learning process
and reminding students to review the knowledge points that have not been mastered.
This precisely answers the first research question, showing that personalized learning
paths are helpful to support the persistent learning of MOOC learners and help to reduce
dropout rates.

5.4. Learning Effect

Finally, the total online learning time and average exercise test score of the general
student group and training path group were calculated, and the statistics are demonstrated
as follows.

Table 3 shows that the average exercise test score of the training path group was
significantly higher than that of the general student group. This indicates that the proposed
learning path dynamic planning algorithm may improve the students’ online learning
efficiency (i.e., improve the exercise score and reduce the learning time). Meanwhile, by
comparing the average total learning time of students in the same score band, it is found
that the average learning time of the training path group is shorter than that of the general
student group. The experiments proved that the proposed learning path dynamic planning
algorithm may effectively improve students’ online learning efficiency. This answers the
first research question, showing that personalized learning paths help to improve learners’
learning effectiveness.

Table 3. Statistics of the average online learning time and the final test average scores of students.

Statistics Illustration General Student Group Training Path Group

sco f inal Average score of final
test.

54.5 75.2

numsco≥60
f inal Average online learn-

ing time of students
with a score ≥ 60.

11.3 h 9.1 h
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6. Conclusions

This paper presents a dynamic personalized learning path generation algorithm that
can provide suitable knowledge sequences to students based on their learning states and
the prerequisite relationships for certain knowledge. We first constructed a knowledge
difficulty model to automatically calculate the difficulty of knowledge points. Compared
with previous methods, the model achieves the function of automatically calculating the
difficulty of knowledge points based on other learners’ historical learning behavior data. A
knowledge mastery model was also constructed to diagnose learners’ states by analyzing
students’ learning behavior data and normalizing exercise test scores. Different from previ-
ous studies, our method creatively takes students’ online video watching behaviors and
exercise test scores as basic parameters for diagnosing students’ states. Finally, by incorpo-
rating both the knowledge difficulty model and knowledge mastery model, a personalized
learning path was generated. The experiments show that the proposed algorithm can help
learners to master knowledge and provides a unique learning sequence. Furthermore, the
evaluation results demonstrate that the personalized learning path is capable of improving
effective behavior rates, course completion rates and learning efficiency.

In future research, this approach is expected to be used in the traditional learning
scenario to form a blended learning strategy. Similarly, as students’ learning statuses
change, the time dimension should also be considered to diagnose students’ states in
future work.
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