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Abstract: The Siamese-based object tracking algorithm regards tracking as a similarity matching
problem. It determines the object location according to the response value of the object template
to the search template. When there is similar object interference in complex scenes, it is easy to
cause tracking drift. We propose a real-time Siamese network object tracking algorithm combined
with a compensating attention mechanism to solve this problem. Firstly, the attention mechanism
is introduced in the feature extraction module of the template branch and search branch of the
Siamese network to improve the feature representation of the network to the object. The attention
mechanism of the search branch enhances the feature representation of both the target and the similar
backgrounds simultaneously. Therefore, based on the above two-branch attention, we propose a
compensated attention model, which introduces the attention selected by the template branch into
the search branch, and improves the discriminative ability of the search branch to the object by
using the feature attention weighting of the template branch to the object. Experimental results on
three popular benchmarks, including OTB2015, VOT2018, and LaSOT, show that the accuracy and
robustness of the algorithm in this paper are adequate. It improved occlusion cases, similar object
interference, and high-speed motion. The processing speed on GPU reaches 47 fps, which can achieve
real-time object tracking.

Keywords: object tracking; Siamese network; attention

1. Introduction

Visual object tracking has received widespread attention in the past few years due to
its wide application in visual surveillance [1], robotics [2], human-computer interaction [3],
and augmented reality [4]. With the state of an object in the initial frame as inference,
tracking aims to predict the object’s state in each subsequent frame. With the development
of deep learning, object tracking algorithms based on deep learning have become the
research focus. The deep tracking methods can be roughly divided into two categories, i.e.,
Discriminative Correlation Filter (DCF) based methods and object Siamese networks based
methods [5–7].

The DCF-based algorithms [8–10] train correlation filters by extracting depth features
and filtering subsequent frame images to obtain the most relevant object. DCF-based
approaches treat the tracking problem as a binary classification problem. The trained
classifier distinguishes the object and the background. It selects the candidate sample
with the highest confidence as the prediction result. Classifiers typically trained using
neural networks have a relative advantage in discriminating targets and interferences. e.g.,
the ATOM [8] (Accurate Tracking by Overlap Maximization) network introduces IOU-
Net (Intersection Over Union Network) [9] based on the Siamese network to accurately
estimate the target frame and improve the accuracy. The DiMP (Discriminative Model
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Prediction) [10] algorithm also improves the discriminative ability and design template
update. While introducing the online learning model, the iterative process of the loss
function is optimized by the extremely fast gradient algorithm. The speed of online
iteration is very high. The overall algorithm has reached SOTA in terms of robustness and
speed performance with a significant improvement. However, the discriminative algorithm
essentially regards the tracking as a binary classification problem, separating the object’s
relationship and background. When the background of adjacent frames changes drastically,
the discriminant algorithm cannot accurately track the object. Moreover, the discriminant
algorithm relies on the appearance model’s construction. The discriminative algorithm
relies on the construction of the appearance model, which requires the union of background
and foreground information and the introduction of historical frame information.

The Siamese-based object tracking algorithm balances the tracking accuracy and speed,
achieving real-time, high-precision target tracking. It is the mainstream algorithm in the
current object tracking. Based on the pioneering SiamFC [11] and SINT [12], many methods
try to improve the tracking performance of Siamese trackers. SiamFC is the earliest end-
to-end Siamese network target tracking algorithm, which regards the tracking problem
as a similarity matching problem. The same feature extraction network is used to extract
features for the template and module search branches in the offline learning stage. Then
the template feature is used as a window for sliding matching in the search area, and the
highest response value is the object. However, SiamFC did not consider the scale problem
when taking the bounding box and could not solve the problem of different scales of
objects. Therefore, SiamRPN [13] utilizes the Region Proposal Network [14] (RPN) for joint
high-quality foreground-background classification and bounding box regression learning.
However, due to the imbalance of the negative sample categories in the training data, the
Siamese network cannot distinguish objects similar to the target well.

Current algorithms usually solve this problem from two aspects: one type of algorithm
expands positive samples by using translation, flipping, and other means, and at the
same time increases various types of complex negative samples so that the network can
discriminate. For example, in the training phase of DaSiamRPN [15], the ImageNet [16]
and COCO detection datasets [17] are made into positive sample pairs through data
amplification to expand the types of training data sets and improve the generalization ability
of the tracker. Moreover, it extracts pictures in different categories, and the same category
as negative samples generates various kinds of complex negative samples and improves
the discriminative ability of the tracker. The other is to improve the feature expression
ability of the feature extraction module. For example, SiamRPN++ [18] introduces deeper
Resnet [19] as the backbone network. The extracted features have a more vital expressive
ability, which improves the anti-interference ability of the tracker. However, SiamRPN++ is
still susceptible to interference from similar objects in a complex background. The Siamese
network is essentially a template matching process that takes the first frame of target
information as a template and cannot judge interferers in the background similar to the
object. Moreover, they use the same classification network for feature extraction. It is
impossible to obtain features with different directivity between the template and the search
area. As shown in Figure 1, when other objects similar to the target appear in the current
frame, the features extracted by the feature extraction network are very similar. As a result,
double peaks appear in the response map, it is impossible to resolve the correct target.
The Siamese-based algorithms do not have an online update mechanism, so the drifts are
generated, and the tracking fails.

These methods enhance the ability to express features and improve the ability to
distinguish similar objects to a certain extent. However, these algorithms will still lose track
when similar objects of the same type have interfered in the scene. SiamRPN++ proves
through experiments that the same category has a high response in some specific feature
channels. In contrast, the response is shallow in other channels, indicating that the channel
can reflect object category information to a certain extent.
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We propose a robust tracking algorithm based on compensating attention to solve the
above problems. The channel-spatial attention mechanism is introduced into the double
branches of the Siamese network to strengthen the high-response channel characteristics of
specific target categories and at the same time, strengthen the dominant characteristics of
a specific area of the object. Then we add a compensation attention model based on the
dual-branch attention, introduce the attention of template branch selection into the search
branch, and merge the attention of the search area and the template branch selection. It
improves the feature discrimination ability of the search branch to the target. It solves
the problem that the channel-space attention introduced by the search branch enhances
the target characteristics while also enhancing the characteristics of similar objects near
the target.

Figure 1. Drift problem leads to wrong target, when there is similar object interference in complex
scenes. Green box is ground true and yellow box is the result of a Siamese-based tracker.

2. Related Work
2.1. Siamese Network-Based Trackers

In recent years, Siamese network-based tracking algorithms have treated tracking as a
metric problem. They have attracted much attention for their excellent trade-offs in terms
of speed and accuracy. Bertinetto et al. [11] first introduced SiamFC for visual tracking,
aiming to learn the similarity metric between target templates and search regions and
localize objects using correlation operations. With the success of RPN on object detection,
Li et al. applied RPN to the Siamese Network framework to solve the multi-scale problem
of objects. Although the SiamRPN network has improved performance in tracking, it
cannot use the deeper backbone network and still uses the external AlexNet network [20].
To use the powerful depth features extracted by deep networks, SiamRPN++ and SiamDW
address the challenges of introducing deep networks into the Siamese framework, resulting
in a significant performance improvement. Zhu et al. introduced the hard negative mining
technique in DaSiamRPN [15] to overcome the data imbalance issue by including more
semantic negative pairs into the training process. In order to solve the shortcomings of
the algorithms for target representation and running speed, SiamMask [21] is used as an
integrated processing framework for visual object tracking and video object segmenta-
tion tasks.

The Siamese-based tracker does not perform any model updates or a simple linear
update strategy, so the performance completely depends on the general matching ability of
the Siamese network. However, the appearance of objects in the presence of tracking often
varies greatly, and failure to update the model causes the tracker to fail. Guo et al. proposed
the DSiam [22] tracker and designed dynamic transformation matrices. Yang et al. proposed
the MemTrack [23] that dynamically writes and reads previous templates to cope with
target appearance variations. And Zhang et al. proposed the UpdateNet [24] which learns
a generic function that computes the updated template based on an initial ground-truth
template, accumulated template, and the predicted template in the current frame.
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Recently,There have been several notable transformer trackers, such as TransT [25],
DualTFR [26], and STARK [27], which introduce the transformer to tracking framework
for stronger information interaction and achieve compelling results. SiamBAN [28] and
SiamCAR [29] employed full convolutional networks to directly classify objects and regress
their bounding boxes at each spatial position, removing the problematic hyperparameter
adjustments of anchor points. Although the performance of the existing Siamese network
tracking algorithms has improved significantly, the feature representation capability of the
backbone network is still lacking, and the ability to discriminate similarity interferers is not
robust enough.

2.2. Real-Time Trackers

The tracking speed is a crucial metric to evaluate the trackers, especially to meet the
real-time requirements. However, evaluating tracking speed is not simply a matter of
quizzing speed. Many key factors come into play, including feature extraction, model
update methods, and programming languages. In DCF-based trackers, MOSSE [30] runs at
669 fps on the CPU. Some other SOTA algorithms also achieve the same requirement of
real-time tracking, such as ECO [31], ATOM [8], and DiMP [10]. For Siamese network-based
algorithms, the network structure itself has a relatively large impact on the speed. For
example, the tracking speed of SamFC [11] is 86 fps, which is far from the speed of MOSSE,
but it also achieves real-time performance. The subsequent proposed DaSiamRPN [15]
and SiamRPN [13] achieve tracking speeds of 160 fps on the GPU. The tracking speed of
SiamRPN++ [18] is 35 fps, which barely meets the real-time requirement. For the tracker
Siam R-CNN [32], combined with R-CNN, the tracking speed is only 4.7 fps due to its
complex structural design. The proposed tracking speed is 47 fps, which meets the real-
time requirement.

2.3. Attention Mechanisms

Attentional mechanisms were first proposed in the neuroscience neighborhood and
later extended to other fields such as image classification, target detection, tracking, and
human re-identification. For the object tracking task, RASNet [33] is an end-to-end residual
attention twin network framework designed to learn generic feature representations and
simultaneously have adaptive discriminators. The algorithm draws on the idea of residual
network learning. It decomposes the spatial attention mechanism into prior and residual
attention with strong individual adaptation capability.

Zeng [34] adds two attention modules to the framework of MDNet [35] to extract better
features, a spatial attention mechanism, and a channel attention mechanism, respectively.
It enables the network to extract discriminative and robust features or context through
fused spatial channel attention. SA-Siam [36] considers a channel attention module in the
semantic branch of their framework to improve the discrimination ability. IMG-Siam [37]
considers the channel attention mechanism in the Siamese network to improve the match-
ing model. Therefore, it separates the foreground and background of the object template
in the template branch, extracts features and introduces attention separately, and then
merges them to enhance the matching model. SiamFRN [38] introduces end-to-end features
refine-based object tracking framework to improve the target representation utilizing se-
mantic features. SCSAtt [39] employed channel attention and spatial attention mechanisms
together to improve tracking performance with end-to-end learning.

SATIN [40] is a target tracking framework based on keypoint detection. The algorithm
uses the idea of centroid detection borrowed from CenterNet [41], transposing the keypoint
detection method to target tracking and introducing a spatial channel attention mechanism
to enhance the representational and discriminatory capabilities of the feature extraction
network. Similarly, we introduce spatial attention mechanisms to each branch of the
Siamese Network separately and add a compensating attention model to branch attention.
By introducing the attention mechanism to enhance the representation and discriminative
ability of the network.
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3. Approach

We use SiamRPN++ as the base network. Channel and spatial attention are introduced
in the specific layer of the backbone network of its template branch and search branch,
enhancing the feature expression ability. The channel attention weight of the template
branch is overlapped and added to the search branch. The compensatory attention of
the search area is combined with the attention of the template branch selection. The
feature attention weight of the template branch to the object is used to improve the feature
discrimination ability of the search branch to the object. The model structure is shown in
Figure 2.

Figure 2. The architecture of our approach. On the template branch, the channel-spatial attention
module is the same as the CBAM module. The pale green part is the channel attention matrix, and
the purple is the spatial attention matrix. On the search branch, the pale yellow is our compensatory
attention matrix, and the purple is likewise spatial attention matrix.

3.1. The Attention Model of Siamese Network

The Siamese network extracts image features through the migration classification
network, and the in-depth features of the image are biased towards semantic information.
SiamRPN++ uses ResNet [19] as the backbone network to extract features. Experiments
confirm that different channels respond differently to specific object categories, indicating
that deep features can learn semantic information about object bias. The dual-branch
structure of the Siamese network is different from the input image information, and the
features extracted by the two branches have different concerns in dimensions such as
channel and space. We use the attention mechanism to filter the image information and
learn the importance of the object in the search branch during the feature extraction process.
In other words, let the network extract target features that are more effective for the target
tracking task, ignoring the background information. Because the information of a particular
category of the image responds differently to different channels of the feature map, we
use channel attention to enhance the characterization information of the object and search
branch objects and weigh the channels with a stronger dependence on the object to obtain
features maps with a more significant response. When the translation invariance of the
feature extraction network is destroyed, the network is easy to learn the positional bias,
which is the response to the object in the center is the greatest. In order to eliminate the
positional bias caused by the data distribution of different datasets, we use the spatial
attention mechanism to learn the location of the object, suppress the positional bias, and
strengthen the representation of the physical location information of the object in the image.

We introduce the CBAM (Convolutional Block Attention Module) [42] attention model.
The attention mechanism model is a relatively lightweight and embeddable module. It
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obtains a new feature map by calculating, weighting channel, and spatial attention on a
specific layer of the feature extraction network.

Channel attention. The channel-wise attention is employed to select proper chan-
nels that adaptively facilitate the current tracking task. Given the input feature map
Zi ∈ RH×W×C, where W, H, and C indicate the width, height, and channel number
of feature maps, respectively. We first apply max-pooling and average-pooling oper-
ations through the spatial axis to get two 1D channel feature descriptors denoted as
Zi

max ∈ R1×1×C and Zi
avg ∈ R1×1×C. Then multiple layers of the perceptron are ap-

plied to each pooled feature descriptor to create a one-dimensional channel attention map
Wi

cz ∈ R1×1×C.
Wi

cz = sigmoid(MLP(Zi
max)⊕MLP(Zi

avg))

where ⊕ denotes the element-wise addition and MLP means the multi-layer perception.
The multi-layer perception is composed of a channel reduction layer, which its C

r ×C, and a
ReLU activation, and a channel increasing layer, which its C× C

r and a sigmoid activation.
The Channel-Refined feature map Fi

z ∈ RH×W×C weighted with the channel attention
can be calculated sequentially as,

Fi
z = Zi ⊗Wi

cz

where ⊗ indicates multiplication, respectively.
Spatial attention. We use spatial attention to emphasize areas of information that

adequately represent the current target object. Given the channel-refined feature map
Fi

z ∈ RH×W×C, We first apply max-pooling and average-pooling operations through the
channel axis to get two 2D spatial feature descriptors denoted as Fi

max ∈ RH×W×1 and
Fi

max ∈ RH×W×1. Spatial feature descriptors are then concatenated and fed into a sin-
gle convolutional layer with sigmoid activation. We can get a 2D spatial attention map
Wi

sz ∈ RH×W×1,
Wi

sz = sigmoid(conv([Fi
max, f i

avg]))

where [Fi
max, f i

avg] ∈ RH×W×2 denotes the concatenation of global average-pooled and
max-pooled feature descriptors. conv means the single convolutional layer with a sigmoid
activation, which is a 7× 7 convolutional layer.

Finally, the attention-refined feature map Fi ∈ RH×W×C weighted with both the
channel attention and spatial attention can be calculated sequentially as,

Fi = Zi ⊕ (Zi ⊗Wi
cz ⊗Wi

sz)

where ⊗ and ⊕ indicate multiplication and element-wise addition, respectively. The
structure of the attention model is shown in Figure 3.

Figure 3. The Attention Model of Siamese Network.
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3.2. The Compensatory Attention Model

There are identical and independent template branches and search branches in the
Siamese structure. The template branch extracts only the target features, and the search
branch contains both the target and the context. The presence of distractors in the search
branch during tracking can affect the judgment of the target by the attention mechanism.
Because the search branch has some generalizations to different targets when learning
feature attention. It is impossible to distinguish between distractors and targets. Attention
to different objects of the same category is usually enhanced simultaneously. Thus we
propose to compensate for the autonomously selected channels of search branch attention
with the channels of template branch attention selection. The structure of the compensatory
attention model is shown in Figure 4.

As shown above, the template branch network has layer i features of Zi ∈ Rb×C×W×H ,
and the search branch layer i feature of Xi ∈ Rb×C×W×H . The following is an example
of Xi to give Zi and Xi channel attention calculation. We compute the average pool-
ing Xi

a ∈ Rb×C×1×1 and maximum pooling Xi
m ∈ Rb×C×1×1 on the channel dimension

separately using Xi. They are downsampled by the fully connected layer, denoted as
Xi

a
′, Xi

m
′ ∈ Rb× C

16×1×1. The same operation is performed to raise the dimension after activa-
tion, denoted as Xi

a
′′, Xi

m
′′ ∈ Rb×C×1×1. After adding them together to get the pooled feature

map Xi
p, the channel attention weight Wi

x is obtained after activation and expansion, i.e.,

Xi
p = Xi

a
′′
+ Xi

m
′′

, Xi
p ∈ Rb×C×1×1

Wi
x = σ(xi

p)

Similarly, the attention weight Wi
z of the template branch feature is obtained. Combi-

nation Wi
x and Wi

z as the final attention weights for the search branch, defined as

Wi
sup = f (Wi

x, Wi
z)

where f (·) can use sum fadd(·), dot product fmul(·), and concatenate fcat(·). According to
the experimental results, the best results can be obtained by connecting the operations. The
specific experiments are described in the experimental section of Section 4.

Finally, Wi
z and Wi

sup are weighted on the Zi, and Xi feature maps to obtain a new
feature map with reassigned channel weights in the layer i. The specific steps of the
compensated attention strategy applied to the search branch are the following Algorithm 1.

Figure 4. Compensated attention model for search branch.
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The experimental results show that the features enhanced by the compensated atten-
tion method in this paper have more substantial expressive power and a more fantastic
response to the target than the features extracted directly from the original text.

Figure 5 shows the feature map after enhancing the compensated attention method. It
can be observed from the figure that the features extracted from the limbs of the ants are
more explicit after adding the attention mechanism in the fourth column, which shows that
the improved feature extraction network extracts more detailed features from the objects.

Algorithm 1 Compensated Attention Strategy for Searching Branches.

Input: Xi, Wi
z

Output: Wi
sup

1: for i = 1 to N do
2: Xa

wh = avgpooling(Xi).
3: Xm

wh = maxpooling(Xi).

4: Xpool
wh = Xa

wh + Xm
wh.

5: Wi
x = σ(Xpool

wh ).
6: Wi

sup = f (Wi
x, Wi

z).
7: if f (·) is add then
8: Wi

sup = fadd(Wx, Wz) = ∑C
c=1(W

i,c
x + Wi,c

z ).
9: else if f (·) is multiply then

10: Wi
sup = fmul(Wx, Wz) = ∑C

c=1(W
i,c
x ∗Wi,c

z ).
11: else if f (·) is concat then
12: Wi

sup = fcat(Wx, Wz) = ∑C
c=1[W

i,c
x . . . Wi,c

z ].
13: end if
14: end for

Xi is the layer i feature map of the search frame Wi
z is the attention weight of the

template frame features. C is the number of feature map’s channels. N is the number of
layers.

Figure 5. Feature extraction comparison chart.

A graph of the response of the compensated attention-enhanced features of this paper
with the features extracted by SiamRPN++ to the target is given in Figure 6. From the figure,
we can find that SiamRPN++ also generates responses at the locations of similar objects.
However, the algorithm in this paper does not have responses at the locations of interfering
objects, so the resistance of this paper to interfering objects is significantly improved.
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Figure 6. Comparison of response plots with SiamRPN++ algorithm.

4. Experiment

Our proposed tracking algorithm is evaluated on the generic tracking datasets VOT2018 [43],
OTB2015 [44], and LaSOT [45]. At the same time, ablation experiments are performed on
different components. Some of the state-of-the-art tracking algorithms, such as the Siamese
family of algorithms, DiMP, ATOM, and the algorithms in this paper, are selected for
comparison. Then, the effectiveness of different domain attention is evaluated at different
layers of the network and in different combinations. Our method is trained with stochastic
gradient descent (SGD). The experimental environment is 128G of running memory and
4 GTX 1080ti. We use synchronized SGD over 4 GPUs with 128 pairs per minibatch (32 pairs
per GPU), which takes 12 h to converge. We use a warmup learning rate of 0.001 for the
first 5 epochs to train the RPN braches. The Siamese network framework used is the
PySOT [46] framework based on PyTorch 0.4.1 [47]. For the last 10 epochs, the whole
network is end-to-end trained with a learning rate exponentially decayed from 0.005 to
0.0005. The parameters of the whole network are released for training later. One iteration
processes 64 images with a CPU work thread of 1. The whole training is supported by the
YouTubeBB [48], GOT10k [49], VOT2018, and DET [50] datasets.

4.1. Analysis

We evaluate the algorithms in this paper using two small datasets, OTB2015, VOT2018,
and one large dataset LaSOT. OTB2015 and VOT2018 have been developed for a long time,
have a well-developed assessment system, and have more authoritative assessment data in
small datasets. The LaSOT is a large target tracking dataset containing 1400 video sequences,
70 categories, and over 3.52 million precise bounding boxes. Visualizing bounding box
annotations makes the LaSOT dataset a large and finely annotated dataset.

Table 1 illustrates the experimental results of the OTB dataset. As can be seen from
Table 1, the algorithm in this paper is the highest in both accuracy and precision on
the OTB dataset, surpassing the mainstream depth correlation filtering algorithms. It
is nearly 0.01 higher than the baseline algorithm SiamRPN++ and more than 0.02 than
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other mainstream algorithms. The algorithm’s performance reaches 0.703 and 0.920 after
appropriate tuning of the baseline network parameters. a comparison of the algorithm’s
performance with the mainstream algorithm after fine-tuning is shown in Figure 7.
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Figure 7. Comparison chart of OTB dataset.

Table 1. Experimental results of our algorithm and other algorithms on the OTB2015 dataset. The
bolded values in the table are the best performance.

Tracker Success Precision

SiamFC [11] 0.587 0.772
MDNet [35] 0.678 0.909

DaSiamRPN [15] 0.659 0.880
ATOM [8] 0.667 0.879

DiMP50 [10] 0.684 0.894
Siam R-CNN [32] 0.701 0.891
SiamRPN++ [18] 0.696 0.910

SA-Siam [36] 0.657 0.865
RASNet [33] 0.642 -
SCSAtt [39] 0.641 0.855

SiamFRN [38] 0.636 0.840
IMG-Siam [37] 0.638 0.846

Ours 0.701 0.916

Table 2 shows the comparison results on the VOT2018 dataset. Compared to the
baseline network SiamRPN++, the algorithm in this paper improves by nearly 0.02. Due
to the difference in experimental equipment and parameter settings, there is an inevitable
error in reproducing SiamRPN++ and the original paper. The algorithm for comparison
with this paper is the result of our reproduction. However, there is still a gap compared
with the mainstream depth correlation filtering algorithms DiMP and ATOM, which have
better performance. Compared to OTB2015, the OTB2018 dataset scene is more complex.
The related filter series algorithm will perform online fine-tuning during tracking. Its ability
to update the image based on its contextualization information during tracking is suitable
for objects with similar interference.
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Table 2. Experimental results of our algorithm with other algorithms on the VOT2018 dataset. The
bolded values in the table are the best performance.

Tracker Accuracy ↑ Robust ↓ EAO ↑
C-COT [51] 0.49 0.32 0.267

ECO [31] 0.48 0.28 0.276
DaSiamRPN [15] 0.57 0.33 0.326

ATOM [8] 0.59 0.20 0.401
DiMP18 [10] 0.59 0.17 0.402

SiamMask [21] 0.60 0.32 0.380
SA-Siam [36] 0.50 0.45 0.236
SCSAtt [39] 0.54 0.22 0.250

SiamFRN [38] 0.52 0.35 0.199
SiamRPN++ [18] 0.60 0.23 0.414

Ours 0.60 0.22 0.395

In addition, the average frame speed of different algorithms on VOT2018 is evaluated
in this paper, and the results are shown in Table 3. The algorithm in this paper is better in
robustness and other data than the Siamese series papers. The speed is not reduced too
much, indicating that this paper can improve the accuracy without sacrificing speed. The
comparison between the Siamese family of algorithms and other algorithms also reflects
the apparent advantage of Siamese networks in terms of speed, although not accuracy.

Table 4 illustrates the comparison between the algorithm in this paper and the main-
stream algorithm on the LaSOT dataset. From the table, it can be observed that the
algorithm of this paper performs well in long sequence videos, and compared with the
Siamese network series of algorithms, our algorithm improves the ability of the Siamese
network to track targets with severe deformation in videos with a long time and many
frames, which further confirms the substantial improvement of the algorithm of this paper
in feature discrimination ability.

Table 3. Experimental results of the speed of our algorithm running with other algorithms on the
VOT2018 dataset. The bolded values in the table are the best performance.

Ours ATOM [8] SiamRPN++ [18] DiMP50 [10] SiamMaskk [21] ECO [31]

Speed(fps) 47 30 48 18 56 4
Note: Speed indicates the number of frames processed by the algorithm per second.

Table 4. Experimental results of our algorithm and other algorithms on the LaSOT dataset. The
bolded values in the table are the best performance.

ECO [31] SiamFC [11] MDNet [35] DaSiamRPN [15] ATOM [8] DSiam [22] SiamRPN++ [18] Ours

Success 32.4 33.6 36.7 41.5 51.5 33.3 49.5 51.3
Precision 33.8 42.0 46.0 49.6 57.6 40.5 56.9 58.8

Note: Success indicates accuracy, precision indicates precision.

4.2. Visualization

Our algorithm can still accurately identify targets and calculate target frames in many
complex scenes. Figure 8 shows the tracking results of our algorithm compared with
mainstream algorithms such as the SiamRPN++ algorithm on some video sequences. The
figure below shows that our algorithm outperforms the SiamRPN++ algorithm on all these
video frames. The first four video sequences are taken from the OTB dataset. The last two
video sequences are taken from the VOT dataset.
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Figure 8. Visualization of our algorithm compared with other state-of-art algorithms.

4.3. Ablation Experiments

Ablation experiments were performed on the OTB2015 dataset for different compo-
nents and combinations of approaches, and SiamRPN++ was chosen for the base network.
To avoid different feature extraction networks being affected by different parameters and
network layers, the ablation experiments of the attention mechanism were all performed
on the same feature extraction network. ResNet is selected here. Table 5 shows the ablation
experiments of applying different types of attention to the feature extraction network and
adding attention at different positions. The attention mechanism is combined in a default
weighted approach.

The performance of the tracker is degraded by first using channel attention directly on
Layer4 of ResNet. The different layers are tested, and the reasons for failure are analyzed.
It is analyzed that SiamRPN++ already suppresses the category that is not the target when
performing the deep inter-correlation operation. This operation plays a specific role in
channel selection, so there is no corresponding effect of further enhancement of the channel
of the target response.

Then our algorithm combines different types of attention mechanisms in the channel
and spatial domains, and the enhancement of the target features is somewhat improved.
The tracking effect is also improved, and the accuracy is increased from 89.7 to 89.9. How-
ever, the effect was slight. After experimenting with different network layers for analysis,
the analysis concluded that ResNet has deep network layers. The features extracted from
different layers are different types of image features. The lower layer features are more of
some region, line, and color features. In comparison, the deeper layer features are more
oriented to get the semantic information of the image, which is why the feature pyramid
can achieve better results in combining different layers of features. We analyzed the effect
of feature information noticed by different features layers on the experimental results and
found that deeper semantic information was more effective than shallow feature attention.
Therefore, we improved the performance of the tracker to 90.8 after fusing the information
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of different layers which combined the attentional enhancement of Layer1, Layer3, and
Layer4. The experimental results are shown in Table 5.

After we determined that the combined attention mechanism was effective for feature
extraction, we conducted ablation experiments on the combined way of compensating
attention, as shown in Table 6.

Three combinations of template branch and search branch attention were selected for
experimentation: weighted, dot product, and connected. The connection achieved the best
effect, which improved the tracker performance by almost one percentage point to 91.6; the
other two methods also improved the experimental results, 91.0 and 91.5, respectively. It
shows that the feature attention of the template branch does have a compensating effect on
the search branch.

Table 5. Ablation experiments on dataset OTB2015-1 (Baseline for SiamRPN++ network architec-
ture, C: channel attention, S: spatial attention,L1, L3, L4: ResNet network Layer1, Layer3, Layer4,
respectively; right-hand metric is accuracy).

Baseline C S L1 L3 L4
OTB2015

Precision Success√
0.897 0.674√ √ √

0.889 ↓ 0.670√ √ √ √
0.899 ↑ 0.681√ √ √ √
0.895 ↓ 0.673√ √ √ √ √
0.903 ↑ 0.680√ √ √ √ √ √
0.908 ↑ 0.687

Table 6. Ablation experiments on dataset OTB2015-2 (Baseline for SiamRPN++ network architecture,
Base+Attn: multi-domain attention mechanism applied on two branches of the feature extraction
network, M: compensation combination in the form of the dot product, A: weighted, C: connected,
the right-hand metric for accuracy).

Baseline Base+Attn M A C
OTB2015

Precision Success√ √
0.908 0.688√ √ √
0.910 0.695√ √ √
0.915 0.698√ √ √
0.916 0.701

5. Conclusions

The Siamese network will track a similarity matching problem of double branch
feature with no interaction between the two branch independent structures. We propose
a Siamese network architecture based on a compensated attention mechanism to enable
feature extraction network processing to extract more discriminative features. We introduce
a channel-space attention mechanism to secondary process the features extracted from the
search branch by fusing the self-attentive features of the search region and the attention of
the template branch selection. Thus, the attention mechanism’s erroneous enhancement
of the distractors is eliminated, allowing the response value gap between the target and
distractor terms to be increased during the later inter-correlation operation. Our Siamese
network architecture improves the attention of the feature extraction network to the target
features, enabling the entire twin network to improve the discriminative power of the
target, achieving a guaranteed real-time speed while improving the tracker performance.
However, this new Siamese network still does not solve the problem that the template is
stale and cannot adapt to the drastic changes of the target, and how to further improve the
ability of the model to judge complex samples will be investigated in the future.
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