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Abstract: In robotized industrial scenarios, the need for efficiency and flexibility is increasing, espe-
cially when tasks must be executed in dangerous environments and/or require the simultaneous
manipulation of dangerous/fragile objects by multiple heterogeneous robots. However, the under-
lying hardware and software architecture is typically characterized by constraints imposed by the
robots’ manufacturers, which complicates their integration and deployment. This work aims to
demonstrate that widely used algorithms for robotics, such as interaction control, can be made inde-
pendent of the hardware architecture, abstraction level, and functionality provided by the low-level
proprietary controllers. As a consequence, a robot-independent control framework can be devised,
which reduces the time and effort needed to configure the robotic system and adapt it to changing
requirements. Robot-agnostic interaction controllers are implemented on top of the Robot Operating
System (ROS) and made freely available to the robotic community. Experiments were performed on
the Universal Robots UR10 research robot, the Comau Smart-Six industrial robot, and their digital
twins, so as to demonstrate that the proposed control algorithms can be easily deployed on different
hardware and simulators without reprogramming.

Keywords: interaction control; robotic software framework; ROS; industrial robot; digital twin

1. Introduction

In past years, robotic arms were introduced in several industrial applications, from
automated manufacturing to space robotics, with the aim to guarantee a constant level of
quality, higher accuracy, and speed, and to work in dangerous environments [1–3].

In most of these contexts, robots work together to accomplish the required tasks,
interacting with the environment and with each other. The positioner–worker–watcher
taxonomy proposed in [4] is useful to catch, in simple terms, the complexity of modern
workcells: positioners are in charge of moving and positioning the workpiece, so that workers
can interact with it (usually by exerting force on it, such as in drilling, cutting, soldering);
watchers carry sensors to make inspection tasks or even generate trajectories for the other
robots in case of occlusions and/or unforeseen events. The tasks usually require frequent
interactions with the environment, and changes in the environment itself have to involve
changes in the robots’ behavior. Heterogeneous hyper-flexible robotic workcells are a
further development of the concept above, where different types of robots work together to
accomplish the desired tasks and provide the system with the necessary flexibility, making
it adaptable to different applications without requiring excessive human intervention [5].
Ideally, on the one hand, it should be possible to replace, in no time, the robots with others
of a different brand or model while keeping the same control algorithms, or, on the other
hand, to assign the same robot with diverse tasks requiring very different control strategies
and parameters.

On the software side, this degree of flexibility can be achieved through a perfect
modularization of the manufacturing systems, both in terms of software and hardware,
and a consistent middleware of automation modules to connect robots, peripheral devices,
and other industrial systems without reprogramming. In this context, the philosophy of
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the Robot Operating System (ROS) [6], today the de-facto standard for robot programming,
is to provide small and simple software control units that can be easily transferred from
one robot/application to another, including simulated ones [7]. Its industrial counterpart,
ROS-Industrial [8], has extended the main ROS characteristics of modularity, hardware-
agnosticity, and software quality to the industrial context, making the design of hyper-
flexible robotic workcells a reality.

1.1. Related Research

Laying upon the solid bases of robotic software frameworks appearing between the
late 1990s and 2000s, such as CLARAty [9], OROCOS [10], and YARP [11], reference [12] was
among the first seminal works to shift the paradigm of flexible and highly reconfigurable
robotic units to the industry. A few years before the beginning of the ROS era, the authors
of reference [12] proposed a proprietary control architecture, implementing all the functions
required for the control of the industrial robotic workcell (e.g., reading force/torque sensors,
robot kinematics and control, trajectory planning). Several proprietary languages of robot
manufacturers were integrated with an external PC-based controller.

As ROS began to gain popularity, some remarkable open architectures and libraries
to interface industrial robots with ROS were proposed [13,14]. In a common ecosystem,
they enabled the management of multiple robots in complex working environments. More
recently, references [15–17] demonstrated the usage of ROS for the management of an entire
workcell, enabling fast setup and reconfiguration from both the hardware and software
point of view and communication between devices.

While the development of ROS-based motion control algorithms has rapidly progressed,
interaction control has not undergone the same process, despite its fundamental importance
in cooperative tasks. This is attributable to the less standard setup in terms of force/torque
sensing and the less frequent availability of these sensors in non-industrial contexts.

Other works precisely target interaction control, providing controllers that are typically
application- or robot-specific [18,19], sometimes not openly available [20], and composed of
complicated software modules that are effective for the considered applications, but hard
to migrate among heterogeneous robots. As a result, their applicability to hyper-flexible
robotic workcells is limited.

The most representative example of a ROS-based interaction controller is provided
in [21], where motion, force, and compliance controls are combined into one control strategy
based on a simulated model used to compute positions and velocities from forces through
forward dynamics. However, it is not clear how the robot-agnosticity and the interface
with different force/torque sensors are addressed. This is not described in [21] and the
code is not openly available.

1.2. Research Approach and Contribution

The contribution of this paper is a novel design of a ROS-based robot-agnostic software
architecture for heterogeneous robots and devices, whose aim is to deploy exactly the same
interaction control algorithms on different hardware, including digital twins. Our approach
is novel in that we removed all possible application-specific complications, and focused on
commonalities of interaction control tasks. We adopted a simplifying approach, where we
only assumed that a position command interface and an end-effector-mounted force/torque
sensor were available, which are both very frequent, non-restrictive conditions in industrial
workcells. We exploited the available ros_control [22] interfaces to assign the desired behavior
to the robot, implementing two distinct types of interaction controllers: the admittance con-
troller and the direct force controller. In continuity with [13,14], whose contribution was in the
development of ROS interfaces for industrial robots, our contribution is also applicational,
targeting interaction control in particular. In fact, we believe that our approach simplifies
the deployment of interaction controllers in the industrial context, indeed requiring to
setup only a small set of configuration files. In terms of impact, we believe taking one step
further toward the development of more efficient hyper-flexible robotic workcells and to
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reduce the gap between interaction and motion controllers in terms of modularity and
robot-agnosticity in the ROS ecosystem. Indeed, while the adoption of ros_control makes
development of new robot controllers easy, there is no guarantee that they can be effectively
used in hyper-flexible robotic workcells, thus considering heterogeneous robots.

The provided architecture is simple enough to understand, which raises the learning
curve for people who intend to maintain and/or extend our controllers. For the same rea-
sons, it also fits the educational context, which is another focal point of ROS-Industrial [23].
Theoretical aspects of the interaction control theory can be applied to real scenarios, with
the possibility of gaining experience with different robotic platforms. Furthermore, the
possibility of using the same controllers in a simulation environment allows the user to
become familiar with the overall architecture and test modifications, while removing the
risk of damaging expensive equipment. In order to strengthen our commitment toward the
development of a common software architecture that several institutions and companies
can use and contribute to, our algorithms are directly integrated into the ROS ecosystem and
are open-source. This is complemented with careful engineering of the software/control
architecture, in order to provide high-quality software to be directly employed in industrial
applications [23].

In order to demonstrate the effectiveness of our approach, the developed architecture is
validated on the widely-used Universal Robot’s UR10 and the Comau Smart-Six industrial
robot (on top of its proprietary controller), in both of their real and simulated versions,
highlighting the flexibility of the proposed controllers over different trajectory executions
and robot–human interaction scenarios.

ROS is targeted instead of ROS2 [24] because of its wider popularity and adoption,
especially in the industrial context [25]. Indeed, especially in case of simulated scenar-
ios, which is one of the most important aspects of this work, at the time of writing, the
ros2_control integration between ROS2 and Gazebo [26] requires some additional care. More-
over, the related documentation is not complete.

While we focus on the design of robot-agnostic interaction controllers, the provision
of control parameters is beyond the scope of this work. Indeed, it is a common challenge
in interaction control, which is usually addressed by manual tuning, when some infor-
mation about the interaction dynamics is available, or, most commonly, by an automatic,
usually data-driven, learning/adaptation procedure, when the interaction dynamics are
unpredictable or prone to change [27–31]. The relationship between interaction controllers,
lower-level motion control, and higher-level adaptation policies is depicted in Figure 1.

Figure 1. Robot-agnostic interaction control with adaptation policy.

The paper is organized as follows. In Section 2.1, the theoretical foundations of
interaction control are recalled in order to derive the functional requirements for the
implementation. In Section 2.2, the ROS-based software architecture is presented, while
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experimental results are provided in Section 3. In Section 4, conclusions and possible future
developments are discussed.

2. Materials and Methods
2.1. Interaction Control

Interaction control theory relies on the assumption that robots are torque-commanded,
thus centralized control laws must be designed in such a way that joint positions, velocities,
and accelerations are given, and torques are obtained through inverse dynamics [1,2].
However, real robots seldom allow for torque commands, rather they expose a position or
velocity interface and perform joint control internally. The control strategy is often propri-
etary and unknown, but, in most cases, either a decentralized control, i.e., independent joint
control, or an inverse dynamics control is applied, which cancels out the manipulator dy-
namics making it equivalent to a double-integrator system. As a consequence, it is possible
to impose a desired behavior through the basic linear control theory. Robot-agnostic control
schemes must be built so as to assign joint position references, taking into account the most
restrictive assumptions of independent joint control: high transmission coefficients of the
motors, a low armature resistance, and low joint accelerations for the task execution. If
these requirements are satisfied, which is the case of most real robots, we can assume that
the commanded position is reached with high precision.

It follows that, in order to build an interaction controller, we have to consider that the
system to be controlled is not the mere robot but the position-controlled robot, which is
already equipped with motion control.

2.1.1. Admittance Control

In most interaction scenarios, the manipulator is required to have compliant behavior
along specified workspace directions. Impedance control is usually adopted to achieve this
goal with the idea to assign mass-spring-damper dynamics to the end-effector. In general,
the impedance control scheme is designed so as to output joint accelerations, which are then
used to retrieve torques through inverse dynamics. It follows that it cannot be used with
position-controlled robots and admittance control is used instead. It is characterized by an
inner position control loop and an outer force loop, so that interaction and motion controls
are decoupled. A modified workspace position reference, computed through the impedance
control law, is generated, joint positions are retrieved through inverse kinematics and then
sent to the robot position controller [30].

Let us consider a desired workspace task xd ∈ Rm to be executed by a robotic arm
with n joints and, for the sake of simplicity, neglect the orientation in the operational space
assuming it to be fixed, with no torques generated at the end-effector, so that only the forces
f ∈ R3 are taken into account. The relation, through a generalized mechanical impedance,
between the vector of contact forces and the position error z̃ ∈ R3 is given by the equation

Md ¨̃z + KD ˙̃z + KPz̃ = −f̃, (1)

where the position error is computed as the difference between the desired reference and
the commanded one z̃ = xd − xc, while Md, KP, KD, respectively, are the diagonal mass,
stiffness, and damping matrices of appropriate dimensions, used to specify the dynamic
behavior in the task space. The term f̃ = fd − fe is the force tracking error, where fd is the
desired force and fe is the contact force applied by the manipulator on the environment.
The latter is equal and opposite to the force measured by a force/torque sensor mounted at
the robot’s end-effector.

At the steady state, (1) becomes

f̃ = KP(xc − xd), (2)
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while, making the hypothesis of elastic environment, the force applied by the manipulator
can be expressed as fe = Ke(xc − xe), where Ke and xe are the stiffness and the rest position
of the environment, respectively. It follows that

f̃ = fd −Ke(xc − xe). (3)

Obtaining xc from (3) and plugging it into (2), it can be derived that, as shown in [29,31],
the force error at the steady state f̃ss is

f̃ss =
KP

KP + Ke
[fd + Ke(xe − xd)]. (4)

From this equation, it can be observed that only by perfectly knowing the environment
it is possible to have a zero force error, by carefully selecting KP and xd. Otherwise, when
the environment is unknown, the force reference is not reached and the error is subject
to the imposed compliance. If one wants to control the contact force, variable impedance
schemes can be used [27–31].

Computing ¨̃z from (1) yields:

¨̃z = M−1
d [−f̃−KD ˙̃z−KPz̃]. (5)

The control scheme is represented in Figure 2. This also is the implementation adopted
in [29,30].

 

Figure 2. The admittance control scheme for position-controlled robots.

The velocity and position displacements in the workspace, ˙̃z and z̃, are obtained
through numerical integration, while the commanded workspace positions xc are given
by the difference between xd and z̃. Then, the related n× 1 vector of joint positions qc
is computed through inverse kinematics. It is worth noting that the position control is
assumed to be perfect, i.e., the commanded position xc is close to the actual position xm. In
case of an independent joint control, this assumption might require the desired trajectory
to be slow enough for xc ' xm to be verified.

2.1.2. Direct Force Control

When an accurate control of the generated contact force is required, it is necessary
to devise control schemes that allow the desired interaction force to be specified directly
for one or more directions in the workspace. Hence, a direct force control scheme can be
designed with the closure of an outer force regulation feedback loop generating the control
input for the position-controlled robot, as shown in Figure 3.



Appl. Sci. 2022, 12, 3949 6 of 15

Figure 3. The direct force control scheme for position-controlled robots.

The error between the desired force fd and actual force fe is the input of the force
controller CF, which generates position commands. The difference between the actual
robot position and the rest position of the environment generates a contact force via the
stiffness Ke, which acts as a disturbance on the position-control loop.

In order to guarantee rejection to this disturbance, a proportional-integral (PI) con-
troller is chosen [32]:

CF = K−1
e

(
Kp +

Ki
s

)
, (6)

where Kp and Ki are the m×m diagonal matrices of proportional and integral gains along
the m directions. The presence of the unknown environment stiffness to be compensated
does not allow to make an accurate tuning of the PI. By incorporating K−1

e in PI parameters,
such that KP = K−1

e Kp and KI = K−1
e Ki, they should be adapted as the surface changes.

If force control is not required along a direction, the corresponding elements of Kp and
Ki are set to zero, so that the desired workspace position xd along the position-controlled
directions is simply forwarded on the feed-forward chain. Joint positions are then obtained
through inverse kinematics and sent to the robot.

2.2. ROS-Based Implementation

Design and implementation of the hardware-independent interaction control schemes
are based on the ROS framework in order to guarantee maintainability, re-usability, modu-
larity, and flexibility of the robotic software, as needed in the heterogeneous hyper-flexible
robotic workcells. Before presenting our design, we briefly recall the main ROS functions
exploited in the implementation.

The ros_control framework [22] provides an infrastructure for the robot-agnostic control,
from the management of the controllers’ life-cycle and hardware resources to the libraries
for the implementation of custom controllers.

The proposed architecture relies on the ROS pluginlib library [33], which allows instan-
tiating a generic object of an abstract class and then dynamically load specific implementa-
tions at runtime, i.e., depending on the hardware architecture to be used, related functions
are loaded. ros_control itself is based on a plugin architecture for basic and custom con-
trollers. The force/torque sensor library is also implemented as a plugin so as to simplify
the process of changing and mixing together different robots and sensors and to provide an
extension point for new sensor drivers.

Concerning the interface towards the planning system, e.g., a reference generator,
ROS supports several communication mechanisms between nodes. Among these, the
actionlib-based communication [34] interface provides a client-server mechanism based on
the transmission and execution of goals and exchange of feedback messages for monitoring
purposes, such as the monitoring of a trajectory execution.
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2.2.1. Finite State Machine Architecture

The two algorithms for admittance and direct force control are designed as a finite
state machine (FSM), represented in Figure 4.

Figure 4. Finite state machine for interaction controllers implemented in ROS.

Assuming the robot is not in touch with the environment, the algorithm starts execut-
ing the interaction control law and, in the attempt of reaching the desired force fd, which
could also be zero, moves according to the assigned dynamics.

On a practical standpoint, before the robot starts operating, it is often desirable to bring
the end-effector to the task’s first configuration, with a separate command. The planning
system can do this by providing a single setpoint, to be reached with absolute precision.
To this purpose, pure motion control, in the form of independent joint control, is needed.
In fact, if the starting point was tracked by the interaction control law, the reached point
might differ from the target, due to the input force error. In addition, motion control allows
commanding (and reaching) the end-effector orientation required by the task.

The FSM consists of three states and five events. The states are:

• Static control law: the algorithm simply executes the control law, with fixed force and
position references;

• Trajectory execution control law: the algorithm still executes the control law while
tracking the trajectory received as input (the tracking might not be accurate, along
force-controlled directions, due to the control action);

• Independent joint control: the interaction control law is not executed, while the inde-
pendent joint control allows reaching the desired position and orientation with an
assigned tolerance.

The transitions are:

• Init: occurs when the controller is started by the controller manager [35];
• Trajectory received: a trajectory is received;
• Setpoint received: a setpoint is received;
• Trajectory completed: the execution of the trajectory is completed;
• Setpoint reached: the setpoint is reached.

It is worth specifying that, once the target point is reached, the gravity bias is removed
from the force/torque sensor measures, so that null measures are delivered until the sensor
gets in touch with the environment. While a setpoint is reached or a trajectory executed, no
other input is allowed.

2.2.2. Action Communication Interface

Interaction controllers are ROS nodes that internally implement a communication
mechanism of type ros::ActionServer. The actionlib-based communication was chosen to
exploit the potential of action services so that the current state of the robot during trajectory
execution can be monitored by a ros::ActionClient. A custom action message FollowWorkspace-
Trajectory allows for the specification of the desired workspace trajectory together with the
desired force references. The goal of this action message is the custom WorkspaceTrajectory
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message provided in [36] and extended to include wrench references. The feedback of the
FollowWorkspaceTrajectory message will contain, for each waypoint reached by the manipu-
lator, the desired and actual pose and wrench, and the difference between them, the error.
This information is received by the ros::ActionClient, which stores it in ROS bagfiles [37] for
further analyses.

2.2.3. Implementation Details

The overall architecture is described through a context diagram and a hybrid decom-
position/class diagram in Figures 5 and 6, respectively. Here, the interaction_controller::
InteractionController class name is a placeholder for the real controller class name, i.e.,
admittance_controller::AdmittanceController or direct_force_controller::DirectForceController.

<<plugin>>
interaction_controller

ros::ActionServer

ros::ActionClient

<<node>>
follow_workspace_trajectory_action_client

<<message>>
WorkspaceTrajectory

workspace trajectory
bagfile load

FollowWorkspaceTrajectoryAction

driver

<<device>>
sensor

<<interface>>
hardware_interface::RobotHW

setCommand

JointStateHandleJointPositionHandle

getPosition

Figure 5. Context diagram.

As discussed in previous sections, the real robots are position-controlled robots; thus,
the interaction controllers have been implemented by inheriting the class controller_interface::
Controller 〈hardware_interface::PositionJointInterface〉 [38], which allows sending joint posi-
tion commands and reading joint states through the provided JointHandle [39] interface.

Every controller requires the implementation of the methods init, starting, stopping, and
update. While the first three functions are called when the controller is loaded, started, and
stopped, respectively, update embeds the control law, i.e., the FSM described in Section 2.2.1,
and is called at the control cycle frequency.

The communication between the controller and the force/torque sensor is handled
through the class ForceTorqueSensor, designed as a plugin, such that specific implementa-
tions can be provided for specific sensors, both real and simulated. In particular, an object
of the ForceTorqueSensor class is instantiated in the init function and is used at each update
call to obtain the force measures from a driver. It is worth noting that ROS already provides
a force_torque_sensor_controller [40] based on topic communication but, since the API is
faster, it is preferable for real-time systems. Thus, new force/torque sensors can be added
by implementing the ForceTorqueSensor interface.
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<<plugin>>
interaction_controller

ForceTorqueSensor

+ getAverageMeasure(...)
+ computeBias()

interaction_controller::
InteractionController

+ init(hardware_interface::PositionJointInterface*,
        ros::NodeHandle&)
+ starting(const ros::Time&)
+ update(const ros::Time&, const ros::Duration&)
+ stopping(const ros::Time&)

- isPositionReached_(const std::vector<double>&)
- computeInverseKinematics_(...)
- getActionGoal_()
- updateActionFeedback_()

1

1

ros::ActionServer

controller_interface::Controller
<hardware_interface::PositionJointInterface>

+ init(hardware_interface::PositionJointInterface*,
        ros::NodeHandle&)
+ starting(const ros::Time&)
+ update(const ros::Time&, const ros::Duration&)
+ stopping(const ros::Time&)

ft_sensor
implementation

driver

FollowWorkspaceTrajectoryAction

getPositionsetCommand

Figure 6. Hybrid decomposition/class diagram.

One of the main issues in designing a robot-agnostic architecture is to make the
software independent from the specific kinematic structure of the robot. In fact, the
reference frames used for inverse kinematics and force measurements can change from
robot to robot. Moreover, the Unified Robot Description Format (URDF) file used to obtain
the kinematic description of the manipulator may contain additional frames that are not
present in the real robot kinematic structure, as configured by the manufacturer for on-
board computations, but might be implicitly used by the ROS functions. For instance, the
URDF world frame is typically used for kinematic inversion, but it may not correspond to
the frame in which the workspace trajectory is expressed.

The reference frames used by the interaction controllers are reported in Figure 7. Fb is
the base reference frame, usually used to specify the workspace trajectory. Fw is the world
reference frame, and, when different from Fb, might be used to interpret the pose subject to
inverse kinematics. Fb is transformed into Fw through the constant transformation matrix
Tw

b . Fm is the flange frame (usually the last frame in a kinematic chain without end-effector),
and is where the force/torque sensor is mounted. Fs is the sensor frame, with respect to
which force/torque measures are given. The constant transformation matrix Ts

m depends
on the mechanical interface between the flange and the sensor. F f is the end-effector
frame when the robot is at the trajectory’s starting point, while Fe is the end-effector-fixed
moving frame.

As a consequence, controllers have been parametrized to indicate the reference frames
for the task, for inverse kinematics, and for force/torque measurements, while transfor-
mations between them are automatically handled by the controller. All these frames and
transformation matrices are provided by the user in configuration files and loaded on the
parameter server [41]. A similar approach for the analysis of the reference frame relationships
and description of the robot pose is performed in [42] for a wheel-legged robot.
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Figure 7. Reference frames used in the interaction controllers.

In order to simplify the implementation and make it more intuitive and easy to
maintain, the control laws work with references expressed in F f . Since the trajectory
is commonly assigned in Fb, the controller automatically handles the transformation of
position references. On the contrary, force references are commonly expressed in Fe; thus,
the force measurements are transformed from Fs to Fe. The difference between F f and Fe
only depends on the progress on the assigned trajectory.

The control law computes each position increment with respect to the previous point
in F f . Then, the increment is expressed again in Fb, added to the offset given by F f and
given as input to the inverse kinematics algorithm, which will use the frame specified in
the configuration files for computations. Inverse kinematics is performed by the kinematic
solver configured with the robot.

Controller-specific parameters (e.g., PI gains, impedance matrices) and files containing
the robot description are provided through configuration and launch files for each controller
and robot and are then loaded on the parameter server. This way, if the hardware changes,
only configuration files must be replaced, without the need to recompile the source code.

The developed source code is openly available in [43].

3. Results

The validation of the proposed architecture is performed on the Universal Robot’s
UR10 and the Comau Smart-Six robots and their simulated version in Gazebo. Different
force/torque sensors are mounted on each robot: the ATI Gamma SI-65 [44] is mounted
on the UR10, the Schunk Mini 58 SI-700-30 [45] on the Smart-Six, while a simulated
force/torque sensor provided by a Gazebo plugin [46] is used with the simulated robots.
To handle all of these types of sensors, two implementations of the class ForceTorqueSensor
are provided: ForceTorqueSensorComedi, which exploits the Comedi [47] driver for the com-
munication with the real sensors, and ForceTorqueSensorGazebo, which collects force/torque
readings through a ros::Subscriber.

The Supplementary Video S1 shows experiments performed with interaction con-
trollers on the different robotic platforms. First, a straight line trajectory is executed while
the robots interact with the environment, then some human–robot interaction scenarios
are shown.

3.1. Trajectory Execution

The first experiment consists of the execution of a straight line trajectory along the
horizontal direction, the x axis. While for the direct force control, the plane is placed
beneath the trajectory, for admittance control, a steel ramp intersects the trajectory causing
contact with the end-effector.

If the objective is to be compliant with the environment, thus to adapt to obstacles, the
desired force is set to zero along the axis perpendicular to the plane, i.e., Fe’s z axis, the
compliant direction.
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The impedance matrices for the real UR10 are: Md = blockdiag{0.1, 0.1, 0.1}, KD =
blockdiag{300, 300, 500}, KP = blockdiag{900, 1300, 10}. In order to achieve comparable
performances with the simulated robot, because of the different dynamics of the manipula-
tor and the higher stiffness of the objects in the virtual environment, the matrices are: Md =
blockdiag{1.0, 1.0, 0.001}, KD = blockdiag{900, 900, 5000}, KP = blockdiag{1300, 1300, 90}.
In both cases, the z component has a higher damping and a lower stiffness since the robot
must be highly compliant and moderately damped in that direction, while along x and y
axes, it must be stiffer, as the position must be kept with accuracy.

As it is clear from Figure 8, as soon as the robot is in contact with the ramp (around
20 s), it slides over it, causing a non-negligible position error and higher contact forces
along z. Since the trajectory is longer than the ramp, when the interaction ends (around
140 s), the robot recovers the desired position and force, with zero error.
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Figure 8. Commanded end-effector positions (left) and measured end-effector forces (right) of the
UR10 during the execution of the workspace trajectory with the admittance controller. Quantities are
compared to the desired positions and forces.

With the direct force controller, since we want to track a specific force reference, we
set the desired force to a ramp from 0 to 50 N along z, which is the only force-controlled
direction. PI gains for the real UR10 are: KPz = 0.8 · 10−5 and KIz = 6 · 10−5. In the
simulation, where both the robot and the environment have slightly different characteristics,
the proportional gain is lower: KPz = 0.025 · 10−7. In Figure 9, we can see that, along
position-controlled directions, the position error is zero, while along the force-controlled
direction, the force error is below 2 N.
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Figure 9. Commanded end-effector positions along the position-controlled axes (left) and end-effector
forces along the force-controlled axis (right) of the UR10 during the execution of the workspace
trajectory with the direct force controller. Quantities are compared to the desired positions and forces.

The same experiments are performed with the Smart-Six by only changing configura-
tion parameters, i.e., reference frames, impedance matrices, and PI gains in configuration
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files. Similar observations made for the UR10 hold, as can be seen from Figure 10, demon-
strating the flexibility of the proposed architecture. It is worth noting that the controllers’
performance can be improved through better knowledge of the interaction dynamics and
an informed tuning of the controllers’ parameters, but this is addressed elsewhere in the
literature [31,48,49], and goes beyond the scope of this communication.
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Figure 10. End-effector positions (left) and forces (right) of the Smart-Six during the execution of the
workspace trajectory with the admittance (up) and direct force (down) controllers. Quantities are
compared to the desired positions and forces.

3.2. Human–Robot Interaction

Consider now the case where controllers are in the static control law state and a force is
manually applied at the end-effector.

If the admittance controller is active, the robot will follow the movement of the human
operator along the compliant directions, and it will oppose the movement along the stiff
ones, behaving as a spring in the operational space.

If the direct force control is active and all directions are force-controlled, it is possible
to set up a teaching by showing scenario by setting the desired force to zero and increasing
the value of the integrative gain, e.g., up to KI = 0.01 along all directions for both robots.
A human operator can bring the end-effector to specific positions in the workspace, by
exerting forces on the handle tool. This way, the performed movements can be recorded,
both in the workspace and joint space, and replayed autonomously.

Note that, for both controllers, when a force is exerted on intermediate links of the
robot, e.g., in such a way that zero force is perceived by the force/torque sensor, the
manipulator stays in its current position, as a result of the position-based motion control.

4. Conclusions

This work demonstrates how algorithms that are widely used in robotics can be made
independent of the hardware architecture, such that they can be used in heterogeneous
and hyperflexible robotic workcells. The challenge lies in the complexity of industrial
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robotic systems, making their use difficult outside of the proprietary context. We focused
on the design of two new hardware-independent interaction controllers through the ROS
framework, based on the action communication interface, and provided a novel API to
handle any type of end-effector-mounted force/torque sensor. The developed architecture
was tested on different robotic platforms as well as in simulation, demonstrating the
flexibility of the proposed solution. Indeed, transferring the controllers from one robot to
another is as simple as updating a few hardware-dependent configuration files, regardless
of the underlying control architecture (ROS-ready, as in the case of the UR10 robot, or
proprietary controller, as in the case of the Comau robot). A future extension of the
framework is to enable end-effector torques management, which would cause changes in
the robot orientation. This would allow considering more complex scenarios where two
or more robots cooperate to accomplish a desired task. Moreover, as ros2_control becomes
more mature, by keeping the control logic unchanged, the architecture proposed in this
work can be easily migrated.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app12083949/s1, Video S1: Robot agnostic interaction controllers
based on ROS.
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