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Abstract: Hybrid energy storage systems (HESS) for electric vehicles, which consist of lithium-ion
batteries and supercapacitors, have become an increasing focus of research and development in recent
years. The combination of the two combines the advantages of each storage technology (high energy
density in batteries and high power density in supercapacitors) in one system. To effectively manage
the energy flow between these two different storage technologies, an intelligent energy management
system (EMS) is required. In the development of the EMS, it is usual to run preliminary checks
in a simulation environment that is as close to reality as feasible already during the development
process. For this purpose, this paper presents a concept for the creation of a simulation environment
consisting of realistic routes and a holistic vehicle model. The realistic route data are generated by
a route-generating algorithm, which accesses different map services via application programming
interfaces (API) and retrieves real route data to generate a simulated route. By integrating further
online services (e.g., OpenWeather API), the routes are further specified with, for example, real
weather data, traffic data, speed limits and altitude data. For the complete vehicle model, components
including the suspension, chassis and auxiliary consumers are simulated as blackbox models. The
components that can be accessed during the simulation are simulated as white box models. These
are the battery, the supercapacitor, the DC/DC converter and the electric motor. This allows the
EMS to control and regulate the HESS in real time during the simulation. To validate the simulation
environment presented here, a real BMW i3 was driven on a real route, and its energy demand
was measured. The same route was simulated in the simulation environment with environmental
conditions that were as realistic as feasible (traffic volume, traffic facilities, weather) and the vehicle
model of the BMW i3. The resulting energy demand from the simulation was recorded. The results
show that the simulated energy consumption value differs by only 1.92% from the real measured
value. This demonstrates the accuracy of the simulation environment presented here.

Keywords: electric vehicle (EV); energy storage system; energy demand; model based development;
virtual vehicle model; route generation application

1. Introduction

The entire transport system is in the midst of a transformation. In December 2020, the
European Commission presented a new strategy (The European Green Deal) for sustainable
and intelligent mobility. The goal is to reduce transport emissions by 90% by the year
2050 through smart and competitive technologies [1]. In order to accomplish this goal,
automotive manufacturers must increasingly focus on powertrain technologies that are
more environmentally friendly and cost-efficient. As a result, the topic of electric vehicles
has become increasingly important in recent years [2]. The development of electric vehicles
is nowadays strongly driven by customer demand with regard to environmental factors
and economic aspects [3]. At the same time, one of the key issues in the development of
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electric vehicles is the energy storage system [4]. The comparatively high cost and limited
lifetime of batteries limit the development of electric vehicles in certain areas [5]. In recent
years, research has been conducted on a variety of types of batteries with the objective to
improve their efficiency and performance [4]. In addition, supercapacitors have been used
in the context of hybrid energy storage systems to take advantage of the new opportunities
they offer [4]. To operate such a hybrid energy storage system, it needs an intelligent and
optimized management system. The potential risk of a non-optimized management system
is that it could significantly shorten the battery life due to unfavorable loads and inefficient
use of the energy [6]. Furthermore, a non-optimized management system can shorten the
lithium-ion battery’s life due to over-voltage, over-temperature and rapid discharge and
charge of the lithium-ion battery cell [7].

For the development and especially for the model-based validation of an energy
management system, knowledge about the vehicle and the route resulting in the energy
consumption of the vehicle is needed [8]. Many studies work with synthetic, standard-
ized driving cycles (e.g., New European Driving Cycle (NEDC), Worldwide Harmonised
Light-Duty Vehicles Test Procedure (WLTP)) and the energy consumption data collected
there [9–14]. Due to the simplified representation of the influences on energy consump-
tion that occur in reality (traffic, gradient, weather, etc.), these data show a partly, not
insignificant, difference to real measured energy consumption data [15,16].

The concept presented in this paper is to generate realistic routes and realistic driving
simulations and to calculate the corresponding energy consumption. A tool is developed
for this work which obtains data from APIs that are then used to generate realistic routes.
Due to the access to global GPS data, any route can be simulated. Furthermore, by in-
cluding additional APIs, various data can be collected that have an influence on energy
consumption. These include weather data, real-time traffic data, slopes, etc. The second
part of the concept focuses on the simulation of energy consumption. For this purpose, the
created route data is transferred to a simulation environment. The modular structure of the
simulation allows, for example, various vehicles to be simulated on different routes with
different driver models. From the route data and the vehicle simulation, the energy con-
sumption can be calculated. The expected outcomes of the simulated energy consumption
are (close to) realistic results. The simulation should be able to perform in different setups
(same vehicle on different routes) and maintain its accuracy to simulate the respective
energy consumption.

The objective of this work is to generate realistic energy flows of electric vehicles with
a hybrid energy storage system using a model-based approach. For this purpose, whitebox
models of the vehicle components relevant for us (powertrain, battery, supercapacitor
and DC/DC converter) are created and implemented in a simulation environment with
further blackbox models to form a complete vehicle. The whitebox representation of the
energy storage components and the powertrain allow the components to be controlled and
regulated during the simulation. This is particularly relevant for the development and
validation of an energy management system, which is not part of this paper but will be
part of a follow-up project. The complete vehicle model will then be run in the simulation
environment on realistic routes in order to generate energy flows in the vehicle that are as
close to reality as possible.

2. State of the Art

Currently, several approaches to model a holistic vehicle for energy flow simulation
exist. In [2], the models used to determine energy consumption are divided into three
categories. These include a physical model, which is derived from physical relationships
and described by using analytical equations, an energy model and a state of charge (SoC)
model. The physical model in this work is based on Newton’s laws and uses various
variables of the vehicle as input (e.g., vehicle mass, frontal area, rolling resistance, etc.).
The energy model and the state of charge model, on the other hand, take the energy and
SoC values at the start and destination points, respectively, and the distance traveled as
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computational variables. To calculate the energy consumption, on the one hand a trip
with constant speed is simulated, and on the other hand, a driving cycle with start/stop
scenarios is used. For the simulation, it is assumed that the route geometry as well as the
speed profile must be completely known in advance.

A similar approach is described in [9]. In this work, Newton’s laws are also chosen as
the basis of the physical model. Furthermore, three different driver models are presented
here which are respectively designed with a P, PI and a PID controller. At each simulation
step, the driver model now compares the vehicle speed with the speed profile of the driving
cycle and gives an acceleration or braking signal based on the difference. The NEDC and
WLTP driving cycles are used here for the simulation. Similar to [2], this work also assumes
that the speed profile is fully known. Since energy consumption models with hybrid energy
storage systems are part of the current state of research, they were also considered in the
following. In [17,18], the physical model is divided into different submodels. For the energy
storage devices, both a supercapacitor model and a battery model are created. These are
implemented based on equivalent circuit. As in [2], no driver model is used, but standard
cycles like the Artemis Urban (AU) cycle, the New York City Cycle (NYCC) and New York
Composite Cycle (NY Comp) are used for the speed profile.

The approach of [19], like [2,9], also uses Newton’s laws as the basis for the physical
model. For the simplified modeling of the HESS, it is assumed that the battery, the superca-
pacitor and the electric power have constant energy transmission/conversion. In contrast
to the presented approaches, the data set of a real test drive is used as a speed profile.
These data are much more realistic than the previously used standard cycles but have the
quantitative disadvantage that only one simulation can be made because only one data set
is available.

The approaches presented mostly use simplified vehicle models without the possibility
of being able to fully control or regulate the energy storage system during the simulation.
In addition, the standard cycles used for most projects mean that a previously defined
speed profile is used for the simulation and that these only reproduce reality to a limited
extent [15].

3. Route Data

In contrast to the approaches presented so far, this work only uses synthetic standard
driving cycles (WLTP, NEFC, etc.) for the validation of the model accuracy. For the
simulation of the energy flows, realistic routes are used. This method provides a more
accurate representation of real driving situations due to their higher level of parameter
detail [15]. To generate such routes, not only is the pure route data in the form of longitude
and latitude information needed, but additional information is also needed. In the work
of [20] the major influencing factors on energy consumption were identified, and from this,
the requirements for the necessary additional data for the route are derived. In this work,
current traffic data, weather data, topographical data and speed limits are used in addition
to the actual route data.

As a basis for the generation of route data, a route-generating algorithm [21] is used.
This takes as input parameters the start and destination coordinates, possibly individual
waypoints between the start and destination, and the date of the simulation. Using these
input parameters, the route geometry, speed limits, traffic and weather data are generated
and combined into a route.

To obtain the data for the route-generating algorithm, various APIs are utilized. The
APIs serve as information sources and return the input data for the route-generating al-
gorithm [21]. The APIs are divided into three categories: data for the visual display of
the route (map display), data for the compilation of the route (route data) and additional
data like slope, weather or traffic data of the route (additional data). The route-generating
algorithm collects this data and, in combination with the user’s input data (start and desti-
nation of the route, display type and weather/traffic influence), generates the computed
route. The schematic of input and output data for the route-generating algorithm is shown
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in Figure 1. In addition, the route is displayed graphically in the developed RouteGenerator
application. The generated data can then be transferred to external programs via an imple-
mented interface. Table 1 shows an overview of available APIs that can be used with the
route-generating algorithm.

Figure 1. Blackbox schematic with input and output data for the route-generating algorithm [21].

Table 1. Services available from various providers via application programming interfaces (Traffic
Message Channel (TMC), Shuttle Radar Topography Mission (SRTM)) [20].

OSM Google TomTom HERE Others

Route
MapQuest,
Skobbler,

etc.

Directions
API

Routing
API

Routing
API -

Realtime
traffic TMC Traffic

API
Routing

API
Traffic

API -

Elevation
Open-

Elevation
API

Elevation
API

Search
API

Routing
API SRTM

Weather
Open-

Weather
API

-
Advanced-

Weather
API

Destination-
Weather

API
SolCast

Speed
limit

Overpass
API

Geocoder
API - Routing

API -

Traffic
light

Overpass
API - - Advanced

Data sets -

Bridge/
Tunnel

Overpass
API - - - -

4. Simulation and Model Environment

The structure of the simulation environment includes three components: The adaptive
driver model, the virtual road model and the virtual vehicle model. For the simulation
of the energy consumption, a simulation environment is created with the usage of the
simulation framework CarMaker from the company IPG Automotive GmbH.

4.1. Vehicle Model

The virtual vehicle model is a computer-generated, mathematical representation
of a real vehicle. It combines various subsystems that represent the simulated vehicle.
These include:

- The main body, with information about the total mass and the aerodynamic behavior
of the vehicle;
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- The steering system, which contains information about the ratio between the steering
wheel angle (or steering wheel torque) and the steering rack displacement;

- The suspension, with the components including the springs, dampers, bushings, and
stabilizers and the kinematics of the chassis;

- The drivetrain, which contains information about the engine, energy storage, motor
control unit (MCU) and the battery control unit (BCU);

- The brakes, with information about the possible deceleration of the vehicle.

The structure of the subsystems of the virtual vehicle model is shown schematically
in Figure 2.

Figure 2. Structure of subsystems used for the virtual vehicle model. The five main subsystems are:
the main body, the drivetrain, the steering system, the brakes and the suspension.

For the BMW i3 evaluated in this study, the following vehicle parameters in Table 2
are used. The selected reference vehicle (BMW i3) is only used to validate the functionality
by using real-world measurement results. By altering the individual parameters of the
components (main body, drivetrain, steering system, brakes and suspension), it is possible
to represent any vehicle and use it for the simulation.

Table 2. Parameters of the modelled BMW i3.

Value Unit

Curb Mass 1195 kg
Engine Power 125 kW
Max. Torque 250 Nm
Max. Velocity 150 km/h
Length 3999 mm
Width 1775 mm
Height 1579 mm
No. of Electric Motors 1 -
Capacity of Battery 61 Ah
Voltage 360 V

4.1.1. Battery Model

Since the energy storage model is the main objective for the simulation and mea-
surement of energy consumption, the focus in this paper is placed on the energy storage
model for clarity reasons. The description of the other subsystems are modeled according
to [22,23]. To model the lithium-ion cell, an equivalent circuit—or Thevenin-based model—
is used in Figure 3. The proposed model consists of a resistor R0, which represents the
internal resistance of the lithium-ion cell, and two RC connections of R1, C1, R2 and C2,
which represent the transient voltage response Vt of the cell. The model again considers
the rate capacitance effect, where the usable capacity varies depending on the current
supplied by the cell, as described in [24].The state of charge is calculated using the usable
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capacity values; therefore, the parameters of this model depend on the state of charge and
current [25].

Figure 3. The equivalent circuit the battery model based on [26].

An accuracy analysis in [27] showed that the second RC circuit has the greatest
influence on the accuracy and the smallest root-mean-square percentage error (RMSPE)
and maximum percentage error (MPE), respectively. With each additional RC circuit, the
battery model becomes more accurate, but the rate decreases progressively. Figure 4 shows
this correlation.

Figure 4. Relationship between RMSPE/MPE and the number of RC circuits based on [27].

According to Kirchhoff’s voltage law, Equation (1) can be derived from the equivalent
circuit model described in Figure 3. This equation thus also forms the basis of the lithium-
ion cell model introduced here.

Vt = OCV −V1 −V2 −V0 (1)

The usable capacity of a lithium-ion cell can vary depending on the current value at
which it is discharged or charged [25]. Equation (2), known as the Peukert equation, applies
to determine the usable capacity [28].

Q0 = (
IBT

IBT,rated
)1−n ∗Q0,rated (2)

Q0 describes the usable capacity, IBT , in A, the current at which the cell discharges,
Q0,rated the nominal capacity of the cell, which is discharged with a current value IBT,rated
and n [h], the Peukert exponent, which for lithium-ion batteries have a value of 1.05 [28].

The method to determine the state of charge of the battery used in this project is the
Coulomb counting method, which is described by Equation (3). This method allows the
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calculation of the current state of charge SoC of a lithium-ion cell as a function of the current
value IBT , the usable capacity Q0, and the previous state of charge SoCinit of the cell.

SoC = SoCinit −
∫ IBT

Q0 ∗ 3600
dt (3)

When the values of R1, R2, C1 and C2 have been determined for different current
values and states of charge, the voltages in each of the electrical components are determined.
Therefore, the RC parallel connection is analyzed by using the s-domain, according to [25,29].
Equation (4) is obtained by doing this.

To do this, we proceed according to [25,29], where, using the s-domain to analyze the
RC parallel connection, Equation (4) is obtained.

Therefore, Equation (4) is obtained by analyzing the RC parallel connection using
the s-domain.

I =
V
R
+ sCV → V = (

1
s
)

[
I
C
− V

RC

]
(4)

Based on the information explained, a lithium-ion cell with a capacity of 60 Ah is
modeled in MATLAB/Simulink. This cell type is used for the battery in the 2014 BMW i3
electric vehicle, which is utilized in this study. The parameters of the lithium-ion cells
(Samsung SDI) used in the BMW i3 are shown in Table 3.

Table 3. Characterized parameters of the lithium-ion cell of Samsung SDI.

Value Unit

Nominal Voltage 3.7 V
Nominal Capacity 61 Ah
Min./Max. Voltage 2.70/4.10 V

Material Cathode NCM
(Nickel-Cobalt-Manganese)

4.1.2. Supercapacitor Model

In order to describe the dynamic characteristics of a supercapacitor mathematically,
the equivalent circuit shown in Figure 5 was used.

Figure 5. The equivalent circuit the supercapacitor model is based on [30].

This model describes the dynamic behaviour of the supercapacitor during charge and
discharge cycles, i.e., this model makes it possible to determine the voltage delivered by
the supercapacitor as a function of the charge or discharge current.

The model shown in Figure 5 is a second-order RC model. The order of the model de-
pends on the time step size in which the supercapacitor operates [31]. In [31], a comparison
of different models of supercapacitors is presented and their precision is evaluated consid-
ering the load change frequency. In electric vehicles, the load (speed) changes every few
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seconds (which can be considered as low frequency), so it is sufficient to use a second-order
RC model [32]. A simpler model, i.e., a model with only one RC circuit, is not suitable
because the error of the supercapacitor output voltage is significant, as shown in [33].

The model consists of three parts. The first part includes the resistor R f , which
represents the current losses inside the cell (losses) [30]. The part with the resistor R1
and the capacitor C1 (main cell) determines the instantaneous response (seconds) of the
supercapacitor to a charge or discharge current [33]. And finally, the part with resistor R2
and capacitor C2 (slow cell) determines the slow response (minutes) of the supercapacitor
to a charge or discharge current [33].

In order to implement the model shown in Figure 5, it is necessary to know the
values of all components describing the circuit, i.e., resistors R f , R1, and R2 and ca-
pacitors C1 and C2. The values of all components were obtained from [30], where the
Maxwell/BCAP3000 supercapacitor is simulated. Table 4 shows the characteristic values of
the supercapacitor.

Table 4. Specifications of the Maxwell/BCAP3000 supercapacitor.

Value Unit

Nominal Voltage 2.7 V
Capacitance 3000 F
ESR 0.29 mΩ
Usable Specific Power 5.9 kW/kg
Specific Energy 6.0 Wh/kg
Stored Energy 3.04 Wh
Operating Temperature
range (min./max.) −40/65 °C

Storage Temperature
range (min./max.) −40/70 °C

Mass (typical) 510 g

The following Equation (5) is used to calculate the voltage of the supercapacitor:

USC = NSC(V1 + R1
ISC

NPSC

) (5)

The calculation of the voltage V1 is from:

V1 =
−C0 +

√
C2

0 + 2CvQ1

Cv
(6)

The calculation of the voltage V2 is from:

V2 =
1

C2

∫ 1
R2

(V1 −V2)dt (7)

In addition, the voltage of the supercapacitor is calculated based on its state of charge
using Equation (8):

SoCSC =
USC

NominalVoltage
(8)

4.1.3. Drivetrain Model

Generally, three types of drivetrain models are classified. These are dynamic models,
stationary models, and quasi-stationary models [34]. Dynamic models rely on the math-
ematical equations of the motor and the inverter as well as their control and promise an
exact representation of dynamic transients as well as a realistic calculation of the motor
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losses. Static models, on the other hand, work in a stationary mode without taking a time
constant into account. The control of the motor is not represented in these models and
is assumed to be ideal, so the motor torque corresponds directly to the required torque.
For each operating point, the motor losses are taken from a static characteristic efficiency
map. A compromise of these two modelling approaches is quasi-stationary models. These
are essentially stationary models but can also represent the dynamics of the motor. The dy-
namic behaviour is usually approximated by using a simple PT1 element [34]. The block
diagram of the drivetrain model used in this study is shown in Figure 6.

Figure 6. Block diagram of the modeling concept of the quasi-stationary drivetrain model.

However, it was also shown that the simulation accuracy of the quasi-steady state of
the quasi-stationary model correlates directly with the resolution of the stored efficiency
map (see Figure 7). Thus, the larger the step size of the data in the efficiency map, the
greater the deviation of the simulated drive losses between the quasi-stationary model and
the dynamic model [34].

Figure 7. Mean model error with different torque step size of the stored motor map based on [34].

In general, the achievable accuracy of the calculation of the energy consumption is
closely related to the drive losses. Therefore, even in simple steady-state models, accurate
efficiency maps of the individual drive components are required.
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In this study, 188 torque/speed pairs with their corresponding efficiencies are used
based on the efficiency map in Figure 8:

Figure 8. Interpolated efficiency map of the BMW i3 based on Oak Ridge National Laboratory based
on [35].

The analysis and evaluation of existing model concepts has shown that quasi-stationary
or steady-state modelling approaches, which use an efficiency map to determine the re-
quired/added energy, can be considered state of the art in the field of complete vehicle
simulation [34]. Therefore, a quasi-stationary modelling approach is used for the model
concept. The efficiency map from Figure 8 serves as the basis of the model. In general,
the achievable accuracy of the calculation of the energy consumption is closely related to
the power losses. Therefore, even in simple stationary models, precise efficiency maps of
the individual powertrain components are required. The Oak Ridge National Laboratory
had the motor and the inverter on a motor test bench as part of a benchmark project and
recorded the corresponding efficiency maps. This map is used to determine the efficiencies
in motor and generator operation in this model.

4.1.4. DC/DC Converter Model

For modelling the bidirectional DC/DC converter, a semi-active configuration was
used in which the supercapacitor is connected in series with the DC/DC converter and the
battery is connected directly to the DC bus [36], as shown in Figure 9. This topology has
the following advantages [10]:

- Semiactive control strategies can be implemented;
- The operating range of the energy storage components can be extended to improve

the performance of the HESS;
- It provides flexibility to reduce the size/voltage of some of the energy storage components.

A bidirectional converter was chosen because the energy is transferred from the super-
capacitor to the DC bus in boost mode and the supercapacitor charges with the vehicle’s
braking energy in buck mode. To perform the mathematical model of the bidirectional
DC/DC converter, the circuit presented in [10] was used. To perform the analysis of the
circuit, it is necessary to divide it into its two modes of operation.

The boost mode is represented as follows:

diL
dt

=
1
L
[iL(−RSC − RL − RD(1− d)− RSWd) + (1− d)(−VC −VD) + VSC] (9)

dVC
dt

=
1
C
[

1
Rb

(Vb −Vc)− Idmd + iL(1− d)] (10)
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The buck mode is represented as follows:

diL
dt

=
1
L
[iL(−RSC − RL − RD(1− d)− RSWd)−VCd + VD(1− d) + VSC] (11)

dVC
dt

=
1
C
[

1
Rb

(Vb −Vc)− Idmd + iLd] (12)

Figure 9. The equivalent circuit the DC/DC converter model is based on [37].

4.2. Adaptive Driver Model

The Adaptive Driver Model is basically a fully automated vehicle’s movement control
that shows a behaviour similar to a human driver. To ensure a driving behaviour similar to
a human driver, the driver model uses the route information generated using RouteGenerator
to control the choice of speed, choice of trajectory and the steering of the vehicle. Figure 10
shows all inputs and outputs of the driver model.

Figure 10. Layout for the Adaptive Driver Model seperated in two steps: preparation phase and
simulation based on [38].

In addition to the information of the virtual road model, further data such as the
driver mode (defensive, neutral or aggressive) and other parameters can be set up during
the preparation phase. This information is provided for the actual simulation phase and
communicated to the respective modules.

- Target course: Builds the course based on the input data. This is represented as a
trajectory over a 2D surface by defining the x and y coordinates along a centerline
(with a certain width). This form of mapping can be adjusted by the parameters
previously set by the driver model, such as adjusting the ideal driving line. If this is
set so that the driver model should use the entire width of the road (or only one lane),
the model will adjust the centerline accordingly [38];

- Target speed: A speed profile is generated during the preparation phase for the entire
route. For this purpose, information such as the maximum top speed, braking before
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curves, acceleration behavior, etc. is used as input. The driver model tries to maintain
the specified speed profile throughout the entire simulation process. However, the
model can react adaptively to the situation, for example, due to increased traffic
volume, and adjust the speed profile [38];

- Vehicle state: The driver model has all the information about the vehicle’s state of
movement available at all times. This includes, for example, speed, longitudinal and
lateral acceleration, sideslip angle and other relevant data [23].

- Steering wheel torque: Similar to the vehicle state information, this information comes
from the vehicle model. For example, if the vehicle’s steering wheel torque is below a
certain threshold, it means that the driver model has lost control of the vehicle in the
simulation [38].

As output, the driver model provides the gas pedal position, brake pedal position,
and steering angle. This data is then used as input for the virtual vehicle model.

5. Simulation and Result
5.1. Approach

For the simulation of energy consumption, the created vehicle model (see Section 4.1)
drives on a defined route, and the progression of the battery state of charge is recorded.
The average consumption is then calculated from these results. For the validation of the
simulation results, a standardized test cycle is at first chosen, since there are already real
measured results for such an energy consumption measurement [39]. In this work, the
simulation results are validated with the literature values of the NEDC [40]. In the second
step, a real test drive is simulated, which is compared with the recorded results of the
real test drive. Additionally, for the validation, the modeled supercapacitor is deactivated,
since it is not provided in the real BMW i3. The vehicle model is therefore structurally
equivalent to the real model. For the comprehensibility of the simulations, the tests are
carried out under the same boundary conditions as taken from the literature data. The
simulation-dependent results are compared with the respective literature data given by
the test cycle. In order for an evaluation of the simulation to take place, relevant measured
variables from the simulation are recorded. A simulation always starts with a state of charge
(SOC) of 100%, which corresponds to a fully charged battery. All auxiliary consumers were
deactivated for this simulation, and the reference temperature in the simulations was set to
20 °C. Monitoring the simulated speed profile (see Figure 11) provides the background for
comparable measurement results.

Figure 11. Speed profile of the simulated NEDC consisting of four equal ECE-15 urban segments and
one extra-urban EUDC segment.

In [20,41], a similar approach was used for the validation of the simulation-based
energy consumption. While [20,41] created the predicted energy consumption values using
algorithms and simplified vehicle models sufficient for the needs, in this study, a whole
vehicle model (see Section 4.1) in combination with white box models of the energy storage
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system and engine model are simulated to produce the energy consumption values in a
simulation environment.

The duration and distance of the simulation exhibit only minor deviations (0.73% and
0.00%) compared to the literature data (see Table 5). This results in a simulated energy
consumption which deviates from the literature value by only 1.21%.

Table 5. Validation of the determined simulation results of the NEDC.

Unit Literature Simulation Deviation in (%)

Distance km 10.93 11.01 0.73
Duration s 1180 1180 0.00
Range km 190 188 −1.05

Energy Demand kWh/100 km 11.58 11.72 1.21

5.2. Results

As in the previous presented validation, the same vehicle model and the same route
were used here for the real measurement under approximately the same conditions as in
the simulation.

For the simulation of a real test drive, a round trip from Bruchsal to Karlsruhe and back
to Bruchsal (BR-HKA-BR Circuit) was selected and modeled. In order to approach a typical
real trip as realistically as possible, the route included highway, urban and extra-urban
roads and thus covered all common speed ranges (see Figure 12) [18,41].

Figure 12. Route from Bruchsal to Karlsruhe and back to Bruchsal with indicated speed limit [18].

This covers 16.7 km of urban roads, 22.2 km of extra-urban roads and 18.2 km of
highway. There are 44 speed limits and 33 traffic lights on the route. The speed limits are
shown in Figure 12 for the route layout. The topology of the route is shown in Figure 13,
where the maximum altitude difference is 25 m.

The conditions for the simulation were adapted to those of the real test drives. The
automatic climate control was activated at the medium level. The temperature of the
surrounding area was 20 °C. The speed profile of the simulation was implemented by the
speed limits set in the RouteGenerator and the driver model. This virtual driver shows a
normal driving behavior with medium accelerations and adapted maneuvers in curves.
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Figure 13. Altitude data of the route from Bruchsal to Karlsruhe and back [41].

Figure 14 shows the speed profile of the real vehicle and the simulated vehicle. By
using the real route data and traffic data, traffic influences are included in the speed
profile in addition to the pure speed limits. It can be seen that the dynamic course of the
simulation corresponds closely to the real measured course. The simulation shows that
during the highway section, traffic-induced speed reductions have been taken into account.
In the simulation, this occurs somewhat earlier than in the real measurement due to the
available traffic data. Additionally, stop-and-go situations due to traffic were depicted in
the simulation in the urban area (around the 30 km mark). The speed profile also allows
conclusions to be drawn, to a certain extent, about the dynamic behavior of the energy
consumption characteristic.

Figure 14. Measured and simulated speed profile of the route from Bruchsal to Karlsruhe and back.

The comparison of the simulated values and the real measured values results in a
deviation of the covered distance of 2.19%. This results, on the one hand, from the difference
of the actual driving line of the vehicle (lane center in the simulation and possible lane
changes in the real driving) and, on the other hand, from the accuracy of the GPS track
data over the API and the real track. The deviation of 4.63% which occurs in the driving
time can be explained by the differences between the traffic light times of the simulation
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and the real traffic light phases and the deviation between the retrieved traffic data and
the actual traffic volume. For more representative results, the route was driven several
times for the real measurement, and the respective parameters were recorded. Due to the
mentioned influencing parameters, there were differences in driving duration during the
real measurement, which in the minimum amounted to −0.23% and in the average to the
used 4.63%. The difference in average speed traveled of 4.24% between simulation and real
measurement is due to the adaptive driver model and the simulated traffic volume.

The simulated energy consumption of the vehicle model on the generated route thus
corresponds closely to the actual measured values, down to a deviation of 1.92%. This
shows that the presented model in combination with the presented method for generating
the route does not only work at standard cycles (see Table 5) but also under regular traffic
conditions with increased traffic volume or jam.

6. Conclusions and Perspective

This work presents a concept for the generation of energy consumption of electric
vehicles using a model-based approach. For this purpose, an algorithm (RouteGenerator)
requests route data via APIs from different map services, navigation services and weather
services and prepares this information for the simulation environment CarMaker. Within
this simulation environment, a vehicle model and a driver model are generated in addition
to the modeled route. The results from the simulation are compared with real world results
from the NEDC test procedure and checked for congruency. The evaluation shows that
the simulation results have a deviation of about 1.21%. Since the focus of the test cycles
like NEDC is generally on comparability and reproducibility and therefore do not always
correlate with the real world results, further routes were tested and simulated. In order
to represent a realistic driving experience, a round trip from Bruchsal to Karlsruhe and
back to Bruchsal was modeled. This covers the different road types (highway, urban and
extra-urban road) and thus also the typical speed ranges of a vehicle. The results of a
test drive with a real BMW i3 serve as a reference. The simulation results show that the
simulated values diverge by just 1.92% compared to the real measured values. The work
shows that the simulation, compared with both synthetic test cycles and real test drives,
comes to a small deviation in the single-digit percentage range from the reference values.
The concept thus offers the possibility to realistically simulate the energy consumption
of vehicles on different routes. To further increase the accuracy of the simulation results,
it could be interesting to specify the various components of the vehicle model in more
detail. First of all, a more detailed powertrain model including parameterization (engine
parameters from the engine test bench and data for the battery from a pulse discharge test)
would be a possibility to create a more realistic model. In addition, the determined material
properties of the real components could be used to represent the temperature dependence
in the powertrain in more detail. This would make it possible, for example, to simulate the
lifetime of the battery with this concept.
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Abbreviations
The following abbreviations are used in this manuscript:

HESS Hybrid energy storage systems
EMS Energy management system
API Application programming interface
NEDC New European Driving Cycle
WLTP Worldwide harmonized Light vehicles Test Procedure
GPS Global Positioning System
SOC State of charge
DC Direct current
NYCC New York City cycle
AU Artemis urban
NY Comp New York composite cycle
TMC TrafficMessage Channel
SRTM Shuttle Radar Topography Mission
MCU Motor control unit
BCU Battery control unit
RMSPE Root-mean-square percentage error
MPE Maximum percentage error
HV High voltage
LV Low voltage
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