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Featured Application: This study provides confidence in the application of the zone model to
describe fire growth and smoke transport in compartments where complex and multiple fuels
are involved.

Abstract: This paper presents the development and validation of a two-zone model to predict fire
development in a compartment. The model includes the effects of the ceiling jet on the convective
heat transfer to enclosure walls and, unlike existing models, a new concept of surrogate fuel molecule
(SFM) to model multi-fuel combustion, and a momentum equation to accurately track the displace-
ment of the smoke layer interface over time. The paper presents a series of full-scale fire experiments
conducted in the IUSTI fire laboratory, involving different combinations of solid and liquid fuels, and
varying the compartment confinement level. The model results are compared to the experimental
data. It was found that for all fire scenarios, the experimental trends are well reproduced by the
model. The SFM concept predicts oxygen and carbon dioxide concentrations in the extracted smoke
to within a few percent of the measurements, which is a good agreement considering the sensitivity
of the model to chemical formulas and combustion properties of fuels. Comparison with other
measurements, namely average gas and wall temperatures, is also good. For the large fires reported
in this study, the impact of the ceiling jet leads to a slight underestimation of wall temperatures, while
the model gives conservative estimates for small fires.

Keywords: fire safety; two-zone model; full-scale fire experiments; multi-fuel combustion; surrogate
fuel molecule; validation

1. Introduction

Because they represent a good compromise between speed and accuracy, fire zone
models are always widely used by the research community and fire safety engineers.
Compared to more sophisticated models, such as CFD (computational fluid dynamics)
models, the computational run times of zone models are significantly shorter, on the order
of a minute, or even less. In addition, they require little memory and few data, which
makes them still particularly attractive.

Zone models may be classified based on the number of zones in each compartment:
one-zone, two-zone, and multi-zone models [1,2]. One-zone models are widely used in the
analysis of post-flashover fires, as well as smoke transport in the compartments separate
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from the fire room (e.g., COMPF2 [3] or OZone [4]). In a two-zone model, the compartment
is divided into two uniform well-mixed zones: a hot upper smoke layer and a cold lower
layer, separated by a planar interface. They solve conservation equations between the
two zones and use empirical relationships to describe phenomena such as fire plume,
flame height, air entrainment, ceiling jet, or flows at vents. The multi-zone model is an
extension of the two-zone model as the room volume is divided into an arbitrary number of
horizontal layers, in which the physical properties (e.g., temperature or gas concentrations)
are assumed to be uniform. They were developed to better predict the vertical distributions
of temperature and gas concentrations in the fire room. Due to the assumptions on which
they are based, two- and multi-zone models exhibit drawbacks or have limitations when
applied to spaces of complex geometry or large size, but as mentioned before they give
satisfactory results at lower cost and, because of their capabilities, they can be used for pre-
and post-flashover fire modeling. Examples of such models developed since the 2000’s are
CFAST [5], MAGIC [6], BRI2002 [7], B-RISK [8,9], and BRANZFIRE [10] (among others).

In existing two-zone models, the pressure is assumed to be uniform within a com-
partment and the momentum of the smoke interface is ignored, which avoids the time
step imposed by acoustic waves (Courant condition). However, for under-ventilated fire
scenarios, this strategy can lead to total room involvement by the smoke layer, which is not
observed experimentally [11].

Some zone models, such as CFAST, include the ability to track multiples fires in the
compartment, but these fires are treated as totally separate entities, with no interaction of
the plumes or radiative exchanges between fires [5]. This approach allows multiple fires to
be handled when they are far enough apart.

In an attempt to address these issues, a two-zone computational model is developed
and validated to determine the fire environment inside a compartment where different
fuels, close to each other, are burning simultaneously. The model includes a momentum
equation to improve the accuracy of tracking the smoke layer interface and a new concept
of surrogate fuel molecule to mimic multiple fuel combustion, as well as the effects of the
ceiling jet on the convective heat transfer at the enclosure walls.

This paper is organized as follows. Section 2 deals with the mathematical basis of the
model. Section 3 describes the experimental setup and the ten multiple fire scenarios that
have been conducted in the IUSTI facility, varying the fuels involved and the confinement
level of the enclosure. Section 4 provides a comparative analysis between the model results
and the experimental data to evaluate the performance of the model developed.

2. The Model

The two-zone model proposed is based on concepts similar to those used in CFAST [5].
However, it uses a new form of the governing equations, combustion, and heat transfer
sub-models which are detailed in the following sections.

2.1. Model Assumptions

The model is based on the following key assumptions:

• The compartment is assumed to be a rectangular parallelepiped with size Vroom =
xroomyroomzroom. It is divided into two zones separated by an interface: a hot zone
containing the combustion products, and for certain ventilation conditions, the excess
air and unburned fuel, and a cold zone containing fresh air (Figure 1). This assumes
that the two zones coexist permanently and that the hot smoke layer is well stratified.
At the start of the simulation, the layers are initialized to ambient conditions and the
upper layer volume is set to an arbitrary small value of the compartment volume
(here, 0.001).

• Temperature, density, pressure, and species concentrations are assumed to be uniform
in each zone. However, unlike other zone models such as CFAST, the pressure is
different from one zone to the other. Therefore, in the present model, the set of
governing equations includes not only the conservation equations of mass and energy,
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but also a momentum equation that governs the displacement of the smoke interface as
a function of the pressure difference between the two zones. Solving this momentum
equation leads to a reduction in the time step, imposed by the propagation of acoustic
waves (Courant-Friedrichs-Levy or CFL condition), but allows us to follow more
accurately the displacement of the interface.

• To model radiation heat transfer in the compartment, the ten-surface model [12] is
applied. These ten surfaces, hereafter called wall segments, are the ceiling, four upper
walls (i.e., located above the smoke interface), four lower walls (i.e., located below the
smoke interface), and the floor (Figure 2). Each wall segment is assumed to be at a
uniform temperature. The fire is assumed to radiate uniformly in all directions from a
point source at the center of the flame, located at one third of the flame height, given
off a fraction χr of the total energy release rate to thermal radiation. The radiation
emitted from a wall surface, a gas layer, and the fire is assumed to be grey and diffuse.
Radiation transfer through vent openings, doors, etc., is neglected.

• The transient pyrolysis rate for each fuel involved by the fire is prescribed by the user
(here, it is deduced from the experimentally measured mass loss rate history), but it
may be constrained by the availability of oxygen in the compartment.

• The specific heats at constant volume and pressure, cv and cp, are assumed to be
constant. They are related to the individual gas constant R and the ratio of specific
heats γ by: γ = cp/cv and R = cp − cv.
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The two-zone model is formulated as a set of ordinary differential equations given
below, along with the closure relationships.

2.2. Governing Equations

Following the two-zone modeling concept, the gas in each layer k has attributes of
mass, density, temperature, volume, and pressure denoted, respectively, mk, ρk, Tk, Vk,
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and pk, where k = u for the upper layer and k = l for the lower layer. Some relationships
exist between these variables. For example:

Vu + Vl = Vroom (total volume) (1)

ρk = mk/Vk (density) (2)

Ek = cvmkTk (internal energy) (3)

pkVk = mkRTk (ideal gas law) (4)

The mass conservation equations for each species s of the gas mixture, which is
composed of Ns species, can be written in the upper and lower zones as:

dmsu

dt
=

.
ment

s +
.

mpc
s +

.
mov

s,u s = 1, Ns (5)

dmsl
dt

= − .
ment

s +
.

mov
s,l s = 1, Ns (6)

where
.

ment
s is the mass flow rate of species s in the air entrained by the fire plume,

.
mpc

s is
the net rate of production/destruction of species s due to pyrolysis and combustion, and
.

mov
s,k is the net mass flow rate of species s entering or leaving the layer k through vents due

to natural (e.g., doors or windows) or mechanical ventilation.
The energy equations in the two layers are expressed as:

dEu

dt
= Qc + cp

.
mbT∞ + cp

.
mentTl +

.
h

ov
u −∑5

w=1
.
qconv

w Aw +
.
h

rad
u − pu

dVu

dt
(7)

dEl
dt

= −cp
.

mentTl +
.
h

ov
l −∑10

w=6
.
qconv

w Aw +
.
h

rad
l − pl

dVl
dt

(8)

where Qc is the convective fraction of the heat release rate (HRR) Q,
.

mb is the actual
pyrolysis rate, Aw is the area of the wall segment w,

.
h

ov
k is the enthalpy source terms

due to ventilation flows entering or leaving the layer k,
.
h

rad
k is the net enthalpy due to

radiation into the layer k,
.
qconv

w is the convective heat flux at the wall segment w, T∞ is the
ambient temperature.

As previously mentioned, a momentum equation is added to calculate the displace-
ment rate of the smoke layer interface usli. It is obtained by applying the variable-mass
Newton’s second law to the control volume extending from the interface to the ceiling
(i.e., the upper layer). The Newton’s law states that the sum of all forces that act upon the
control volume is equal to the net rate of mechanical momentum relative to the control
volume, which leads to:

dmuusli
dt

= up(zi)
.

mp
(zi)− (pl − pu)Aroom − gmu (9)

where zi is the interface height, mu = ∑Ns
s=1 ms,u, Aroom = xroom yroom, up(zi) is the average

plume velocity at the interface height, and
.

mp
=

.
mb

+
.

ment is the plume mass flow rate. The
terms on the left-hand side of Equation (9) correspond, respectively, to the forces exerted
on the interface by the plume, the pressure gradient, and gravity, respectively.

The volumes of the two layers are calculated from the following relations:

.
V l = −

.
Vu = usli Aroom (10)

The layer interface height is thus given by: zi = Vl/Aroom.
Due to the CFL limitation of the time step (typically about 50 µs), the ordinary differ-

ential Equations (5)–(10) are solved by using the simple explicit Euler method. An iterative
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procedure is also used, strengthening the coupling between equations, and ensuring that
the mass and energy conservation are satisfied at each time step.

2.3. Source Terms
2.3.1. Plume Entrainment

Following CFAST [5], Heskestad’s correlation [13] is used to evaluate the mass en-
trained by the fire/plume from the lower layer to the upper layer at a height z above the
base of the fire. The equations of Heskestad’s plume are as follows:

• Above the mean flame height zL:

.
ment

(z) = C1Q1/3
C (z− z0)

5/3
[
1 + C2Q2/3

C (z− z0)
−5/3

]
(11)

• At and below the flame height, mass flow rates in fire plumes have been found to
increase linearly with height [14], from zero at the fire base to the flame-tip value,
leading to:

.
ment

(z) =
.

ment
(zL)z/zL (12)

where Qc is in kW and cp in kJ/kg/K, zL = D
(
−1.02 + 3.7Q∗0.4), z0 = D

(
−1.02 + 1.4Q∗0.4),

and Q∗ = Q/
(
cpρ∞T∞

√
gDD2). D is the diameter of the fire source (or effective diameter

for noncircular fire sources such that πD2/4 is the area of the base of the fire). The constants
C1 and C2 are given by: C1 = 0.196

(
gρ2

∞/cpT∞
)1/3 and C2 = 2.9/

(√
gcpρ∞T∞

)2/3. The
subscript ∞ refers to ambient conditions. For most fire calculations, it is accurate enough to
neglect the effect of the change of the molecular weight from that of air, so that density is
determined primarily by its temperature: ρ∞T∞ = 353 kg·K/m3 [15]. For weak plumes, a
limit on the mass entrainment is introduced [5]:

.
ment

(z) < QC/
[
cp(Tu − Tl)

]
.

In [13], Heskestad assumed that the plume velocity profile at a given height z, up(r, z)
can be represented as a Gaussian function of the plume radius r. Therefore, the mean
plume velocity up(zi) at the interface height that appears in the momentum equation can
be obtained by integrating the velocity Gaussian function between r = 0 and the plume
radius where the gas velocity has declined to half the value at the centerline. This gives:
up(zi) = 0.5πup

0 (zi)σ
2
u(zi), where σu(zi) is a measure of the plume width at z = zi, as

defined in [5].

2.3.2. Vent Flow
Natural Flow through Vertical Vents (e.g., Doors or Windows)

Natural flow at a vent is governed by the pressure difference ∆p between the two
sides of the vent. In the present model, the vent flow is calculated by integrating Bernoulli’s
equation along the vertical direction with the correct number of neutral planes (i.e., the
elevation at which ∆p = 0 or at which flow reversal occurs). Figure 3 depicts an example
of vent flow through an opening with a neutral plane below the interface.
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The approach to calculating the vent flow consists of partitioning the opening in one
or more vertical slabs where each slab is bounded by the interface, the neutral plane, and
the vent boundaries [15]. In the example of Figure 3, there are three slabs, one between
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the lower vent boundary and the neutral plane, one between the neutral plane and the
interface, and one between the interface and the higher vent boundary.

The mass flow for each slab is determined from [15]:

.
mslab =

√
8ρ∗

3
Cvv Aslab

x2 + xy + y2

x + y
(13)

where x =
√
|∆pt|, y =

√
|∆pb|, Cvv is the constriction (or flow) coefficient (here, Cvv = 0.68),

and Aslab is the cross-sectional area of the slab. ∆pt and ∆pb are the pressure differences at
the top and bottom elevations of the slab, respectively. The pressure difference at a height z
is given by:

∆p(z) =
{

pl + 0.5ρl gzi − ρl gz− pext(z) i f z ≤ zi
pl − 0.5ρl gzi − ρug(z− zi)− pext(z) i f z > zi

(14)

where pext(z) = p0 − ρ∞gz. The pressure p0 represents the base (reference) pressure at the
floor (z = 0), outside the compartment.

The density ρ∗ is calculated as follows, depending on the slab location zslab = (zt + zb)/2
and the sign of ∆pslab = (∆pt + ∆pb)/2:

ρ∗ =


ρu i f zslab > zi and ∆pslab > 0
ρl i f zslab ≤ zi and ∆pslab > 0

ρ∞ i f ∆pslab ≤ 0
(15)

Natural Flow through Horizontal Vents (e.g., Ceiling Hatches or Holes)

For a ceiling vent, the standard vent-flow model is used:

.
mvv = Cvv Avv

{
ρu
√

2∆p/ρu i f ∆p > 0
ρ∞
√

2|∆p|/ρ∞ i f ∆p ≤ 0
(16)

where ∆p = pu − pext(zroom), Cvv is the flow coefficient, and Avv is the vent area.
A similar expression is used for a floor vent. Note that the standard model always

yields a unidirectional flow through the vent. Further development is required for horizon-
tal vents in which the upward and downward mass flow rates depend on both pressure and
density differences. Cooper’s correlation [16] could be used to model possible bidirectional
flow through a horizontal vent.

Forced Flow

Mechanical ventilation is considered. Through the vent, smoke can be extracted out of
the compartment to ambient, or ambient air can be supplied into the compartment. The
mass flow rate due to forced convection through a vent located in the layer k, neglecting
the effects of natural convection, can be deduced from the general equation for subsonic
flow of an ideal gas [15]:

.
m f v = C f v A f v


ρk

( p f v
pk

)1/γ
{

2RTk
γ

γ−1

[
1−

( p f v
pk

)(γ−1)/γ
]}1/2

i f ∆p > 0

ρ f v

(
pk
p f v

)1/γ
{

2RTf v
γ

γ−1

[
1−

(
pk
p f v

)(γ−1)/γ
]}1/2

i f ∆p ≤ 0
(17)

where ∆p = pk − p f v, C f v is the vent discharge coefficient, and A f v is the vent area. When
air is supplied into the compartment, the user specifies Tf v, and ρ f v = p f v/RTf v. The
initial volumetric flow rate is also specified by the user, which allows us to calculate the
terms C f v and p f v, prior to fire simulations.
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2.3.3. Conduction

The one-dimensional heat conduction equation is solved to calculate conduction heat
transfer within wall segments:

ρwcw
∂Tw

∂t
=

∂

∂x

(
λw

∂Tw

∂x

)
(18)

with the associated initial and boundary conditions:

t = 0, 0 ≤ x ≤ e, Tw(x, 0) = T∞ (19)

Inner sur f ace, x = 0, −λw
∂Tw

∂x

∣∣∣∣
x=0

=
.
qconv

w

∣∣∣
x=0

+
.
qrad

w

∣∣∣
x=0

(20)

Outer sur f ace, x = e, λw
∂Tw

∂x

∣∣∣∣
x=e

=
.
qconv

w

∣∣∣
x=e

+
.
qrad

w

∣∣∣
x=e

(21)

where e is the wall segment thickness, λs, ρs, and cs are the thermal conductivity, den-
sity, and heat capacity of the wall segment, x refers to the direction normal to the wall
segment, and

.
qconv

w and
.
qrad

w are the convective and net radiative heat fluxes at the wall
segment surface.

The heat conduction equation is solved in the direction normal to the wall surfaces
using a uniform mesh of cell-centered control volumes. The spatial derivatives are approxi-
mated by a second-order central difference scheme, the time derivative by a semi-implicit
time marching scheme. If the wall element is composed of multiple layers of different ma-
terials, the resolution is unchanged, but the thermal conductivity at the interface between
these materials is calculated using a harmonic mean [17]. The tri-diagonal system of alge-
braic equations from discretization is solved using the well-known Thomas algorithm [17].
Due to the nonlinear coupling between temperature and radiative heat transfer, an iterative
technique is used to solve the conjugate problem.

2.3.4. Radiation

The model calculates the heat transfer by radiation between the fire, the gas layers,

and the 10 wall segments (source terms in the energy equations,
.
h

rad
u and

.
h

rad
l , and in the

conduction equation,
.
qrad

w

∣∣∣
x=0

) using the method developed in [12]. It also considers the
radiative contribution (emission and absorption) of soot and gaseous species CO2 and
H2O, as done in CFAST [5]. The net radiative heat flux from the outside surface of the
wall segment w is:

.
qrad

w

∣∣∣
x=e

= εwσ
(

T4
∞ − Tw|4x=e

)
, where σ = 5.67× 10−8 W/m2/K4 is the

Stefan-Boltzman constant and εw is the surface emissivity.

2.3.5. Convection

The transfer of heat between the gas and walls is handled differently at the ceiling,
upper and lower wall segments, and floor. It depends on the position of the fire in the
compartment, the orientation of the wall segment and the presence of the ceiling jet.

Standard Convection (No Ceiling Jet Effect)

The convective heat flux at the inner surface of the wall segment w is given by:

.
qst

w = h(T − Tw) = h∆Tw (22)

where T is the gas temperature and Tw is the temperature of the inner or outer surface of the
wall segment. The convection coefficient is defined as h = kNuL/L, where k is the thermal
conductivity of the gas and L is the characteristic length of the geometry. The Nusselt
number NuL is based on the Rayleigh number RaL = gβ|∆Tw|L3/να, where β = 1/Tβ is
the volumetric expansion coefficient evaluated at the temperature Tβ = (T + Tw)/2, ν is
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the kinematic viscosity, and α is the thermal diffusivity. The typical correlations applicable
to the problem at hand are available in the literature [18–20]. Table 1 gives the correlations
used in the model in the absence of ceiling jet.

Table 1. Empirical correlations used for convection heat transfer [18–20].

Geometry Correlation Comments

Side walls Nu1/2
L = 0.825 + 0.387Ra1/6

L[
1+(0.492/Pr)9/16

]8/27

Lower wall segments : L = zi
Upper wall segments:

L = zroom − zi
−
T f = Tw − 0.25(Tw − T)

Ceiling for ∆Tw > 0
and floor for ∆Tw ≤ 0

NuL = 0.54Ra1/4
L for 104 ≤ RaL ≤ 107 L = Aw/P where P is the perimeter of

the wall segment and
−
T f = (T + Tw)/2

NuL = 0.15Ra1/3
L for 107 ≤ RaL ≤ 1011

Ceiling for ∆Tw ≤ 0
and floor for ∆Tw > 0 NuL = 0.27Ra1/4

L

The Prandtl number is defined as Pr = ν/α. Except β, gas properties are assumed to
be those of air at the film temperature T f :

ν = 0.04128× 10−7T f
5/2/

(
T f + 110.4

)
(23)

k = 2.72× 10−4T f
4/5 (24)

α = 10−9T f
7/4 (25)

Convective Heating Due to Ceiling Jet Effect

In case of a fire, the flame and plume spread vertically upward and can impinge the
ceiling, forming a ceiling jet that extends radially and, when it is blocked by the walls, forms
a downward-spinning wall jet flow that is eventually turned back inward and upward by
its own buoyancy [16]. The heat transfer at the ceiling is then driven by the temperature
and velocity of the ceiling jet. The Cooper correlation [16] is used to evaluate the local
convective heat flux between the plume and the inner ceiling surface:

.
qceil = h(Tad − Tceil) (26)

where Tceil is the temperature of the inner ceiling surface and Tad is a characteristic temper-
ature that would be measured adjacent to an adiabatic inner ceiling surface.

In Equation (26), h and Tad satisfy:

h
h̃
=

{
8.82Re−1/2

H Pr−2/3[1− (5− 0.284Re0.2
H
)
r∗
]
; 0 ≤ r∗ < 0.2

0.283Re−0.3
H Pr−2/3r∗−1.2(r∗ − 0.0771)/(r∗ + 0.279); 0.2 ≤ r∗

(27)

(Tad − Tu)/
(

TuQ∗H
2/3
)
=

{
10.22− 14.9r∗; 0 ≤ r∗ < 0.2

8.39 f (r∗); 0.2 ≤ r∗
(28)

where r∗ = r/H is a geometric parameter defined as the ratio between the radial distance

from fire plume axis, r =
[(

x− x f ire

)
+
(

y− y f ire

)]1/2
, and the vertical distance between

the ceiling and the (presumed) point source fire, H = zroom − z′source.
The correlation involves the following terms:

ReH = (gH)1/2HQ∗H
1/3/νu (29)

Q∗H = Q′/
[
ρucpTu(gH)1/2H2

]
(30)
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h̃ = ρucp(gH)1/2Q∗H
1/3 (31)

f (r∗) =
(

1− 1.1r∗0.8 + 0.808r∗1.6
)

/
(

1− 1.1r∗0.8 + 2.2r∗1.6 + 0.69r∗2.4
)

(32)

with

z′source =

{
zi −

(
zi − zeq

)
α3/5

.
M
∗2/5[(1 + σ)/σ]1/5; zi > z f ire

z f ire; zi ≤ z f ire
(33)

Q′ =

{
Qcσ

.
M
∗
/(1 + σ); zi > z f ire

Qc; zi ≤ z f ire
(34)

σ =
(

1− α + 9.115Q∗eq
2/3
)

/(α− 1) (35)

α = Tu/Tl (36)

Q∗eq =
[
0.21Qc/

(
cpTl

.
mp
)]3/2

(37)

zeq = zi −
[

Qc/
(

Q∗eqρlcpTl g1/2
)]2/5

(38)

.
M
∗
=

{ (
1.04599 σ + 0.360391 σ2)/(1 + 1.37748 σ + 0.360391 σ2) i f σ > 0

0 i f − 1 < σ ≤ 0
(39)

In these relations, z f ire is the elevation of the base of fire (Figure 1), and the kinematic
viscosity νu and Prandtl number are evaluated at temperature Tu.

The average convective flux is obtained by integrating the above relationship over the
ceiling area:

.
qcj

w=1 =
1

xroomyroom

xroom∫
0

yroom∫
0

.
qceil(x, y)dxdy (40)

As mentioned previously, the ceiling jet can be blocked by the relatively cool wall
surfaces, which can increase the rate of heat transfer to the side wall surfaces. The model
of Cooper [16] is then used to calculate the ceiling-jet-induced convective heat flux for the
upper and lower wall segments,

.
qcj

w=2to9.
The following strategy is adopted for estimating the average rate of convective heat

transfer to the wall segments of the compartment:

• For all wall segments, calculate
.
qst

w from Equation (22).
• For all wall segments, except the floor (1 ≤ w ≤ 9):

# In case of convective heating (∆Tw > 0), calculate
.
qcj

w from the Cooper’s model

and use the modified convective heat flux
.
qconv

w = max
( .

qst
w ,

.
qcj

w

)
;

# In case of convective cooling (∆Tw ≤ 0), use
.
qconv

w =
.
qst

w .

2.3.6. Combustion
Single-Fuel Combustion

As in CFAST [5], the combustion of a single fuel with molecular formula CnCHnHOnONnNClnCl

is described by the one-step reaction:

CnC HnH OnO NnN ClnCl + νO2O2 → νCO2 CO2 + νH2OH2O + νCOCO + νsSuies + νHCl HCl + νHCN HCN (41)

The two-zone model tracks over time the eight species that appear in this equation,
plus nitrogen (Ns =9). Initially, the composition of each layer is fixed at ambient conditions.
The oxygen and nitrogen mass fractions are set to 0.233 and 0.767, respectively. The mass
fraction of water vapor in ambient air is specified by the user in terms of relative humidity
and the mass fractions of oxygen and nitrogen are adjusted accordingly. All other gas
species are initially zero. The user specifies the composition of the fuel molecule and the
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yields of soot, CO and HCN, ys, yCO and yHCN , which are related to their stoichiometric
coefficients as follows:

νs = ys M f /MC
νCO = yCO M f /MCO
νCO2 = nC − (νCO + νHCN + νs)
νH2O = 0, 5 [nH − (νHCl + νHCN)]
νO2 = νCO2 + 0, 5

(
νH2O + νCO − nO

)
νHCl = nCl

νHCN = min
(

nN ; yHCN M f /MHCN

)
(42)

where M f , MCO, MC and MHCN are the molar masses of fuel, CO, soot (soot are assumed
to be pure carbon), and HCN.

The heat released by the fire has a convective and a radiative component, respectively
Qc = (1− χr) Q and Qr = χr Q, where χr is the fraction of the heat release rate emitted by
radiation [21]. Using the prescribed pyrolysis rate of fuel

.
mpyr, the chemical heat release

rate is Q =
.

mpyr∆hch, where ∆hch is the chemical (effective) heat of combustion. Tewarson
provides measured values of ∆hch for a wide range of fuels [21]. It is recalled that the
ratio of the chemical heat of combustion to net heat of complete combustion is defined as
combustion efficiency.

When the fuel is burning, product species are produced in direct proportion to the
pyrolysis rate (e.g.,

.
mpc

CO2
=

.
mb

νCO2 MCO2 /M f ), but this can be constrained by the available

oxygen in the compartment. For an unconstrained fire,
.

mb
=

.
mpyr, whereas for the

constrained fire,
.

mb
<

.
mpyr. The fuel-rich flammability limit is incorporated by limiting

the HRR as the oxygen level decreases until a lower oxygen limit is reached:

Q = min
( .

mpyr∆hch,
.

mentYO2 CLII∆hO2

)
(43)

where YO2 is the oxygen mass fraction, ∆hO2 the heat of combustion per unit mass of
oxygen, taken to be 13.1 MJ/kg [21], and CLII a smoothing function ranging from 0 to 1 [5].
The pyrolysis rate for a constrained fire becomes:

.
mb

= Q/∆hch, where Q is deduced from
Equation (43).

Multi-Fuel Combustion

One of the original features of the model is the ability to simulate the combustion of
two or more fuels burning in the same room. To achieve this, the concept of surrogate fuel
molecule (SFM) is introduced. The SFM is assumed to be made up of carbon, hydrogen,
oxygen, nitrogen, and chlorine atoms whose numbers nC, nH , nO, nN , and nCl vary over
time according to the initial molecules and the combustion rates of the individual fuels.

For example, if two fuels, referenced 1 and 2, are likely to burn, the number of carbon
atoms of the equivalent molecule will be calculated as follows:

neq
C (t) =

n1
C

.
mpyr

1 (t) + n2
C

.
mpyr

2 (t)
.

mpyr
(t)

(44)

where
.

mpyr
1 and

.
mpyr

2 are the prescribed pyrolysis rates of fuels 1 and 2,
.

mpyr
(t) =

.
mpyr

1 (t) +
.

mpyr
2 ,

and n1
C and n2

C are the numbers of carbon atoms of fuels 1 and 2. The same procedure is
followed for the number of hydrogen, oxygen, nitrogen and chlorine atoms of the SFM.

The advantage of this formulation is that it respects the stoichiometric rules and does
not change the combustion chemistry, even if limited by oxygen availability. However,
the combustion properties of the SFM must be recalculated, namely the soot, CO and
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HCN yields, the chemical heat of combustion and the fraction radiated by the flame. For a
mixture of N f fuels, these are expressed as:

yeq
s (t) =

∑
N f
f=1 ys, f

.
mpyr

f (t)

∑
N f
f=1

.
mpyr

f (t)
f or s = soot, CO, and HCN (45)

∆heq
ch(t) =

∑
N f
f=1 ∆hch, f

.
mpyr

f (t)

∑
N f
f=1

.
mpyr

f (t)
(46)

χ
eq
r (t) =

∑
N f
f=1 χr, f ∆hch, f

.
mpyr

f (t)

∑
N f
f=1

.
mpyr

f (t)∆hch, f

(47)

Figure 4 shows the time evolution of the pyrolysis rate and SFM for a fire involving
heptane (C7H16) and polymethyl-methacrylate or PMMA (C5H8O2). At the initial moment,
the SFM is of the form C6.68H14.74O0.32. It then evolves according to the prescribed burning
rates (Figure 4a). After approximately 510 s of fire, only the PMMA continues to burn,
which explains that the SFM is then composed of 5 atoms of carbon, 8 atoms of hydrogen,
and 2 atoms of oxygen (Figure 4b).
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3. Experimental Setup and Fire Scenarios

To demonstrate the capability of the zone model in reproducing the consequences of a
fire involving multiple fuels in a mechanically ventilated compartment, experiments have
been conducted in the DIAMAN device of the IUSTI laboratory.

3.1. DIAMAN Device

As shown in Figures 5 and 6, DIAMAN consists of two cubic compartments with side
length of 3 m. It has two airtight doors of 1 m × 2 m: one opening from compartment
2 to the outside, the other on the bulkhead separating the two compartments. The walls of
the device, as well as the doors, are made of 1 cm thick steel, with the following thermal
properties: a conductivity of 50 W/m/K, a density of 7800 kg/m3, a specific heat of
470 J/kg/K, and an emissivity of 0.7. The device has (a) four 200 mm× 300 mm rectangular
Pyrex® viewing windows on the FRONT and BACK walls of each compartment, (b) four
circular openings of 200 mm diameter for mechanical ventilation: two (low and high) intake
vents on the WEST wall of compartment 1, one extraction vent at the ceiling of the two
compartments, and (c) three openings of 800 mm × 300 mm, equipped with adjustable
height guillotines, for natural ventilation: two on the WEST wall of compartment 1, and one
on the bulkhead door. Figure 6 shows an exploded view of DIAMAN, showing the natural
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ventilation openings and the exhaust ducts, in one of the two configurations studied (here,
the bulkhead door is closed).
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For all experiments, the fire was started in compartment 1, whose instrumentation includes:

• A CCD camera to observe the general behavior of the fire.
• Two SARTORIUS® electronic scales, placed in stainless steel thermally insulated boxes,

for the measurement of fuel mass losses over time. They can support a maximum load
of 150 kg, with an accuracy of 1 g and a response time of 0.1 s.

• Four trees of five K-type thermocouples of 1 mm diameter, positioned in the corners
of the compartment, at 0.5 m from the vertical walls and at heights of 0.5, 1.0, 1.5, 2.0,
and 2.5 m from the floor level (Figure 7a).

• Five surface K-type thermocouples, positioned on the outer surface of each wall of the
compartment (Figure 7b).

• A pitot tube with integrated thermocouple in the exhaust duct to measure the volu-
metric flow rate and temperature of the exhausted gases.
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• A TESTO-350 gas analyzer for measuring the concentrations of O2 and CO2 in the
exhaust gases.

• A measurement of the static pressure in the compartment.
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3.2. Fuels

Four solid and liquid fuels, with different kinetics of pyrolysis and combustion, have
been selected: heptane, the widely used thermoplastic PMMA (polymer poly-methyl
methacrylate), dry untreated fir (DUF), and flexible polyurethane foam (PUF). They can be
considered representative of the various fuels that can be found in most large structures
such as office buildings, civilian or military ships, warehouses, etc. Fuel properties are
given in Table 2.

Table 2. Fuel properties [21].

Fuel Chemical
Formula

Density
(kg/m3)

Yields of Fire Products (g/g) ∆hch
(MJ/kg)

χrSoot CO HCN

Heptane C7H16 680 0.037 0.010 0 41.2 0.305
PMMA C5O2H8 1160 0.022 0.010 0 24.2 0.302

Dry untreated fir 1 C6O10.2H4.98 420 0.015 0.004 0 12.4 0.207
PU foam 2 C6.3O7.1H2.1N 30 0.227 0.031 0 28.0 0.520

1 assimilated to wood pine [21]. 2 The PU foam selected is a flexible, water-blown foam composed of two-thirds
TDI (toluene diisocyanate) and one-third polyol. It does not contain a flame retardant. This type of foam is used
for the filling of mattresses, seats of chairs, armchairs, or benches. It is here assimilated to GM23 flexible PU
foam [21].

3.3. Fire Scenarios

The ten tests performed correspond to various combinations and loads of the fuels
presented above, as well as two levels of containment of the device, depending on whether
the bulkhead door was closed or open (Table 3). For all tests, the exhaust volumetric flow
rate at the ceiling of compartment 1 was initially set to 800 m3/h. There was no other
mechanical ventilation. The openings on the WEST wall of compartment 1 were kept
open, as well as the natural opening at the bottom of the bulkhead door when this door
was closed.
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Table 3. Fire scenarios.

Test Fuel(s) Bulkhead Door

1 DUF (8.46 kg)/PUF (2.3 kg)

Closed
2 PMMA (7.37 kg)/PUF (2.33 kg)
3 Heptane (5.34 kg)/PMMA (7.39 kg)
4 Heptane (5.37 kg)/PUF (2.33 kg)
5 DUF (8.49 kg)/PMMA (7.41 kg)

6 DUF (8.49 kg)/PUF (2.33 kg)

Open
7 PMMA (7.41 kg)/PUF (2.32 kg)
8 Heptane (5.33 kg)/PMMA (7.39 kg)
9 Heptane (5.37 kg)/PUF (2.29 kg)
10 DUF (8.5 kg)/PMMA (7.4 kg)

The fire source was a combination of two of the following unit fuel fire sources
(Figure 8):

• A 70 cm diameter pan filled with heptane;
• A wooden crib, formed by stacking 10 crisscrossed layers of 6 DUF sticks. Each stick

was 0.5 m long, with a 3 cm square section. A holding grid was used to prevent
the glowing sticks from falling out of the 70 cm diameter pan due to the collapse of
the crib;

• Two PUF blocks, stacked in a 70 cm diameter pan. Each block has dimensions of
0.62 m × 0.62 m × 0.1 m;

• Four sheets of PMMA, arranged horizontally in a 70 cm diameter pan. Each sheet has
dimensions of 0.2 m × 0.5 m × 0.03 m.
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5 and 10).

For the tests using dry untreated fir and PMMA as fuel, the combustible elements
were arranged in such a way that the flame generated by their combustion clings to the
edge of the pan and occupies its entire surface, which makes it possible to assimilate the
effective area of the fire source to that of the pan (0.385 m2). Therefore, in any test, the total
area of the multi-fuel fire source was 0.77 m2.
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As shown in Figure 5, the first fuel pan was placed in the center of compartment 1,
while the second one was moved to the WEST wall, with its center 50 cm from the wall.
Ignition of heptane and PUF was achieved by exposing the fuel to the flame of a gas burner
for a few seconds. For DUF and PMMA, ignition was not done directly, but with a small
amount of ethanol (0.4 kg) placed at the bottom of the pan.

4. Validation Results
4.1. Data Processing

The data of interest for the validation of the zonal model concern the evolution of the
average gas and wall temperatures, and the volume concentrations of CO2 and O2 in the
exhausted gases. The interface of the smoke layer is diffuse and cannot be measured with
sufficient reliability, which is why the raw measurements are treated in a specific way.

The average temperature of the gas in the compartment is obtained by summing the
local temperature values measured by the 20 thermocouples placed, as shown in Figure 7a,
and dividing by 20. The value obtained is then compared to that calculated from the upper-
and lower-layer temperatures and the elevation of the smoke interface predicted by the

zone model: Tmod
= [(zroom − zi)Tu + ziTl ]/zroom.

Due to the distribution of the thermocouples on the walls of the compartment (Figure 7b),
the average temperature of the side walls is calculated as follows:

Texp
sw =

1
4
[
TpFRONT + TpBACK + TpWEST + TpEAST

]
(48)

with

TpFRONT =
1
6
[
Tp(0.5, 0, 0.5) + Tp(2.5, 0, 0.5) + 2Tp(1.5, 0, 1.5) + Tp(0.5, 0, 2.5) + Tp(2.5, 0, 2.5)

]
(49)

TpBACK =
1
6
[
Tp(0.5, 3, 0.5) + Tp(2.5, 3, 0.5) + 2Tp(1.5, 3, 1.5) + Tp(0.5, 3, 2.5) + Tp(2.5, 3, 2.5)

]
(50)

TpWEST =
1
6
[
Tp(0, 0.5, 0.5) + Tp(0, 2.5, 0.5) + 2Tp(0, 1.5, 1.5) + Tp(0, 0.5, 2.5) + Tp(0, 2.5, 2.5)

]
(51)

TpEAST =


1
6
[
Tp(3, 0.5, 0.5) + Tp(3, 2.5, 0.5) + 2Tp(3, 1.5, 1.5) + Tp(3, 0.5, 2.5) + Tp(3, 2.5, 2.5)

]
f or Tests 1 to 5

1
4
[
Tp(3, 0.5, 0.5) + Tp(3, 2.5, 0.5) + Tp(3, 0.5, 2.5) + Tp(3, 2.5, 2.5)

]
f or Tests 6 to 10

(52)

It is compared to that obtained from the predicted temperatures of wall segments 2 to

9: Tmod
sw = ∑9

w=2 Tw/8.
For the ceiling, the average experimental temperature is calculated using a Gaussian

profile about the center of the ceiling:

Texp
ceil =

2π

Aw=1
Tp(1.5, 1.5, 3)

∫ R

0
exp
(
− r2

σ2

)
rdr (53)

where R is the equivalent radius of the ceiling deduced from R2 = xroomyroom, and σ is
estimated from thermocouple values as follows: σ2 = −2/ln

(
T0.5/Tp(1.5, 1.5, 3)

)
, with

T0.5 = 0.25
[
Tp(0.5, 0.5, 3) + Tp(0.5, 2.5, 3) + Tp(2.5, 0.5, 3) + Tp(2.5, 2.5, 3)

]
. Texp

ceil is then
compared with the predicted ceiling temperature Tw=10.

The N-percentage rule by Cooper [22] is applied to estimate the smoke layer interface
height from the measured vertical temperature profiles. Beforehand, the gas tempera-
tures measured in the four corners at 1.0, 1.5, 2.0, and 2.5 were first averaged to obtain
T1.0, T1.5, T2.0, and T2.5, as done previously for T0.5. Then, they were interpolated between
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each thermocouple height to refine the temperature profile (e.g., every cm). The interface
height zint is finally determined as the height value satisfying the following condition:

T(zint, t)− T0 =
N

100
[
max

(
T2.5(t)

)
− T2.5(0)

]
(54)

The selection of the value of N is quite subjective. Values of 10, 15 and 20 have been
suggested by Cooper [22]. Here, optimum values in the range of [15–40] are adopted
depending on the test under study. Other techniques, namely the maximum gradient
method by Emmons [15], the Janssens and Tran method [23], and the integral ratio method
by He et al. [24], have been tested, but they were not able to describe the time evolution of
the interface height with decreasing smoke layer thickness, especially at the end of burn.

4.2. Comparison Model/Experiments

Fire scenarios 1 to 10 have been simulated using the two-zone model. For all simula-
tions, the time step was 50 µs. A run for the simulation of 1 h of fire takes less than 2 CPU
minutes on a PC with Intel® Core i7-4770 (3.40 GHz) and 16 GB RAM.

Figures 9–18 show the individual and total HRR time histories and the comparison
between numerical and experimental results for the ten tests, including the time evolution
of the smoke layer interface height. The model captures well the experimental trends for
all fire conditions, regardless of the confinement level of the enclosure.
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interface height.

The predicted and experimental average gas temperatures versus time are similar in
shape. The maximum level reached by the gas temperature and the time required to reach
the peak are typically predicted within 12.5 and 20% of the experimental measurements, re-
spectively. For test 9, the model underestimates the maximum value of the gas temperature.
This can be attributed to not knowing the exact composition and combustion properties of
the PUF we used (here, assimilated to GM23 foam). The maximum deviation in time to
peak gas temperature is observed for test 4, with 20%, but this must be qualified due to
the quasi-steady behavior of fire (Figure 12b). The overall comparison is more favorable to
the model.
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By comparing the predicted and measured wall temperatures, it is clear that the ceiling
jet effect acts differently depending on the size of the fire. For relatively small fires, those
that do not involve heptane, the model tends to overestimate the ceiling temperature,
making it conservative. In contrast, when heptane is burning, the rate of convective heat
release, and thus the ceiling temperature, is underestimated. This is particularly visible
in the c-diagrams of Figures 11 and 16 for tests 3 and 8. The sidewall temperature is
generally well reproduced by the model. The largest difference between the model and
the experiment is observed for test 5, once the PMMA begins to burn. The strength of the
ceiling jet is then not sufficient to allow the hot gases to flow back down the walls.

Combustion dynamics is well reproduced by the model (diagram d in Figures 9–18),
which validates the concept of surrogate fuel molecule (SFM). For well ventilated fires
(Tests 6 to 10), the model results, for both oxygen depletion and carbon dioxide production,
are in good agreement with the experiments. When the bulkhead door is closed (Test 1 to 5),
the agreement is less satisfactory, with overestimated oxygen depletion and carbon dioxide
production. Much of this can be attributed to limited information on the combustion
properties of the fuels involved in fire, especially DUF and PUF, and to the global one-step
reaction mechanism with constant yields of soot and CO, when they are known to depend
on the combustion conditions mainly in relation to the fuel-air equivalence ratio [25]. The
HRR deficit induced by a higher oxygen consumption can explain a lower ceiling jet effect
on the walls, as observed for tests 3 and 4. Note that the model reproduces well the return
to the atmospheric oxygen level after burning is completed.

As shown in the e-diagrams of Figures 9–18, there is good agreement between the
interface height predicted by the model and that deduced from temperature measurements.
For tests 1 through 5, where the bulkhead door was kept closed, the smoke layer interface
drops to about 60 cm in height, just above the fuel surface, and then rises again as the fire
decays. For tests 6 to 10, the minimum elevation of the interface is about 1 m, as expected
for such well-ventilated fires. Qualitative visual observations confirm these findings.

5. Conclusions

In this work, a two-zone model to simulate fire behavior and consequences in a
compartment where multi-fuel combustion occurs was developed and validated using a
series of full-scale compartment fire tests conducted in the IUSTI fire laboratory. In these
experiments, different combinations of solid and liquid fuels and two levels of compartment
confinement were studied, corresponding to both under-ventilated and well-ventilated
fire conditions.

Conclusions were drawn by comparing simulation and experimental results:
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• Regardless of the fuels used and the confinement level of the enclosure, the two-zone
model reproduces the experimental trends well for all fire scenarios, including the
time evolution of the smoke layer interface.

• The new concept of surrogate fuel molecule is a good alternative when several fuels
are burning in the same compartment. For under-ventilated fires, differences between
model results and measurements appear, which may be due to the limited information
on the combustion properties of some fuels involved in fire and to the simple one-step
reaction mechanism with constant yields of soot and CO.

• The impact of the ceiling jet on the walls depends strongly on the size of the fire. For
small fires, the model is rather conservative. In contrast, it slightly underestimates
the wall temperature increase for large fires whose flames and fire plumes can touch
the ceiling.

Further modeling and numerical work should be conducted to improve the reaction
mechanism and the ceiling jet modeling. For the latter, the flame height dependence could
be studied. This study also provides data that other researchers could use in developing
their fire model.
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