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Featured Application: Precise and accurate lower limb rehabilitation in the form of locomotion
assistance and gait training through robust control of robotic exoskeletons.

Abstract: Rehabilitation in the form of locomotion assistance and gait training through robotic
exoskeletons requires both precision and accuracy to achieve effective results. The essential challenge
is to ensure robust tracking of the reference signal, i.e., of the gait or locomotion. This paper
presents the design of model-based (MB) and model-free (MF) robust control strategies to achieve
desired performance and robustness in terms of transient behavior and steady-state/tracking error,
implementable to the locomotion assistance and gait training by exoskeletons. The dynamic responses
of the exoskeleton system were investigated with both the control strategies. The study was carried
out with a variety of reference signals and performance was evaluated to identify the best suited
approach for rehabilitation exoskeletons. In case of the model-based control, a mathematical model of
the system was developed using a bond graph modeling technique and a lead compensated H-infinity
reference gain controller was designed to ensure robust tracking performance. In the model-free
control strategy, however, the system function is approximated using radial basis function neural
networks (RBFNNs) and an adaptive proportional-derivative RBFNN controller was designed to
achieve the desired results with minimum tracking error. Both strategies make the system robust
and stable. However, the MF control strategy is faster for all reference inputs as compared to the
MB control strategy i.e., faster to approach the peak value and settle, and rapidly approaches the
zero steady-state/tracking error. The rise time in the case of a sinusoidal input for model-free
control is 0.4 s faster than the rise time in model-based control. Similarly, the settling time is 3.9 s
faster in the case of model-free control, which is a prominent difference and can provide better
rehabilitation results.

Keywords: bond graph modeling; model-based control; rehabilitation; exoskeleton; robust
reference tracking

1. Introduction

Natural mobility hindrance for human beings is a critical problem as it causes de-
pendency and poor quality of life. This hindrance is caused by physiological (muscular
or skeletal) or neurological disorders or disabilities (stroke, spinal cord injuries etc.) [1].
In recent years, the use of robotic exoskeletons in the medical field for lower limb reha-
bilitation has gained much importance throughout the world. This is mainly because of
two reasons: firstly, unlike passive conventional mobility aids (such as crutches, man-
ual wheelchairs, and walkers etc.), exoskeletons are a source of active anthropomorphic
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mobility. Secondly, exoskeletons support rehabilitation in the form of locomotion assis-
tance and gait training. In both forms, exoskeletons are proven to be more beneficial
and effective in terms of comfort and results, as compared to conventional assistance and
manual training [2,3]. For these reasons, more research has been carried out in the field
of rehabilitation exoskeletons and numerous multidisciplinary (electrically, hydraulically,
or pneumatically powered) exoskeletons have been designed [1,4,5]. Whether designed for
active or passive rehabilitation, a state-of-the-art mechanical design requires an effective
control strategy to provide desired performance. Active rehabilitation refers to repetitive
movements/exercises through exoskeletons with assist-when-required algorithms, either
integrated with trajectory tracking or repetitive learning. This ensures active participation
of the patient, whereas passive rehabilitation involves reference/trajectory tracking control
of the robotic exoskeleton, i.e., the control law is designed to ensure proper tracking of a
pre-defined reference/trajectory. The patient forcibly receives training. Passive rehabili-
tation training mostly uses trajectory tracking, whereas the active rehabilitation training
employs impedance control with assist-when-required algorithms. This research focuses
on passive rehabilitation through exoskeletons and provides control strategies that ensure
trajectory tracking over a predefined gait pattern.

The reference trajectory tracking controllers are broadly categorized as model-based
(MB) and model-free (MF) controllers. A model-based control strategy requires mathe-
matical modeling of the system; however, a model-free controller does not need an exact
mathematical model, but a system function is approximated. The lower limb exoskeletons
are modeled as a two link [6,7] or three link [8,9] manipulator. In most of the previous
research, the Lagrange method is used for development of the mathematical model of
system dynamics. This method uses the difference between the kinetic and potential en-
ergies acting on the links, and derives a dynamics model of the system in the form of a
relationship between the associated force/torque and the generalized coordinates. The
standard form of dynamics of a mechanism is expressed as Equation (1):

τ = M(q)
..
q + C

(
q,

.
q
)
+ G(q) (1)

where τ ∈ Rn is the applied torque, M(q) ∈ Rn is the inertia matrix, C
(
q,

.
q
)
∈ Rn represents

Coriolis and centrifugal force, G(q) ∈ Rn is the gravitational force, and q ∈ Rn denotes the
angle. Equation (1) can be modified with addition of external disturbances ‘d’ (refers to
the interference that becomes part of the system exogenously) at the system input [10] and
model uncertainties ‘∆’ (refers to difference between the actual system and the modeled
system) [11,12]. The resulting modification is shown in Equation (2):

τ = M(q)
..
q + C

(
q,

.
q
)
+ G(q) + ∆ + d (2)

The Lagrangian approach in the case of systems having complex dynamic charac-
teristics requires more computations. An alternate approach for modeling the manipula-
tors is the bond graph. The bond graph technique provides a model of the system with
less complexity and more flexibility [13,14], as compared to the conventional Lagrangian
method [15,16]. Hence, the bond graph technique was used in this study for the modeling
of exoskeleton for rehabilitation. Similar studies in which a bond graph is used to model a
powered exoskeleton for use as an industrial backpack and a knee joint exoskeleton are
presented in [17,18].

It is worth mentioning that rehabilitation in the form of locomotion assistance and gait
training through robotic exoskeletons requires both precision and accuracy. The essential
challenge for this is to ensure robust tracking of the desired trajectory of locomotion. This
desired trajectory is basically a clinical gait pattern provided by the physician, and the
exoskeleton as a rehabilitation equipment is used and controlled to ensure that the patients
repetitively follow the pattern to train or exercise the muscles. The control strategies
used in the literature for trajectory tracking are designed either using the model of the
system [19–33], the approximated function [34–44], or the combination of both [6]. To
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ensure tracking, various types of controllers are used. In some cases, a single control action
is enough to fulfil the required task but, in other cases, a combination of one or more
controllers is required. Trajectory tracking through impedance/admittance control is also
carried out [19–22] where the impedance between the exoskeleton and the human leg is
controlled by changing the force applied by the actuator. MB and MF trajectory tracking
control strategies are also used to achieve reference signal tracking in exoskeletons, with
high stability and performance.

In [23], a MB sliding mode controller is designed. The results show that all three joints
reach the desired set angles in simulation but in experimentation the hip and knee joints do
not reach the final value. Similarly, a pneumatic muscle-based two-DOF ES is controlled by
proportional-derivative (PD) and adaptive control strategies separately in [7]. The results
show that the output is slightly out of phase for PD control but for adaptive control the
tracking results show adaptation within 1.5 s of operation. There exists an initial error of 1
for both the joint angles. Trajectory tracking through adaptive sliding mode impedance
control is implemented in [24]. The results show better tracking for the knee joint but for
the hip joint there is a delay in phase. The work presented in [45] focuses on achieving
system robustness and dynamic performance similar to that of this research, for a 2-DOF
LLE. An MB robust sliding mode controller is designed to achieve the desired output.

A new classical PD and PD-particle swarm optimization augmented force control
(PSOAFC) approach is implemented in [25]. There exists phase delay in joint angles in the
case of a time-varying signal. However, for a simple model with an external disturbance
torque vector, PD-PSOAFC shows better results than classical PD. In other research works
for passive rehabilitation, the MB controllers designed for trajectory tracking include an
adaptive admittance control for unstructured uncertainty compensation [26], a sliding
mode controller for robustness [28,31], and an intelligent adaptive fuzzy approach [33].
In a model-free control strategy, however, the mathematical model is not derived, and
the system is presented in the form of a function. This function is approximated using
techniques such as system identification and artificial intelligence. Model-free control
strategies for efficient tracking performance have been designed in various studies, most
of which used neural networks to approximate the function of the system and the control
law design. The MF controllers designed for passive rehabilitation include an intelligent
adaptive controller [34,41,42], an intelligent robust controller [35,40], and a second-order
robust sliding mode controller [39].

These MB and MF trajectory tracking control strategies perform well. However,
they also present some issues, including tracking error range, output being out of phase
from input, non-robust performance in the presence of disturbances, and parametric
uncertainties. This research, therefore, focuses on the enhancement of tracking performance
of the LLRE in the presence of disturbances and uncertainties, and elimination of phase
delay, especially in the case of a time-varying reference signal. This is achieved via the
design of both the MB and MF robust control strategies. The performance of both of the
closed loop systems was analyzed to identify the optimized robust control methodology
for the LLRE. The paper is divided into five sections, including the introduction given in
Section 1. In Section 2, the design of the model-based control strategy is presented and
the simulation results are analyzed. In the following section, the design of the model-free
control strategy and the simulation results are presented. A comparative analysis of results
is presented in Section 4 to identify the optimized methodology for robust control of the
LLRE, before the study is concluded in Section 5. See Figure 1.
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2. Model-Based Robust Control Design

This section presents the design of a model-based control strategy to address the
robust control problem and to ensure the tracking of the reference time-varying harmonic
signal. The robust control problem is formulated such that there exist input and output
disturbances and unstructured additive mismatched uncertainty at the inertial mass of the
lower limb exoskeleton links, including the human leg, which an exoskeleton undergoes
during rehabilitation process. The mathematical model of the system was developed using
the bond graph modeling technique. This research work is an extension of our previous
work presented in [13,46]. Previously, the designed MB control law provided disturbance
rejection and uncertainty compensation but the final value in case of step and impulse
inputs was not achieved. Secondly, the control law for a time-varying periodic signal was
not designed. Here, first, the control law was modified to achieve a final value with a zero
steady-state. Second, the control law was upgraded to provide reference tracking in the
case of a sinusoidal input.

2.1. Mathematical Model Using Bond Graph

A mathematical model of the three-link exoskeleton manipulator, in the form of a
transfer function and state space equations, was obtained using the bond graph model-
ing technique as given in (3) and (4). A schematic diagram of the exoskeleton and the
bond graph model of the system generated using the 20-sim software are presented in
Figures 2 and 3, respectively. For the control of link_1, associated with the hip joint, a
composite model is required because, during the locomotion assistance and gait training,
the motor at the hip joint (mhj), including the inertial mass, stiffness, and viscous friction
associated with link_1, experiences the effect of the remaining structure, i.e., two motors
(the motor at the knee joint (mkj) and the motor at the ankle joint (maj), two links, and the
human leg except the thigh, as a mass-spring-damper load [13,46]. Similarly, the actuator
at the knee joint is influenced by the third motor and third link in the form of a mass-
spring-damper load. Hence, for the velocity control of the first link, a composite model
can be realized with the combined masses of the remaining two actuators (motor_2 and
motor_3), links (link_2 and link_3), and the mass of the remaining human leg, considered at
link_1 (as I : Mass_l f t f f tl f ot). Similarly, combined damping, stiffness, and gravitational
force associated with link_2 and link_3 are considered at link_1 (as R : Fv_ f f tj f t f otj f otgd,
C : Ks_ f f tj f t f otj f otgd, and Se : g_Massl f t f f tl f ot), respectively, as shown in Figure 4. A
composite model obtained as the mathematical model to control the position of link_1 is
presented in Figure 4. The description of variables of the bond graph [13] of the composite
model, and the transfer function of the composite model defining a relationship between
the applied input voltage (E) and the link velocity (V) of link_1 with the combined effect at
the output, are presented in Table 1 and Equation (3), respectively.

GP(s) =
V(s)
E(s)

=
5e5s + 1250

s5 + 100s4 + 1.461e4s3 + 2.1e5s2 + 1.256e6s + 3125
(3)
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State space realization is presented in Equation (4).

.
x = Ax + Bu

y = Cx

}
(4)

Such that:

A =


−100 −250 0 0 0

50 −0.003664 0 −20 0
0 0 −0.0025 0 −0.1
0 100 0 0 0.1
0 0 −1.002e−6 100 0

, B =


1
0
0
0
0


C =

[
0 0 0 0 0.1

]

x =


xIa_mhj

xJas f t_mhj
xKs f f tj f t f otj f otgd

xKsnt_mhj
xMass_l f t f f tl f ot

 =


Armature Current∗

Moment of Inertia of Armature Shaft∗

Composite K between Joints and Ground
Spring Constant of Nut∗

Mass of all links


∗ : Motor at Hip Joint

2.2. Robust Optimization Problem and Control Design

The position control problem is formulated as a robust optimization problem. The
disturbances and the uncertainty are introduced in the system, and the control law is then
designed to achieve tracking. The salient points of the control problem are presented in
the following.

2.2.1. Input/Output Disturbance

Input and output disturbances that an exoskeleton undergoes during the rehabilita-
tion process are added to the model. Input disturbance is introduced in the system as a
fluctuation in the applied voltage. Output disturbance is considered as the unintentional
continuous force applied by the patient during the passive rehabilitation. More details
regarding the disturbances can be found in [46].

2.2.2. Additive Mismatched Uncertainty

Uncertainty is referred as the possible difference in parametric values of a modeled
plant compared to the actual plant. This may be because of un-modeled system dynamics
or a known bounded perturbation in a system parameter. For the LLRE, one possible
unstructured uncertainty added refers to the difference in the inertial mass of the three
links and the human leg compared to the modeled inertia in the mathematical model. The
state variable xMass_l f t f f tl f ot (fifth state) represents the inertial mass and a value of 0.01 is
added as a perturbation ∆x in this state, representing the additive uncertainty.

2.2.3. Controller Design

For the problem formulated above, an H∞ controller [47,48] integrated with a lead
compensator and a reference gain is proposed for the design to achieve robust output and
desired performance.

The control scheme is presented in Figure 5. H∞ control ensures disturbance rejection
and uncertainty compensation for reference signals, but there remains a steady-state error
for step and impulse inputs, and tracking error in the case of sinusoidal input.
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Table 1. Variables of the composite model and their details.

Variable Component Description Value

Se: e_mhj Electrical Source of Effort, i.e., Voltage Source 12 V
R: Ra_mhj Electrical Armature Resistance (Ra) of Linear Actuator 1 Ω
I: Ia_mhj Electrical Armature Inductance (Ia) of Linear Actuator 1 mH

GY: Gyration_Ratio_mhj Mechanical Gyration Ratio 5 × 10–2

R: Dasft_mhj Mechanical Damping of the Armature Shaft (sft) 5.7286 × 10–7 Ns/m
I: Jasft_mhj Mechanical Moment of Inertia of Armature Shaft (sft) 2 × 10−4 kgm2

TF: al_mhj Mechanical Angular to Linear (al) 2 × 10−2

R: Fvsftnt_mhj Mechanical Viscous Friction between Shaft (sft) and Nut (nt) 1 × 10−4 Ns/m
C: Ksnt_mhj Mechanical Spring Constant of Nut (nt) 1 × 10+5

R: Fv_fftjftfotjfotgd Mechanical Viscous Friction between joints (Femur (f), Fibula and Tibia
(ft), Foot (fot) and with ground (gd) 1 × 10−4 Ns/m

I: Mass_lftfftlfot Mechanical Mass of remaining actuators, links (l), and human leg 10
C: Ks_fftjftfotjfotgd Mechanical Spring Constant of remaining actuators, links and human leg 1 × 10−4

Se: g_Mass lftfftlfot Mechanical Gravitational Force (g) associated with remaining structure 98
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Remark 1. The H∞ controller ensures.

• Internal stability of the closed loop system
• ‖Tzω(s)‖ < γ where, γ is a specified number < 0

Remark 2. The compulsory assumptions for the controller design are checked. These include:

• (A, B2) is stabilizable and (A, C2) is detectable

• Rank of matrix
[

A−ωjI B2
C1 D12

]
should be full column rank and rank of matrix[

A−ωjI B1
C2 D21

]
should be full row rank

• For proper and realizable controller: Rank of D12 is full column rank and rank of D21 is full
row rank.

Remark 3. The algorithm steps for the controller design followed are:

• The system is realized in the form of state space and the status of assumptions are checked to
be satisfactory.

• A large positive value for γ is selected and the controller K(s) is found after solving the
Algebraic Riccati Equations (AREs) until a satisfactory solution is obtained, i.e., subject to the
fulfilment of the following condition with lowering γ:

ρ(X∞, Y∞) < γ2

where X∞ and Y∞ are the solutions of the AREs.
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• The control law design takes the form; u = −kC x̂(t). The reference gain is adjusted to achieve
acceptable steady-state response/outcome for the step and impulse inputs but for the sinusoidal
signal a phase delay exists in the output.

A lead compensator is proposed to be integrated with the H∞ controller to overcome
the phase delay. The lead compensator is a passive network used to overcome the disad-
vantages of ideal differentiation and still retain the ability to improve the transient response.
The standard form of the lead compensator is given in Equation (5):

GC(s) =
1
β

(
s + 1

T

s + 1
βT

)
(5)

where β < 1. The control design assumptions for the H∞ controller gain were checked and
controller KC(s) is obtained by following the algorithmic steps. The feedback configuration
of the controlled plant was simulated in MATLAB®. The test bound for γ is set as given in
Equation (6):

0.0001 < γ ≤ 100 (6)

After fifteen iterations, a satisfactory solution was obtained, and the value of gamma
achieved is 0.0062. The value of β = 2.75 × 10−3 for the maximum phase shift ϕmax
through the designed compensator value 83.9962◦. The lead compensator break frequencies
1
T = 0.025 and 1

βT = 9.09. Hence, the compensator is described as Equation (7):

GC(s) =
1

2.75× 10−3

(
s + 0.025
s + 9.09

)
(7)

A gain is added at the reference signal ‘KR’ to adjust the tracking error for the sinu-
soidal signal. The control law takes the form:

u = −kC x̂(t) + kRr (8)

up = u + di (9)

The compensator GC(s) is cascaded with the plant GP(s). The H∞ controller ensures
stability, and the combination of compensator and reference gain ensures transient and
tracking performance.

2.2.4. Simulation Results

Simulation results of the closed loop step, impulse, and sinusoidal responses of the
closed loop system are presented in Figure 6. Locomotion and gait training involves signals
with a closed loop response of the position, and the velocities of link_1 parallel to the femur
bone of the human leg for the step, impulse, and sinusoidal reference signals are presented
in Figure 6.



Appl. Sci. 2022, 12, 3973 9 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17 
 

where 𝛽 ൏ 1. The control design assumptions for the 𝐻ஶ controller gain were checked 
and controller 𝐾஼(𝑠) is obtained by following the algorithmic steps. The feedback config-
uration of the controlled plant was simulated in MATLAB®. The test bound for 𝛾 is set as 
given in Equation (6): 0.0001 ൏ 𝛾 ≤ 100 (6)

After fifteen iterations, a satisfactory solution was obtained, and the value of gamma 
achieved is 0.0062. The value of 𝛽 = 2.75 × 10ିଷ  for the maximum phase shift 𝜑௠௔௫ 
through the designed compensator value 83.9962°. The lead compensator break frequen-
cies ଵ் = 0.025 and ଵఉ் = 9.09. Hence, the compensator is described as Equation (7): 

𝐺஼(𝑠) = 12.75 × 10ିଷ ൬𝑠 + 0.025𝑠 + 9.09 ൰ (7)

A gain is added at the reference signal ‘𝐾ோ’ to adjust the tracking error for the sinus-
oidal signal. The control law takes the form: 𝑢 = −𝑘஼𝑥ො(𝑡) + 𝑘ோ𝑟 (8)𝑢௣ = 𝑢 + 𝑑௜ (9)

The compensator 𝐺஼(𝑠) is cascaded with the plant 𝐺௉(𝑠). The 𝐻ஶ  controller en-
sures stability, and the combination of compensator and reference gain ensures transient 
and tracking performance. 

2.2.4. Simulation Results 
Simulation results of the closed loop step, impulse, and sinusoidal responses of the 

closed loop system are presented in Figure 6. Locomotion and gait training involves sig-
nals with a closed loop response of the position, and the velocities of link_1 parallel to the 
femur bone of the human leg for the step, impulse, and sinusoidal reference signals are 
presented in Figure 6. 

  
(a) (b) 

  
(c) (d) 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 17 
 

  
(e) (f) 

Figure 6. Model-based robust control design-closed loop responses of link (parallel to femur) (a) 
step responses—displacement; (b) step responses—velocity; (c) impulse responses—displacement; 
(d) impulse responses—velocity; (e) sinusoidal responses—displacement; (f) sinusoidal re-
sponses—velocity. 

3. Model-Free Robust Control Design 
This section presents the design of reference tracking control of the LLRE using the 

model-free strategy. The un-modeled dynamic components of both subsystems of the 
LLRE (electrical and mechanical), exogenous and endogenous disturbances, and mis-
matched unstructured uncertainties are represented as a single lumped function 𝑓௟௣ௗ and 
the exoskeleton is presented in the form of a mathematical equation as Equation (8): 𝑥௠௙(௜) = 𝑓௟௣ௗ(𝑥) + 𝛼𝑣 (10)

In Equation (8), 𝑥௠௙(௜)  𝜖 𝑅௡ is the acceleration of the stroke of the linear actuator and 𝑖 
represents the derivative, which is taken as 2, 𝑣 ∈ 𝑅௡ is the applied voltage to the actua-
tor, and 𝛼 is the scaling factor of the input. Equation (8) is realized in the state space form 
as Equation (9): 𝑥ሶ௠௙ଵ = 𝑥௠௙ଶ𝑥ሶ௠௙ଶ =  𝑓௟௣ௗ(𝑥) + 𝛼𝑣𝑦 = 𝑥௠௙ଵ ቑ (11)

where 𝑥௠௙ଵ ∈ 𝑅௡ is displacement of the link attached to the stroke of the linear actuator, 𝑥௠௙ଶ ∈ 𝑅௡ is the velocity of the link, and 𝑦 is output of the system. 
The challenge is to design a robust controller with minimal steady-state/tracking er-

ror. To accomplish this challenge, there has been extensive research in designing a neural 
network (NN) approximation function-based controller and an NN system identification-
based controller for both lower and upper limb exoskeletons [35,49,50]. Here, a MF adap-
tive controller was designed to achieve the desired performance. 

3.1. Adaptive PD RBFNN Controller Design 
A simple model-free realization of the system as a linear relationship between the 

input, i.e., voltage 𝑣 applied to the linear actuator and output 𝑦, i.e., linear displacement 𝑥 of the link of mass 𝑚 is considered. The input voltage is applied to the actuator and 
link_1 undergoes a linear displacement. There exist external disturbances 𝑑 at the input 
and output of the system and uncertainties ∆ with bounds (𝑎 ≤ ‖∆‖ ≤ 𝑏), 𝑎, 𝑏 𝜖 𝑅௡  or 
un-modeled dynamics that are part of the system. For the realized model, a Lyapunov-
based adaptive PD controller was designed to achieve robust reference tracking. There is 
no information about the lumped function 𝑓௟௣ௗ(𝑥), which is essential for the controller 
design. An RBFNN was used to estimate the function and, using this function 𝑓መ௟௣ௗ(𝑥), the 
controller was designed. An adaptive PD RBFNN control loop is presented in Figure 7. 

Figure 6. Model-based robust control design-closed loop responses of link (parallel to femur) (a) step
responses—displacement; (b) step responses—velocity; (c) impulse responses—displacement; (d) im-
pulse responses—velocity; (e) sinusoidal responses—displacement; (f) sinusoidal responses—velocity.

3. Model-Free Robust Control Design

This section presents the design of reference tracking control of the LLRE using the
model-free strategy. The un-modeled dynamic components of both subsystems of the LLRE
(electrical and mechanical), exogenous and endogenous disturbances, and mismatched
unstructured uncertainties are represented as a single lumped function flpd and the ex-
oskeleton is presented in the form of a mathematical equation as Equation (8):

x(i)m f = flpd(x) + αv (10)

In Equation (8), x(i)m f ε Rn is the acceleration of the stroke of the linear actuator and i
represents the derivative, which is taken as 2, v ∈ Rn is the applied voltage to the actuator,
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and α is the scaling factor of the input. Equation (8) is realized in the state space form as
Equation (9):

.
xm f 1

= xm f 2.
xm f 2

= flpd(x) + αv
y = xm f 1

 (11)

where xm f 1
∈ Rn is displacement of the link attached to the stroke of the linear actuator,

xm f 2
∈ Rn is the velocity of the link, and y is output of the system.
The challenge is to design a robust controller with minimal steady-state/tracking

error. To accomplish this challenge, there has been extensive research in designing a neural
network (NN) approximation function-based controller and an NN system identification-
based controller for both lower and upper limb exoskeletons [35,49,50]. Here, a MF adaptive
controller was designed to achieve the desired performance.

3.1. Adaptive PD RBFNN Controller Design

A simple model-free realization of the system as a linear relationship between the
input, i.e., voltage v applied to the linear actuator and output y, i.e., linear displacement
x of the link of mass m is considered. The input voltage is applied to the actuator and
link_1 undergoes a linear displacement. There exist external disturbances d at the input
and output of the system and uncertainties ∆ with bounds (a ≤ ‖∆‖ ≤ b), a, b ε Rn or
un-modeled dynamics that are part of the system. For the realized model, a Lyapunov-
based adaptive PD controller was designed to achieve robust reference tracking. There
is no information about the lumped function flpd(x), which is essential for the controller
design. An RBFNN was used to estimate the function and, using this function f̂lpd(x), the
controller was designed. An adaptive PD RBFNN control loop is presented in Figure 7.
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The desired position is stated as yd and the error e (error between the desired output
and the current output) can be formulated as

e = yd − y = yd − xm f 1
(12)

E =
[

e
.
e
]T

Using Equation (10), the control law for the feedback configuration is formulated as:

..
xm f 1

= αv + flpd(x) (13)

..
yd −

..
e = αv + flpd(x)

Using the intelligent PD control:

..
e + kPe + kD

.
e = 0 (14)

..
e = −KTE
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v∗ =
1
α

{
− flpd(x) +

..
yd −

..
e
}

v∗ =
1
α

{
− flpd(x) +

..
yd + KTE

}
(15)

where KT =
[

kP kD
]
.

In Equation (14), flpd(x) is unknown, which is essential for the control law. flpd(x) is
approximated using the NN and is used to realize the control law.

3.1.1. Function Approximation

The RBFNN is used to approximate function f̂ (x); the algorithm is described below:

f (x) = W∗Th(x) + ε (16)

hj = exp

(
‖xi − cij‖2

bj
2

)
(17)

where xi = [x1 . . . xn]
T , n = 2 is the input vector, hj = [h1 . . . hm]

T , m = 5 is the Gaussian
function for neural net j (number of hidden layers) in hidden layer,

c =
[
cij
]
=

 c11 · · · c1m
...

. . .
...

cn1 · · · cnm

 represents the coordinate value of center point of the

Gaussian function of neural net j for the ith input, i = 1, 2, . . . , n, j = 1, 2, . . . , m.
bj = [b1, b2, . . . , bm]

T , m = 5 represents the width value of the Gaussian function for
neural net j, W∗T = [w1, w2, . . . , wm]

T , m = 5 is the ideal weight value of the RBF. ε is
approximation error, ε ≤ εN . The output of the RBF is presented in Equation (17):

f̂lpd(x) = ŴTh(x) (18)

where Ŵ is the estimated weight vector which is tuned by the adaptive algorithm in the
Lyapunov stability analysis.

3.1.2. Effects of Different Parameters on RBF Approximation

The RBF approximation is affected by different parameters. These include the Gaussian
function (related to the design of the center vector cj and width value bj) and the number
of hidden nets. There are principles for the design of cj and bj, the details of which are
presented in [51].

After careful consideration, two inputs, five hidden layers, and one output RBF neural
network structure (2− 5− 1) were used; the details are presented below:

Inputs: i = 2.
In the control system, when RBF is used to approximate f , the system states are chosen

as the input of the RBF neural network.
Output of Gaussian function for five hidden neural nets (j = 5),

hj =
[

h1 h2 h3 h4 h5
]
.

Using the principles to design cj for the given input, the coordinate values of the center
point of the Gaussian function of neural net j are defined as:

cij = c2×5 =

[
−1 −0.5 0 0.5 1
−1 −0.5 0 0.5 1

]
Width vector of Gaussian function bj, bj = [b1, b2, . . . , bm]

T = 1.20

where bj > 0 represents the width value of the Gaussian function for neural net j.
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3.1.3. Lyapunov Stability Analysis

By submitting the control law in Equation (14), the closed loop system is expressed as:

..
e = −KTE +

{
f̂ (x)− f (x)

}
(19)

Let:

Am f =

[
0 1
−kp −kd

]
, Bm f =

[
0
1

]
Equation (18) can be rewritten as:

.
E = Am f E + Bm f

{
f̂lpd(x)− flpd(x)

}
(20)

Optimal weight value is W∗ = arg min
W∈Ω
{sup

∣∣∣ f̂lpd(x)− flpd(x)
∣∣∣}.

Modeling Error: ε = f̂lpd(x|Ŵ)− flpd(x|W∗).
Equation (19) becomes:

.
E = Am f E + Bm f [{ f̂lpd(x|Ŵ)− flpd(x|W∗)}+ ε] (21)

Using Equation (20):

.
E = Am f E + Bm f {(Ŵ −W∗)Th(x) + ε} (22)

Choosing the Lyapunov function as:

V =
1
2

ET PE +
1

2γ
(Ŵ −W∗)T

(Ŵ −W∗) (23)

where γ is a positive constant. (Ŵ −W∗) denotes the parameter estimation error and the
matrix P is symmetric and positive definite, and satisfies the following Lyapunov equation:

AT
m f P + PAm f = −Q (24)

with Q ≥ 0. Finding
.

V:
.

V =
.

V1 +
.

V2 (25)

V1 =
1
2

ET PE

V2 =
1

2γ
(Ŵ −W∗)T(Ŵ −W∗

)
Taking the derivative of V1:

.
V1 =

1
2

.
EPE +

1
2

ET P
.
E

Rewriting Equation (20) as:

.
V1 =

1
2

.
EPE +

1
2

ET P
.
E (26)

.
E = Am f E + M (27)

where M = Bm f {(Ŵ −W∗)Th(x) + ε}.
Submitting Equation (26) into Equation (25):

.
V1 =

1
2

ET
(

AT
m f P + PAm f

)
E +

1
2

MT PE +
1
2

ET PM
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Using Equation (24):
.

V1 =
1
2

ETQE + ET PM

Submitting M into the above equation:

.
V1 = −1

2
ETQE + (Ŵ −W∗)TET PBm f h(x) + ET PBm f ε (28)

Taking the derivative of V2:

.
V2 =

1
γ
(Ŵ −W∗)T

.
Ŵ (29)

Substituting Equations (27) and (28) into Equation (24):

.
V = −1

2
ETQE + ET PBm f ε +

1
γ
(Ŵ −W∗)T

{
Ŵ + γET PBm f h(x)

}
(30)

The adaptive law is chosen as:

.
Ŵ = −γET PBm f h(x) (31)

Substituting Equation (30) into Equation (29):

.
V = −1

2
ETQE + ET PBm f ε (32)

Since − 1
2 ETQE ≤ 0, considering the adaptive control system convergence analysis

in [52], if the approximation error ε is made very small using the RBF,
.

V ≤ 0 can be achieved.
In order to design an adaptive PD RBFNN, first, a Lyapunov-based adaptive PD control

law was designed. The unknown lumped function is approximated using the RBFNN. The
error with the desired position yd is defined as E =

[
e eT ]

and the adaptive PD control
law is formulated as:

v∗ =
1
α

{
− f (x) +

..
yd + KTE

}
(33)

where K =
[

kP kD
]
.

The adaptive law is defined as:

Ŵ = −γET PBm f h(x) (34)

3.1.4. Simulation Results

Dynamic responses of the controlled system for step, impulse, and sinusoidal inputs
are shown in Figure 8. The adaptive PD controller was inspired by a research work [34],
except that the additional neural network for estimation was removed.
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4. Results and Discussion

MB and MF robust control strategies were designed, and the simulation results are
presented in the previous sections. The challenge to design MB and MF robust control
strategies for achieving the desired performance in terms of transient behavior and steady-
state error for step and impulse inputs, and minimizing the tracking error for a time-varying
sinusoidal signal, was addressed successfully.

The step response of both the MB- and MF-controlled systems is robust as the system
settles down in the presence of disturbances. However, the MF-controlled system settles
faster as shown in Table 2. The same trend is followed in case of the impulse input. The
slower system in the case of MB closed loop control is due to absence of a lead compensator.
A lead compensator was not designed for these inputs because the objective to reach the
desired final value was achieved without the effect of disturbances in these cases.
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Table 2. Performance and Robustness-Displacement of Link_1 (Parallel to Femur).

Reference Signal
Performance and Robustness

Transient Behavior Steady-State/Tracking Error Robustness

Model-Based Control StrategyH∞ Reference Gain Controller

Step Rise Time: 24 sPeak Value:
1Settling Time: 35 s Minimized to Zero Achieved

Impulse Rise Time: 3.2 sPeak Value:
1Settling Time: 37 s Minimized to Zero Achieved

Sinusoidal Rise Time: 3.2 sFirst Peak Value:
2.6Settling Time: 35 s Output Signal Out-of-Phase from Input Achieved

Model-Based Robust Control DesignLead Compensated H∞ Reference Gain Controller

Sinusoidal Rise Time: 1.6First Peak Value:
0.8Settling Time: 4 s Minimized to Zero within 4 s Achieved

Model-Free Robust Control Design—Adaptive PD RBFNN Controller

Step Rise Time: 3.2 sSettling Time: 4.5 s Minimized to Zero Achieved
Impulse Rise Time: 0.8 sSettling Time: 2 s Minimized to Zero Achieved

Sinusoidal Rise Time: 1.2 sFirst Peak Value:
1Settling Time: 0.1 s Minimized to Zero within 0.1 s Achieved

In the case of a time-varying sinusoidal input, the response of the MB controller is
relatively faster. This is because of the lead compensator integrated with the H∞ reference
gain controller. The lead compensator accounted for the delay in the reference input signal
and the output signal. The sinusoidal input response of the MF-controlled system is faster
than that of the MB controller. The results are summarized in Table 2.

The results show that, for both MB and MF controllers, the desired results, i.e., robust-
ness and minimal steady-state/tracking error in the case of reference inputs, were achieved
but the performance of the MF controller is better than that of the MB controller. The rise
time and settling time are less in the case of MF control than that of MB control, indicating
faster response. This work focused on achieving robustness for time-varying signals to
achieve robustness in gait pattern tracking through the LLRE. The next step is to check the
performance of the designed controllers for time-varying human gait patterns.

5. Conclusions

The challenge to design MB and MF robust control strategies to achieve desired perfor-
mance for different inputs in terms of transient behavior and steady-state/tracking error is
addressed. System modeling using the approach of the BG technique was carried out and
simulation results were analyzed. System components responsible for resistance/damping,
inductance/inertia, and capacitance/stiffness were considered for the LLRE to develop a
precise model.

A model-based controller was then designed to address the robust control problem,
which includes input and output disturbances, and un-modeled dynamics and uncertainties
in the system, that cause poor control performance. The lead compensated H∞ reference
gain controller was proven to be a robust controller as it successfully attenuated the
disturbances and, in the presence of uncertainty, provided the desired robust results. Before
the integration of the lead compensator and the reference gain controller, the output was out
of phase with the given sinusoidal time-varying input signal and there existed tracking error.
This control synthesis provided robust trajectory tracking control of LLREs and addressed
the challenges of tracking error faced by the previous model-based control approaches.

The model-free control was implemented as an overall system approximation con-
troller. An adaptive PD RBFNN controller was designed. The comparison between the
performance parameters of the designed model-based and model-free control strategies
is presented.
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The tracking performances for the lead compensated H∞ controller and the adaptive
PD RBFNN controller are both effective; however, the response of the model-free controller
is faster than that of the model-based controller. Future work will include improvements to
the MB and MF control approaches for further optimization of the responses.
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