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Abstract: Granite in underground water-sealed storage caverns has usually been immersed for a
long time. The immersion affects the mechanical properties and failure mechanism of granite with
maximum free water absorption; therefore, it is crucial to study the behavior of granite under different
confining pressures for engineering construction. A triaxial compression test with maximum free
water absorption was conducted on granite and its mechanical properties were analyzed. A fracture
scanning electron microscope test was carried out to analyze the microstructural characteristics
and reveal the failure mechanism. The test results showed that the differential stress-axial strain
curve can be divided into the initial compaction stage, the elastic deformation stage, the plastic
deformation stage, and the post-peak strain-softening stage. With an increase in confining pressure,
the duration of the initial compaction stage decreased, while the plastic deformation stage and the
peak strength and peak strain stages increased. For the confining pressure range of 0–20 MPa, the peak
stress difference of granite with maximum free water absorption was between 146.0 and 307.6 MPa.
The elastic modulus was between 31.36 and 44.18 GPa. The cohesion (c) of the rock sample studied
was 26.84 MPa and the internal friction angle (ϕ) was 51◦. The failure mechanism of granite is
tensile–shear composite failure, predominantly with tensile failure under low confining pressure
regimes, and the inclined fracture surface is mainly due to shear failure under high confining pressure
conditions. These research results provide updated reference data for rock engineering involving
granitic mechanical properties and failure mechanisms in submerged caverns.

Keywords: granite; confining pressure; water absorption; mechanical properties; failure mechanism

1. Introduction

Underground water-sealed storage cavern projects are mostly built in granite host rock
and have high exacting requirements for the mechanical properties of the surrounding rock.
The granite in such underground water-sealed storage caverns has been immersed in water
for a long time, allowing pervasive water absorption. When granite absorbs the maximum
free water content, the stability of the engineering rock mass is negatively affected. At the
same time, different burial depths of the caverns result in different confining pressures
of the rock mass. Therefore, it is of great significance to study the mechanical properties
and failure mechanisms of granite with maximum free water absorption under different
confining pressures for this type of engineering construction.

At present, research on the triaxial compression of granite block mainly focuses on
the basic mechanical properties and failure characteristics. Yang et al. [1] summarized the
stress-strain relationship of rock under the conditions of the conventional triaxial compres-
sion test, improved the classical plastic statistical damage model, and preliminarily verified
the constitutive relationship expression by using the results of the conventional triaxial
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compression test. Xie et al. [2] proposed a nonlinear empirical strength criterion based on
Mohr–Coulomb criterion, which provides a new reference and method for determination
of the triaxial compressive strength of rock materials. Zhou et al. [3] conducted triaxial
compression tests under different confining pressures to study the deformation and fail-
ure characteristics and mechanisms of granite. Lajtai [4] believed that the deformation
mechanism of granite includes elastic deformation, brittle deformation, and compaction
deformation. The latter two deformations are related to micro-fractures. Chen et al. [5] used
acoustic emission technology to carry out conventional triaxial compression tests on granite
under different temperatures and confining pressures, and carried out damage analysis
and characteristic stress value analysis. Zhu et al. [6] studied the mechanical properties
of Dagangshan granite using static triaxial tests and dynamic triaxial tests, indicating
that the compressive strength, Poisson’s ratio, and elastic modulus of granite are related
to the strain rate. Du et al. [7–9] studied the mechanical properties of granite after high
temperature exposure and found that the peak strength and elastic modulus of granite
after high temperature exposure decreased sharply. The P-wave velocity also decreased
to varying degrees. Yao et al. [10–12] conducted uniaxial and triaxial compression tests
on intact granite as well as single-and double-defect granite specimens, and further stud-
ied the influence of confining pressure and fracture on rock strength and failure mode.
Zhao et al. [13–16] studied the failure process, strength characteristics, and damage evo-
lution mechanism of Beishan granite under different confining pressures. Dai et al. [17]
studied the damage evolution characteristics of granite during loading and unloading
through a series of triaxial tests under different confining pressures. Ji et al. [18–21] studied
the deformation and acoustic emission characteristics of granite under different confining
pressures using triaxial compression tests. Wang et al. [22] studied the triaxial compression
mechanical properties of granite under chemical corrosion. Sun et al. [23] studied the
mechanical properties of granite after the peak stage and found that after the peak, the
rock exhibited plastic failure characteristics under confining pressure. Li et al. [24] studied
the microscopic process of the progressive failure of granite plates and found that the
occurrence and development of axial cracks eventually led to the splitting failure of the
samples. Zhang et al. [25] conducted triaxial compression tests of marble and granite
under different confining pressures, proposed a damage index (DI) to describe the degree
of damage to marble in the post-peak stage, and established a quantitative relationship
between the rock fracture angle and confining pressure. In addition, Cheng et al. [26–28]
studies show that crack openings significantly affect the crack initiation stresses and crack
initiation modes, and propose a new method for the simulation of frictional contact on
crack slips in the framework of the XFEM. In addition, nuclear magnetic resonance (NMR)
measurements are carried out to evaluate the micro-cracking characteristics of sandstones
during the creep stage under the different levels of creep stresses.

For related research on granite under different water-bearing states, Koji Masuda [29]
studied the dry and wet failure strengths of granite and andesite under different strain
rates and confining pressure conditions. Li et al. [30] carried out a study on the rheological
properties of water-saturated granite under uniaxial compression. The study showed
that the long-term strength of water-saturated granite was significantly reduced and the
rheological rate and degree of deformation were significantly increased. Deng et al. [31]
carried out three-point bending tests on two types of deep granite with different water
contents. The results show that the fracture mechanics and acoustic emission characteristics
of granites undergo significant changes under the influence of water. Cao et al. [32,33]
studied the brittleness characteristics of granite with different degrees of water saturation
using new evaluation indices combined with uniaxial compression tests. They also carried
out fracture scanning electron microscopy (SEM) and analyzed the microscopic granular
morphology to reveal the failure mechanism.

At present, there are few studies on the mechanical properties and failure mechanism
of granite under the background of water-sealed storage cavern engineering. There are
few studies on the maximum free water absorption characteristics of granite, its triaxial
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compression failure mechanism, and the differences in the stress conditions under different
engineering environments. In this study, a laboratory triaxial compression test of granite
with maximum free water absorption under different confining pressures was carried out,
and the failure mechanism of the rock mass was obtained from the microscopic topography
through SEM. The data collected in this study can provide reference data for related rock
mass engineering and research.

2. Experimental Scheme
2.1. Sample Preparation

A complete crack-free granite block was extracted from an underground water-sealed
storage cavern in Shandong province, China, and cylindrical rock samples with a diameter
of 50 mm and an aspect ratio of 2 were obtained from this material. Some of the samples
are shown in Figure 1. The stipulations of the Standards for Engineering Rock Mass Test
Methods [34] were followed to ensure the representativeness and accuracy of each sample
after processing.
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Figure 1. Demonstration photographs of some samples.

In the water absorption test, the sample mass and P-wave velocity did not change when
the maximum free water absorption was reached. To avoid affecting the characteristics of
the sample, a water absorption test was carried out without drying. The test results are
shown in Figure 2. The trend of the water absorption curve of each sample was similar.
Within 42 h, the free water absorption of the granite changed significantly, and the free
water absorption, Wa, increased from 0% to 0.150%. Owing to the density of the granite,
low porosity, and slow water absorption, the initial water absorption of the rock sample
increased rapidly. With the increase in water content in the pores, the water absorption
growth rate gradually slowed down. From 306 h to 546 h, the free water absorption of the
rock samples was essentially unchanged. Therefore, the water absorption test was stopped
after 546 h, when the granite samples had reached the maximum free water absorption.

The test results of P-wave velocity are shown in Figure 3 and were between 3350 and
4850 m/s. In the initial 6 h, the P-wave velocity increased rapidly. It can be seen from
the water absorption test that the water absorption rate also increased rapidly during
this period. When the water content in the pores increased to a certain value, the water
absorption capacity of the rock sample decreased but continued to increase slowly, along
with a slow increase in P-wave velocity. After 210 h, the P-wave velocity gradually tended
to stabilize; however, because the water absorption still had some fluctuation, the sample
reached maximum free water absorption after 546 h.
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2.2. Testing the Confining Pressure and Parameter Setting

The confining pressure during the triaxial compression test of the sample was deter-
mined according to the burial depth conditions of the storage cavern site. Groundwater-
sealed storage cavern reservoirs were selected in coastal granite areas with stable ground-
water levels where the surrounding rock integrity was relatively good and the surrounding
rock quality grade was generally high. According to the in-situ stress measurement results
of the water pressure fracturing method in a typical water-sealed storage cavern site built
in China and through the tensor analysis and linear regression analysis, the fitted formulas
of principal stress and elevation are as follows (the compressive stress is negative; σH is the
maximum principal stress and the unit is MPa; σh is the intermediate principal stress and
the unit is MPa; σv is the minimum principal stress and the unit is MPa; h is the elevation
and the unit is m): 

σH = 0.0347h − 7.2014
σh = 0.0192h − 4.9748
σv = 0.026h − 1.82

(1)

Confining pressure is set by the burial depth of the storage cavern. The maximum
burial elevation of the typical water-sealed storage cavern built in China is −146 m, so h
is equal to −146 m. According to the above fitting formula, σH is equal to −12.3 MPa, σh
is equal to −7.8 MPa, and σv is equal to −5.6 MPa. Considering the access tunnel with a
shallower burial depth and the shaft with a deeper burial depth, the confining pressure
range is appropriately expanded. The final confining pressures are 0 MPa, 5 MPa, 10 MPa,
15 MPa, and 20 MPa.
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A total of 15 samples were selected for triaxial compression test research and divided
into five groups according to different confining pressures, with three samples in each
group. The instrument used in the triaxial compression test was a TAJW–2000 rock mass
multi-field coupling triaxial test system (Figure 4). The stress control method was used
to increase the confining pressure at a rate of 0.05 MPa/s until the specified confining
pressure [34]. After the confining pressure was stabilized, the specimen was loaded to
failure at a displacement rate of 0.003 mm/s.
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3. Mechanical Properties Analysis
3.1. Stress-Strain Curve Features

The overall results of the laboratory tests are shown in Table 1. Due to small data devi-
ations, the subsequent analysis was carried out by taking the average value or eliminating
the abnormal value.

Table 1. The test results of granite with different confining pressures and water contents.

No.
Confining
Pressure

(MPa)

Water
Content (%)

Peak Differential
Stress (MPa)

Average Peak
Differential Stress

(MPa)

Elastic Modulus
(GPa)

Average Elastic
Modulus (GPa)

1-1
0

0.180 147.0
146.0

31.84
31.361-2 0.204 141.0 31.09

1-3 0.184 149.0 31.14
2-1

5
0.190 191.4

190.8
39.85

38.842-2 0.186 190.1 37.82
2-3 0.198 238.6 47.45
3-1

10
0.233 224.6

226.0
37.95

39.183-2 0.176 226.8 42.61
3-3 0.191 226.5 36.99
4-1

15
0.213 265.1

262.6
41.75

40.204-2 0.200 261.0 39.41
4-3 0.187 261.6 39.45
5-1

20
0.160 291.3

287.6
45.33

44.185-2 0.161 291.0 44.26
5-3 0.155 280.4 42.96

The typical differential stress-axial strain curves under different confining pressures
are shown in Figure 5, where σ1 is axial stress, σ3 is confining pressure, (σ1–σ3) is differential
stress, and ε1 is axial strain. The curves can be divided into the initial compaction stage
(upper concave section), elastic deformation stage (straight line section), plastic deformation
stage (non–linear section before peak value), and post-peak strain-softening stage. As the
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confining pressure increases, the initial compaction stage becomes smaller and smaller,
indicating that the sample becomes denser under the action of confining pressure. With
the increase in confining pressure, the plastic deformation stage before the peak becomes
longer, indicating that the plastic properties of the sample are obvious with an increase
in the confining pressure. The peak differential stress increases and the peak axial strain
slightly increases with an increase in the confining pressure, indicating that an increase in
the confining pressure makes the strength of the rock gradually increase.
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The granite samples showed obvious brittle failure under low confining pressure.
When the confining pressure was 0 MPa, the peak strain of the sample was 0.60–0.65% and
the peak axial stress was between 141–149 MPa. When the confining pressure was 5 MPa,
the peak axial strain of the sample was 0.63–0.72% and the peak differential stress was
between 190–192 MPa. As shown in Figure 5, under the condition of low confining pressure,
as the confining pressure increased, the initial compaction stage became significantly
smaller. That is, the initial concave part of the curve became significantly smaller.

The granite exhibits characteristics of plastic failure under medium and high confining
pressures. When the confining pressure was 10 MPa, the peak axial strain of the sample was
0.70–0.90% and the peak differential stress was 224–226 MPa. When the confining pressure
was 15 MPa, the peak axial strain of the sample was 0.91–1.00% and the peak differential
stress was 261–265 MPa. When the confining pressure was 20 MPa, the peak axial strain of
the sample was 0.92–1.03% and the peak differential stress was 280–292 MPa. As shown
in Figure 5, as the confining pressure increased, the initial compaction stage gradually
decreased; that is, the initial upward concave part of the curve in Figure 5 gradually
decreased; as the confining pressure increased, the peak axial strain of the sample gradually
increased and the peak differential stress increased significantly. The microcracks in the
sample were compressed gradually and closed, resulting in nonlinear deformation. As
shown in Figure 5, the sample did not reach peak strength. It will be destroyed immediately
but lost its bearing capacity once the strength decreased slightly. The brittleness of the
granite gradually decreased, showing obvious plastic failure characteristics. The higher the
confining pressure, the more obvious the plastic failure characteristics were.

3.2. Deformation and Strength Properties

According to the results of the triaxial compression test, the elastic modulus and peak
differential stress of granite under different confining pressures are shown in Figures 6 and 7.
The elastic modulus of granite under the maximum free water absorption rate when the
confining pressure is in the range of 0–20 MPa is between 31.36 and 44.18 GPa and the axial
stress is between 146.0 and 307.6 MPa.
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The elastic modulus E and confining pressure σ3 are approximately linearly correlated
as shown in Figure 6, which can be expressed by the fitting function (Equation (2)), using a
correlation factor of 0.844.

E = 33.352 + 0.54σ3

(
R2 = 0.844

)
(2)

The axial stress and confining pressure also increase approximately linearly (Figure 7),
as shown in the fitting function (Equation (3)), using a correlation factor of 0.993.

σ1 = 151.6 + 8.1σ3

(
R2 = 0.993

)
(3)

According to the Mohr–Coulomb strength criterion and the fitting of Equation (3)
(m = 8.1, b = 151.6), the internal friction angle (ϕ = 51◦) and cohesion (c = 26.84 MPa)
were calculated.

Using the Hoek–Brown strength criterion, it was found that the rock sample used
in this test was a complete rock block; therefore, s = 1 was assigned. According to the
uniaxial compression test, σc = 146 MPa, and by fitting the triaxial compression test data,
m = 21.42, α = 0.499, the fitting formula is shown in Equation (4) and the fitting curve is
shown in Figure 8. From the above analysis, the fitting effect of the Hoek–Brown criterion
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was demonstrated to be superior to that of the Mohr–Coulomb criterion, indicating that
the rock sample had slight nonlinear characteristics.

σ1 − σ3 = (3127.32σ3 + 21, 316)0.499
(

R2 = 0.999
)

(4)
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3.3. Macroscopic Failure Characteristics and Fracture Surface Morphology
3.3.1. Low Confining Pressure Conditions (0 and 5 MPa)

The failure diagram with confining pressure at 0 MPa, is shown in Figure 9. There
was no phenomenon in the sample for a long time. With continuous application of the
load, microcracks were gradually generated and then the clear and brittle sound of the
rock sample cracking could be heard; however, the surface of the rock sample was not
destroyed, but particle ejection occurred at the corner of the rock sample, producing flake
spalling debris. With continuous loading, the microcracks continued to extend from both
ends to the middle. Finally, the microcracks became interconnected; the rock sample lost its
bearing capacity instantly and collapsed loudly.

The relevant failure diagrams for confining pressure at 5 MPa are shown in Figure 10.
Owing to the confining pressure, the original fractures compacted and the mechanical
properties of the rock samples improved. It can be observed from the fracture surface that
the integrity of the sample was good after failure and the sample damage was localized
along a fracture surface inclined at an angle between 69◦ and 74◦. There is also a fracture
surface of approximately 90◦, resulting in vertical fracture fragments.
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3.3.2. Medium and High Confining Pressure Conditions (10, 15, and 20 MPa)

The failure diagrams for scenarios where the confining pressure was 10 MPa is shown
in Figure 11. A further increase in the confining pressure made the rock sample denser, and
the sample remained complete after failure. The inclined fracture surface was generated
along the inclined plane at a certain angle, and the inclination angle of the fracture surface
was mostly within the range of 61–71◦.

Figure 12 shows the failure diagrams when the confining pressure was 15 MPa. A
further increase in the confining pressure further limited the lateral deformation of the
specimen, and the specimen after failure remained complete. The fracture surface of the
specimen was inclined, and the inclination angle of the fracture surface was 56–68◦. It was
found that conjugate inclined fracture surfaces formed in some samples with the inclination
angles of the two fracture surfaces being approximately the same.
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Figure 13 shows the failure diagrams for confining pressures at 20 MPa. The specimen
was initially in a quiet period for longer than the other cases. The specimen remained
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intact after failure and the dip angle of the fracture surface was mostly 61–65◦. Some rock
samples also produced a conjugate inclined fracture surface.
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Through a study on the failure characteristics and fracture surface morphology of
granite under triaxial compression with different confining pressures, it was found that the
vertical fracture surface was dominant under low confining pressures, the inclined fracture
surface was dominant under medium and high confining pressures, and the dip angle of
the fracture surface decreased with the increase in confining pressure. The average angle of
the fracture surface decreased from 66◦ (10 MPa) to 65◦ (15 MPa) to 63◦ (20 MPa).

4. Failure Mechanism of Granite under Triaxial Compression
4.1. Microscopic Failure Mechanism of Typical Fracture Surface

To reveal the failure mechanism of granite with maximum free water absorption,
combined with the macro failure process and characteristics, typical fracture fragments were
selected for SEM to analyze its micro failure mechanism. According to the existing research
results [35–40], the typical micromorphology of tensile failure includes intergranular–
transgranular fractures (two basic failure patterns), as well as river, root, tongue, and a step
pattern without powder. The typical micromorphologies indicating shear failure include
intergranular cut crystal rubbing (basic failure pattern), a step pattern containing powder,
a parallel slip line pattern, and a parallel stripe pattern, etc.

In this study, flake spalling fragments and vertical fracture fragments produced under
low confining pressures and inclined fracture fragments produced under medium and high
confining pressures were selected as typical fragments. The fracture micromorphology was
tested and analyzed based on SEM data.

4.1.1. Flake Spalling Debris

As shown in Figure 14, Figure 14a shows transgranular pull-out, mineral crystals are
broken, and step-like patterns can be seen. Figure 14b,c shows step-like broaching and no
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powder accumulation on the steps, and the fracture surfaces are uneven. Sometimes, it
can be seen that the broken mineral crystals are scattered on the steps and the above are
the typical morphology of tensile failure. In addition, shear failure characteristics were
observed on the fracture surfaces of flake spalling fragments. In Figure 14d, the stepped
scratches were visible and the powder fragments were stacked on the steps. This indicates
that the flake spalling debris is a tensile–shear comprehensive failure mechanism in which
there is one main tensile failure and local existence of shear failure.
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Figure 14. Typical microscopic morphology of flaky exfoliated fragments. (a) Broach-step pattern;
(b) Step pattern; (c) Step pattern; (d) Stepped flowers.

4.1.2. Vertical Rupture Fragments

The following conclusions can be obtained from Figure 15: Figure 15a shows that
the mineral crystal is broken, which is a typical transgranular pull flower. Figure 15b
shows that the mineral crystal is not broken, except along the cement around the grain.
In Figure 15c, a step-like drawing can be seen. There is no powder accumulation on the
step, mineral crystals are broken, and the fracture is uneven. The morphology observed
above is typical tensile failure morphology. In addition, shear failure characteristics were
observed on the fracture surface of flake spalling debris. In Figure 15d, a large number of
rock fragments and powders are visible. Overall, most of the above morphology is typical
tensile failure morphology and typical local shear failure morphology, indicating that the
vertical fracture debris is a tensile–shear comprehensive failure mechanism, mainly tensile
failure and local shear failure.
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4.1.3. Inclined Rupture Fragments

The following results can be obtained by observing Figure 16: Figure 16a,b show the
grazed pattern. Figure 16c is a parallel stripe pattern, which is formed by friction on the
broken surface. The above observed morphologies are typical shear failure morphologies.
In addition, tensile failure characteristics were observed on the fracture surface of the
inclined fracture fragments, such as the transgranular broaching in Figure 16d. In summary,
most of the morphology is typical of shear failure and the local tensile failure is typical. It
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shows that the inclined fracture debris is a comprehensive tensile–shear failure mechanism
and the shear failure is the main failure mode.
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4.2. Failure Mechanism Analysis

The analysis of the SEM results shows that the flake spalling fragments and vertical
fracture surface are mainly caused by the tensile failure mechanism and there are shear
failure characteristics in some parts. The micromorphology of the fracture is mainly
transgranular and intergranular drawing and step patterns. The fracture is clean and has
less powder and the micromorphology of the inclined fracture surface is due to the shear
failure mechanism. The broken mineral particles and powders on the fracture surface can
be seen everywhere. Combined with the deformation, failure, and strength characteristics
of rock samples under different confining pressures, the following was seen:

(1) The triaxial compression test was carried out under the condition of low confining
pressure. The granite sample with the maximum free water absorption predomi-
nantly experienced brittle failure. The microcracks extended from both opposite ends
towards the middle where they finally connected. At this point, the rock sample
instantly lost its bearing capacity, collapsed loudly, and produces mostly vertical
fracture surfaces and flake spalling fragments. Combining this information with the
SEM data, the failure mechanism is found to be comprehensive tensile and shear
failure, with predominantly tensile failure.

(2) Triaxial compression tests were performed under medium and high confining pres-
sures. The granite sample with the maximum free water absorption experienced
mainly plastic failure. After failure, it mainly produced an inclined fracture surface
and sometimes a conjugate shear surface. The integrity of the sample after failure
was good. Combined with the SEM results, the failure mechanism was shown to be
tensile and shear comprehensive failure, with mainly shear failure and some localized
tensile failure.

5. Conclusions

The mechanical properties of granite with maximum free water absorption under
different confining pressures were studied through triaxial compression tests. The failure
mechanism of granite was analyzed through the macro failure characteristics and micro-
morphology of the granite. The main conclusions are as follows:

(1) The maximum free water absorption of this type of granite is between 0.180 and
0.204%. The free water absorption of granite changes greatly within the first 42 h,
increasing from 0% to approximately 0.150%. From 306 h to 546 h, the free water
absorption of the rock sample is negligible. Therefore, the water absorption test
was stopped after 546 h. The P-wave velocity was between 3300 and 4900 m/s and
the variation law of the P-wave velocity was basically consistent with that of water
absorption. According to the water immersion test and wave velocity measurement
results of the rock samples, the samples reached maximum free water absorption after
546 h.
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(2) The differential stress-axial strain curve can be divided into the initial compaction
stage, the elastic compaction stage, the plastic deformation stage before the peak,
and the residual stage after the peak. With the increase in confining pressure, the
initial compaction stage becomes increasingly smaller. That is, the specimen becomes
increasingly dense under the action of confining pressure and with an increase in
confining pressure, the plastic deformation stage before the peak becomes longer,
indicating that the plasticity of the sample is obvious with the increase in confining
pressure and the peak strength and peak displacement also increase with the increase
in confining pressure. The elastic modulus increases significantly at the beginning
and then increases slowly. The increase in confining pressure increases the strength of
the rock mass.

(3) When the confining pressure is in the range of 0–20 MPa, the peak axial stress of the
granite with the maximum free water absorption rate is between 146.0 and 307.6 MPa
and the elastic modulus is between 31.36 and 44.18 GPa. It increased linearly with
confining pressure. Using the Mohr–Coulomb strength criterion, the c value of the
rock was calculated to be 26.84 MPa and the ϕ value was 51◦. From the Hoek–Brown
strength criterion, the strength parameter s representing the granite rock mass is 1, m
is 21.42, and α is 0.499.

(4) Through research on the failure characteristics and fracture surface morphology of
granite triaxial compression under different confining pressures, it was found that
under low confining pressure conditions, the vertical fracture surface is the main one,
and the inclination angle of the fracture surface gradually decreases with the increase
in the confining pressure. Under medium and high confining pressures, the inclined
fracture surface was dominant.

(5) The microscopic morphology of the flake-like exfoliated fragments and the fracture
surface showed that they were mainly tensile fractures with partial shear failures,
while the inclined fracture surfaces were mainly shear failures with partial tensile
failures. Under the condition of low confining pressure, the main failure mechanism
is tensile failure. The inclined fracture surface is mostly generated under medium and
high confining pressures, where the main failure mechanism is shear failure.
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