
����������
�������

Citation: Yu, J.; Jung, J.; Wang, S.

Derivation and Validation of

Bandgap Equation Using Serpentine

Resonator. Appl. Sci. 2022, 12, 3934.

https://doi.org/10.3390/

app12083934

Academic Editor: César M.

A. Vasques

Received: 15 February 2022

Accepted: 12 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Derivation and Validation of Bandgap Equation Using
Serpentine Resonator
Junmin Yu 1 , Jaesoon Jung 2 and Semyung Wang 1,*

1 School of Mechanical Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-Ro,
Buk-Gu, Gwangju 61005, Korea; pragen0525@gist.ac.kr

2 Agency for Defense Development, Daejeon 34186, Korea; jjung91@add.re.kr
* Correspondence: smwang@gist.ac.kr; Tel.: +82-60-712-2390; Fax: +82-62-715-2384

Abstract: Bandgap refers to a frequency band where free waves do not propagate. One of the
characteristics of a bandgap is its ability to block the propagation of bending waves in a specific
frequency band with a periodic structure. Additionally, it has been reported in previous studies that
the vibration-reduction performance of a bandgap is superior to that of other reduction methods.
A bandgap can be generated in various frequency bands through a simple parameter change in the
unit structure. However, the bandgap for a desired frequency band can be determined accurately
only with intensive simulations. To overcome this limitation, we have mathematically derived the
bandgap using a serpentine spring as a unit structure. The bandgap equation is derived from the
general mass–spring system and the final bandgap is derived by substituting the system into the
serpentine resonator. The error map for the major design parameter is confirmed by comparing the
derived bandgap with the simulation result. In addition, the theoretical bandgap is compared to
the experiment value and the vibration-reduction performance of the serpentine resonator is also
confirmed. Based on the theoretical and experimental result, the proposed serpentine resonator
verifies that the bandgap can be derived mathematically without numerical analysis. Therefore,
serpentine resonator is expected to have various applications since it dramatically reduces the time
and cost for forming the bandgap of the desired frequency band.

Keywords: bandgap; serpentine resonator; vibration; frequency band

1. Introduction

A metamaterial is defined as an artificial material with wave manipulation that does
not exist in nature. Numerous studies have been conducted in various fields, such as
electromagnetic [1–3], optical [4–6], and acoustic [7–10] to understand the characteristics of
metamaterials. Among them, acoustic metamaterials have attracted significant attention
in the vibro-acoustic field [11–15] due to their unique characteristics based on mechanism.
The bandgap, one of the important characteristics of acoustic metamaterials, blocks the
propagation of free bending waves of the host structure in a specific frequency region.
Therefore, bandgap materials have a significant attenuation performance and are widely
used in noise-, vibration-, and harshness-treatment procedures [16–21].

A bandgap can be generated by periodically arranging structures, such as resonators
and scatterers, and inertial amplification. These structures make the wavenumber in the
bandgap region imaginary, and consequently the bending wave becomes an evanescent
wave and becomes dissipated, and the response of the host structure decreases in the
bandgap region [22–25]. Therefore, an equation for the bandgap can be derived even
though the wavenumber of the bending wave in the host structure becomes imaginary.
The equation is derived from the resonance frequency of the periodic structure and mass
ratio between the host and periodic structures [26]. Since it is difficult to control the mass
ratio, the resonance frequency of the resonator plays an important role in the formulation
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of the equation. Thus, the parameters of the periodic structures are important design
parameters for determining the bandgap, and the bandgap can be controlled by adjusting
the parameters.

In spite of the wave manipulation properties of metamaterials, there is no adequate
method to formulate the bandgap yet. Most metamaterials set the attenuation frequency
region and determine the unit structure design in which the bandgap is implemented using
high levels of simulation. Although this method is the most accurate, the simulations
are time-consuming. To overcome this limitation, we have derived the equation of the
bandgap mathematically to implement the bandgap in the desired frequency region by
controlling the structural parameters. This equation helps to modularize the parameters of
the bandgap region and reduce the time required for structural design.

In this study, the experimental analysis is implemented using a serpentine spring
composed of meandering beams as a resonator to generate the bandgap. Serpentine springs
are primarily used in various research fields due to their high stretchability and increased
utility in narrow spaces [27–30]. In addition, the presence of various parameters in the
serpentine spring provides adequate freedom to design the bandgap. Hence, we have
derived the bandgap equation of the serpentine resonator and analytically verified it using
a commercial software COMSOL. The relative errors between the numerical and analytical
results are also analyzed. Additionally, the trend of the relative error when the design
variables are modified is also identified to determine the most optimal design conditions.
Finally, the results obtained are validated experimentally for similar design conditions
and the theoretical equation is verified through the experiment. The experimental results
show that the bandgap can be derived by an equation and the bandgap of the serpentine
resonator can be successfully implemented.

This paper is organized as follows. Section 2 presents the mathematical derivation
of the equation of the bandgap for a serpentine resonator. Section 3 formulates the nu-
merical derivation of the bandgap and analyzes the relative error. Section 4 describes the
experimental setup for the validation and demonstrates the performance of the serpentine
resonator. Finally, Section 5 presents the conclusions with a discussion and suggestions for
future work.

2. Theory
2.1. Bandgap

Figure 1 shows the plate on which the mass–spring resonators are uniformly dis-
tributed. Assuming that the resonators are infinitely periodic and smaller than the wave-
length of interest, the equations of motion can be divided into two parts as:

ρh
..
wp + D∇4wp = fpr, (1a)

kr(wp − wr) = mr
..
wr = frp, (1b)

where ρ is mass density, h is the thickness of the plate, wp and wr are the vertical displace-
ments of the plate and resonator at the connection point, respectively, D is the bending
stiffness of the plate, frp and fpr are the forces of the resonator on plate and plate on resonator,
and mr and kr are the lumped mass and stiffness of resonator, respectively.

The vertical displacement of the plate for the harmonic wave is defined as

wp(x, y, t) = wp(x, y) exp(jωt) (2)

where ω is the angular frequency. By substituting acceleration with displacement in
Equation (2), Equation (1a) can be modified as:(

∇4 −ω2ρh/D
)

wp(x, y) =
fpr

D
, (3)
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Figure 1. (a) Bandgap structure and (b) mass–spring resonator represented by the blue circle.

The wavenumber of the free bending wave in the plate kb, angular frequency, mass
density, thickness of the plate, and bending stiffness of the plate are related as:

kb =
(

k2
x + k2

y

)1/4
=
(

ω2ρh/D
)1/4

(4)

Using Equation (4), the equations of motion can be obtained as follows:(
∇4 − k4

b

)
wp(x, y) =

fpr

D
. (5)

Using Equation (1b), the equations of motion can be obtained as Equation (6a). From
the base excitation, the relation between vertical displacement of the plate and resonator
can be expressed as Equation (6b):(

−ω2mr + kr

)
wr = krwp, (6a)

wr = wp
kr

mr
(
ω2

0 −ω2
) . (6b)

where ω0 is the natural resonance frequency of the mass–spring system. From the equilib-
rium of force between the resonator and plate, fpr can be obtained as follows:

fpr = kr(wr − wp) = ω2mrwr. (7)

By substituting Equation (7) in Equation (5), fpr can be eliminated to obtain Equation (8a).
Substituting Equation (6b) in Equation (8a) and rearranging the terms, an equation contain-
ing only the vertical displacement of the plate wp can obtained as follows:(

∇4 − k4
b

)
wp =

1
D

ω2mrwr, (8a)

(
∇4 − k4

b

)
wp =

1
D

ω2mrkr

mr
(
ω2

0 −ω2
)wp, (8b)

(
∇4 −

(
k4

b +
1
D

ω2mrkr

mr
(
ω2

0 −ω2
)))wp = 0. (8c)
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This equation is the modified Helmholtz equation for the plate on which the mass–
spring resonators are uniformly distributed. From Equation (8c), the modified wavenumber
can be obtained as follows:

kmod =

(
k4

b +
1
D

ω2mrkr

mr
(
ω2

0 −ω2
))1/4

. (9)

Bandgap is defined as a frequency band where free waves do not propagate. To
prevent wave propagation, the wavenumber has to be purely imaginary, which is the
condition for an evanescent wave. Therefore, the modified wavenumber must satisfy the
following condition:

k4
b +

1
D

ω2mrkr

mr
(
ω2

0 −ω2
) < 0 (10a)

ω2mp +
ω2mrkr

mr
(
ω2

0 −ω2
) < 0 (10b)

Eliminating mr in the numerator and denominator of the second term and rearranging
the remaining terms, Equation (10b) can be expressed as follows:

ω2mp +
ω2kr

ω2
0 −ω2

< 0 (11a)

ω2

(
mp +

kr

ω2
0 −ω2

)
< 0 (11b)

mp +
kr

ω2
0 −ω2

< 0 (11c)

mp is the mass of the plate, which is always positive. Therefore, the first condition for
the equation to be negative is that ω > ω0. This is the lower frequency limit; the upper
frequency limit can be obtained by solving the inequality. Here, the total frequency bound
is defined as

ω0 < ω <

√
ω2

0 +
kr

mp
(12)

The bandgap can be obtained from the difference between the upper and lower
frequency limits. The upper frequency limit is related to the natural frequency; hence, the
bandgap can be expressed in terms of natural frequency as

∆ωBG = ω0
(√

1 + mr/mp − 1
)

= ω0
(√

1 + Mr − 1
) (13)

∆ωBG
ω0

=
(√

1 + Mr − 1
)

. (14)

where Mr is the mass ratio defining mr/mp. It can thus be observed that the resonant
frequency as well as the mass ratio are important factors for determining the bandgap.

2.2. Serpentine Resonator

Figure 2 shows the serpentine resonator that consists of a combination of a rigid mass
and serpentine beams, which correspond to the mass and spring of the system, respectively.
The serpentine resonator can be divided into three parts. Parts 1 and 3 are in contact with
the mass and plate, respectively. Part 2 connects parts 1 and 3 and it consists of N repeated
segments; additionally, the serpentine resonator in Figure 2 is repeated twice. The symbols
representing the length of each beam are shown in Figure 2 and Table 1. To simplify the
calculation, we have assumed that lini = lfin = lp.
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Figure 2. Concept of serpentine resonator.

Table 1. Symbols representing the length of the serpentine resonator.

Symbol Definition

Lx Length of the plate in x direction
Lz Length of the plate in z direction
T Thickness of the plate
Lxm Length of the rigid mass in x direction
Lym Length of the rigid mass in y direction
t Thickness of the serpentine beams
lini Length of the initial beam
lfin Length of the final beam
lo Length of the beam orthogonal to the y-axis (vertical)
lp Length of the beam parallel to the y-axis (horizontal)
b Width of the serpentine beams

Figure 3 shows the schematic of each part and their segment beams. The serpentine
beams of each part are composed of horizontal and vertical beams. Part 1 consists of three
horizontal beams and one and a half vertical beams; part 2 consists of two horizontal beams
and two vertical beams, and part 3 consists of one horizontal beam, and half of a vertical
beam. The section enclosed in a box with dotted lines in Figure 3 is the free-body diagram
with forces and moments of the horizontal and vertical beams. The spring constant of the
serpentine beam is derived using the principle of virtual work. The red arrow represents
the virtual force exerted on the beam.

The formula for total energy in the bending beam is derived by integrating the strain
energy density for each beam as follows:

U =
m

∑
i=1

[∫ lp

0

(
M2

2EIzp
dx
)]

i
+

n

∑
j=1

[∫ lo

0

(
M2

2EIzo
dy
)]

j
, (15)

where M is the moment of the beam, E is the Young’s modulus, and Izp and Izo are the
moments of inertia of the horizontal and vertical beams, respectively. The first and sec-
ond terms represent the energies of the horizontal and vertical beams, respectively. The
moments of inertia of the horizontal and vertical beams are given as:

Izp =
1
12

tb3, (16a)

Izo =
1

12
tl3

p, (16b)
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Figure 3. Schematic diagram of each part along with their segment beams.

Using the principle of virtual work, the displacement of the serpentine beams in the
x-direction can be derived as:

δx =
∂U
∂Fx

=
m

∑
i=1

[∫ lp

0

(
M

EIzp

∂M
∂Fx

dx
)]

i
+

n

∑
j=1

[∫ lo

0

(
M

EIzo

∂M
∂Fx

dy
)]

j
(17)

Using Hooke’s law to derive the spring constant, the displacement of the total serpen-
tine beams can be expressed as:

kx =
Fx

δx
, (18)

δx,tot = δ1,1 + δ1,2 + N(δ2,1 + δ2,2 + δ2,3 + δ2,4) + (δ3,1 + δ3,2 + δ3,3 + δ3,4 + δ3,5),

= (N+1)Fx l2
o

6EIzo
+

(N+1)Fx l2
o lp

2EIzp
,

(19)

where N is the number of times each part is repeated and Fx is the virtual force. Substituting
the total displacement in the equation for Hooke’s law, the spring constant of the serpentine
beam can be obtained as:

kx =

[
(N + 1)l3

o
6EIzo

+
(N + 1)l2

o lp

2EIzp

]−1

, (20)

Then, the resonant frequency of the serpentine resonator can be expressed as:

ω0 =

√√√√ 1
Smr

[
(N + 1)l3

o
6EIzo

+
(N + 1)l2

o lp

2EIzp

]−1

, (21)

Likewise, the bandgap of the serpentine resonator is derived as:

∆ωBG =

√√√√ 1
Smr

[
(N + 1)l3

o
6EIzo

+
(N + 1)l2

o lp

2EIzp

]−1(√
1 + Mr − 1

)
(22)
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3. Numerical Validation
3.1. Resonant Frequency

To validate the equations for resonant frequency and bandgap of the serpentine
resonator derived in Section 2, the theoretical values were compared with the results of
a finite element method (FEM) analysis. The FEM analysis was conducted through the
3D Multiphysics software COMSOL with eigenfrequency analysis. The analysis model is
a serpentine resonator made of acrylic fixed to a steel plate, which is the host structure.
The material properties of the acrylic were E = 3.2 GPa, Poisson’s ratio of 0.4, mass density
of 1165 kg/m3, and concentrated mass = 5.2 g with acrylic. Table 2 shows the list of
dimensions used in the analysis model.

Table 2. Dimensions of the analysis model.

lo lp b t Lxm Lym Lxh Lyh T

8.75 mm 2 mm 1 mm 10 mm 8 mm 8 mm 25 mm 25 mm 1 mm

Figure 4 shows the resonance frequencies and their mode shapes. Five resonance
frequencies below 500 Hz are indicated in the figure. At the first and second resonance
frequencies, the first bending mode appears. The two mode shapes differ only in the
direction of vibration. At the fourth and fifth resonance frequencies, the second bending
mode and torsional mode appear, respectively. At the third resonance frequency of 158 Hz,
the longitudinal mode, which is the mode of interest in this study, appears. Comparing
this frequency with the theoretical result of 151 Hz, it is observed that the theoretical and
simulation values are similar and the cause of error is the simplification of the resonator
model to reduce the simulation cost.

Figure 4. Mode shapes according to each resonance frequency.

Figure 5 shows an error map for the relative errors between simulation and theory
with respect to lp/b and lo/b for different values of N. The other design parameters, namely,
thickness and b, were set to 10 and 1 mm, respectively. N, lp, and lo were then modified to
compare the third resonance frequency, which is the desired frequency.
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Figure 5. Relative error map for the resonance frequency of the serpentine resonator.

Figure 5 indicates that as lp/b and lo/b increase, the analysis result becomes stiffer than
the theoretical result, and thus the error decreases. In the simulation, the total stiffness
increases due to the geometric stiffness of the corner, which is not considered in the
theoretical implementation. Additionally, the larger the joint, the less effective is the
hypothesis of an ideal beam in theory. Hence, the simulation result becomes stiffer when
the joints of the corners are larger. Similarly, when lp/b is large, the simulation result
becomes stiffer as N increases. Therefore, the parts indicated by the black dotted line are
set as the design zone because the error of resonance frequency is small, and designing
with parameter bounds in the design zone is considered reasonable.

3.2. Bandgap

Based on the design described in Section 3.1, the design parameters are set as N = 2,
lp/b = 1.5, and lo/b = 10. This section describes the dispersion curve analysis that was
conducted for the unit structure of the parameter in the design point of Figure 5 to compare
the bandgap between the theoretical implementation and simulation. The dispersion curve
is calculated by combining finite element (FE)-based unit cell modeling and Floquet–Bloch
boundary conditions using COMSOL. For the analysis setting, a 25 mm steel plate was
used as the host structure and a serpentine resonator was attached to the host structure,
and this structure was repeated infinitely.

The dispersion curve analyzed with the above setting is shown in Figure 6. The shaded
part highlighted in black is the bandgap generated based on FEM (COMSOL Multiphysics)
analysis and the section enclosed in the box in red is the bandgap generated based on
the theoretical implementation. The bandgap of the FEM ranges from 158 to 228 Hz and
that for theoretical implementation ranges from 151 to 217 Hz. Figure 6b shows the mode
shapes of the serpentine resonator unit structure. A and B are the Bloch mode shapes at the
lower and upper bounds of the bandgap, respectively. A is the in-phase mode and B is the
out-of-phase mode; C is the bending mode in x-axis and D is the bending mode in y-axis.
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Figure 6. (a) Dispersion curve and (b) mode shapes of the analysis model.

The bandgaps for all the mode shapes are different from each other. The error of the
bandgap result may be based on the following two reasons. The first is the simplification
of the resonator model and the second is the simplification of the bandgap estimation
theory. In the former, the analysis model is simplified to reduce the cost of the analysis,
which induces the error. However, the error is negligible. In the latter, the conventional
bandgap estimation theory begins with the unit structure modeling in which a mass–spring
resonator is combined on a thin plate. This unit structure is deduced from the calculation of
mass and spring matrices through the FEM analysis, and the dispersion relation is inferred
based on the Floquet–Bloch theorem. Additionally, the dispersion curve is decided in the
irreducible Brillouin-zone (IBZ) to estimate the bandgap.

However, the bandgap estimation theory proposed in this study is simply a theory
based on the condition that the wave does not propagate through the wave equation.
Therefore, the theory is prone to inevitable error. This can be attributed to the process of
estimating the spring constant. It is assumed that the joint between the beams is ideal,
but the larger the joint of the beam or the larger the thickness, the more invalid is this
assumption. Since the bandgap estimation theory is related to the spring constant of the
serpentine resonator, this error cannot be ignored.

Figure 7 shows the relative error of the resonance frequency and bandgap for N fixed
at two and constant lp when lo/b is modified. The figure indicates that as the values of
the parameters lo and lp increase, the relative bandgap error decreases, which is similar to
the phenomenon when N changes. Therefore, for the experimental validation, we have
considered lp = 1.5 and lo/b = 10, which have the lowest relative error.
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Figure 7. (a) Relative error of resonance frequency and bandgap when N = 2, lp = 1, (b) lp = 1.5,
(c) lp = 2, according to the change in lo/b, and (d) unit structure.

4. Experimental Validation
4.1. Fabrication

The unit structure is designed as a serpentine resonator to experimentally verify
the bandgap generated from the numerical results as shown in Figure 8. The serpentine
resonator is made of acrylic material with elastic modulus E = 3.2 GPa, mass density
ρ = 1165 kg/m3, and Poisson’s ratio ν = 0.4. The tip mass of the serpentine resonator is
made of a nut & bolt pair, which weights 5.9 g, and it is assumed to be rigid in the desired
frequency range. Table 3 shows the dimensions of the serpentine resonator used to generate
the bandgap from 201–290 Hz within a cuttable width of 8 mm acrylic. Fabricated sample
was manufactured by laser cutting and dimensions were changed due to manufacturing
conditions. Dimensions were taken within the same design zone in Figure 5.

Figure 9a shows the dispersion curve of the fabricated sample and unit structure
analyzed by a three-dimensional (3D) FE simulation using COMSOL Multiphysics. The
shaded part highlighted in black is the bandgap generated based on FEM (COMSOL
Multiphysics) and the section enclosed in the box in red is the bandgap generated based
on the theoretical implementation. The bandgap generated through the FEM simulation
ranges from 201 to 290 Hz and that generated by the theoretical implementation is in
the range of 204–294 Hz. Figure 9b shows the mode shapes of the serpentine resonator
unit structure. A and B are the Bloch mode shapes at the lower and upper bounds of the
bandgap, respectively; A is in-phase mode, and B is out-of-phase mode. C is the bending
mode in x-axis and D is the bending mode in y-axis.
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Figure 8. Fabricated serpentine resonator.

Table 3. Dimensions of the fabricated serpentine resonator.

lo lp b t Lxm Lym Lxh Lyh T

15 mm 3 mm 2 mm 8 mm 12 mm 12 mm 25 mm 25 mm 1 mm

Figure 9. (a) Dispersion curve and (b) mode shapes of the fabricated sample.
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The serpentine resonators are all cut with the same machine and acrylic plate to
reduce process errors between samples. To evaluate the deviation between the FE model
and fabricated samples, the resonance frequencies of five samples were measured. The
fabricated samples were vertically attached with a silicon glue on the shaker to realize
the fixed boundary condition, and the resonance frequencies were measured using laser
scanning vibrometer (LSV) and compared with the FE model. Table 4 shows the resonance
frequencies of the five samples. As shown in the table, the average frequency of the
measurement results is 189 Hz, and the average is 190 Hz with the 3D FE simulation.

Table 4. Measured values of resonance frequency.

Sample 1 2 3 4 5 Average

Resonance [Hz] 189 188 193 190 186 189

4.2. Vibration Transmission

Figure 10 shows the vibration transmission experimental setup to analyze the vi-
bration response of the fabricated serpentine resonators. A steel beam with dimensions
300 × 50 mm is used as the host structure. The serpentine resonators are arranged in a
2 × 10 array in intervals of 25 mm on a 1 mm-thick steel beam with silicone glue. The
surface vibrational velocity of the serpentine resonators is measured using the impact ham-
mer and accelerometer. To minimize the effect of mass, hammer excitation is performed
instead of shaker excitation. The accelerometer is attached to a point 20 mm away from the
end of the beam and the hammer point also vibrates at the same point. The steel beam is
supported by wires so that all the edges are in the free–free boundary condition.

Figure 10. Experimental setup of vibration transmission.

Figure 11 displays the measurement result of the bare beam and serpentine resonator
beam. The red and green lines represent the vibration responses of the two beams, re-
spectively. The measurement result shows that the vibration response of the serpentine
resonator is significantly reduced for the bandgap in the range of 200–290 Hz. In frequency
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bands other than the bandgap, the peaks are shifted and reduced due to damping and
mass effects. However, in the bandgap, the result shows that the dip is divided into several
peaks because of the local modes of the serpentine resonator. The figure also shows that
the measurement results for the bandgap region obtained by theoretical implementation
and simulation are similar.

Figure 11. Vibration measurement result.

5. Conclusions

In this study, we presented the derivation of an equation for a bandgap based on a
numerical and experimental approach. A simplified model consisting of a resonator (mass–
spring system) and host structure was used to derive the equation. Since the resonator
was used as a serpentine resonator, the design freedom of the bandgap increased; hence,
various design parameters of the simplified model were used to control the bandgap.
The simplified model was simulated to verify the theoretical equation using commercial
software. The resonant frequency and bandgap of the serpentine resonator were calculated
and compared with the theoretical result to analyze the cause of relative error. In addition,
the relative error map for each design variable was also presented to confirm the critical
design variables. Experimental validation was conducted to verify the theoretical equation.
The experiment was conducted using an impact hammer test, and the bandgap effect
and vibration reduction on the thin beam were confirmed. The serpentine resonator
reduces vibration by 5.5 dB in the bandgap frequency region and this is in agreement with
the theoretical implementation and simulation. Therefore, the bandgap equation solved
numerically through software in this study is mathematically derived for the first time.
The derived bandgap equation can be used to control the bandgap by adjusting the design
parameters, and the time used for simulation can be significantly shortened. Furthermore,
if this study is limited to tortuous resonators, it is expected that it will be possible to derive
bandgaps of various unit structures if developed.
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