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Featured Application: This concise is a novel training methodology for GANs with strong gener-
alization ability, speed the training up, and less prone to mode collapse.

Abstract: Generative Adversarial Networks (GANs) are powerful generative models for numerous
tasks and datasets. However, most of the existing models suffer from mode collapse. The most recent
research indicates that the reason for it is that the optimal transportation map from random noise
to the data distribution is discontinuous, but deep neural networks (DNNs) can only approximate
continuous ones. Instead, the latent representation is a better raw material used to construct a
transportation map point to the data distribution than random noise. Because it is a low-dimensional
mapping related to the data distribution, the construction procedure seems more like expansion
rather than starting all over. Besides, we can also search for more transportation maps in this way
with smoother transformation. Thus, we have proposed a new training methodology for GANs
in this paper to search for more transportation maps and speed the training up, named Express
Construction. The key idea is to train GANs with two independent phases for successively yielding
latent representation and data distribution. To this end, an Auto-Encoder is trained to map the real
data into the latent space, and two couples of generators and discriminators are used to produce them.
To the best of our knowledge, we are the first to decompose the training procedure of GAN models
into two more uncomplicated phases, thus tackling the mode collapse problem without much more
computational cost. We also provide theoretical steps toward understanding the training dynamics of
this procedure and prove assumptions. No extra hyper-parameters have been used in the proposed
method, which indicates that Express Construction can be used to train any GAN models. Extensive
experiments are conducted to verify the performance of realistic image generation and the resistance
to mode collapse. The results show that the proposed method is lightweight, effective, and less prone
to mode collapse.

Keywords: generative adversarial networks; mode collapse; transportation maps; latent representation;
express construction

1. Introduction

Generative methods are one of the most promising approaches toward automatically
learning features from a given high-dimension data distribution and then producing
new samples approximating the truth [1]. Currently, the most prominent approaches are
auto-regressive models [2,3], variational auto-encoders (VAEs) [4], generative adversarial
networks (GANs), and a unifying framework combining the best of VAEs and GANs like
Wasserstein auto-encoders (WAE) [5]. They all have significant strengths and weakness,
and among them, GANs have the most significant impact. GANs always consist of two
networks: a generator network, which maps a random noise ζ to a data distribution Pr of
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real ones without calculating the sample likelihood, and a discriminator network trained to
assess whether the input sample from the data distribution. However, this formulation has
multiple potential problems, such as training instability and mode collapse, especially the
latter, which is the most urgent and difficult problem in GANs.

Generators and Discriminators in GANs are always composed of deep neural net-
works, which can only represent continuous mappings. However, as pointed out by these
works, the transport maps may be discontinuous if there are too many modes in the
data distribution. This intrinsic conflict will lead to mode collapse or mode mixture [6–8].
Although a number of alternatives that can increase diversity have been proposed, the prob-
lem remains unsolved.

In deep learning, the manifold distribution hypothesis is well accepted, which assumes
the distribution of a specific class of natural data is concentrated on a low dimensional
manifold embedded in the high dimensional data space [9]. Auto-encoders (AEs) have
demonstrated the capability of learning a subspace for dimensionality reduction, which
consistently attempts to find the encoding maps between the data manifold embedded
in the image space, and the decoding maps between the data manifold embedded in the
latent space [10]. Generally, the data distribution will be embedded into the latent space
Ω in AEs. Compared to random noises, the latent representation sampled from the latent
space is a low-dimensional representation mapped from the real data distribution. Both
the transportation map from that to the data distribution, and the one from random noise
to the latent representation, are easier to search and construct. Note that this implies that it
could ease up the intrinsic conflict. Thus, we tackle the mode collapse problem for GANs
by decomposing the generating procedure into two phases: the generation from random
noise to the latent representation and the generation from the latent representation to the
data distribution.

In this paper, we have proposed a training methodology for GANs named Express
Construction. An auto-encoder is trained with mean absolute error (MAE) loss first to
embed the image manifold X into the latent manifold Ω. The distribution sampled from Ω
as the latent representation serves as the target of the first stage. To this end, a standard GAN
model with a small scale is trained to map random noises into the latent representation
by creating new samples that are intended to come from the same distribution as the
training data. Then, the output of this model will be used as the input for the next stage.
Another large-scale GAN model is trained to generate new samples close to the data
distribution from the latent representation rather than random noises. We can reduce
the task complexity and search for more transportation maps to benefit from indirect
construction and smoother transformation. Finally, we provide theoretical steps toward
understanding the training dynamics of these procedures and prove our assumptions.
Extensive experiments are conducted to verify the performance and contrast with other
works. Results show that Express Construction effectively alleviates the mode collapse
problem and speeds the training up.

This work provides these primary contributions:

• We have proposed a novel training methodology for GANs to tackle the mode collapse
problem, named Express Construction. The generating procedure in the proposed
method will be decomposed into two steps: generating the latent representation using
random noises, and generating the final results close to the data distribution from the
latent representation rather than random noises. To the best of our knowledge, we are
the first to search for more transportation maps in this way.

• Theoretical statements are provided to prove our assumptions under the views on the
training dynamics. Besides, the transportation cost will be discussed, which indicates
Express Construction is lightweight and effective.

• We conduct extensive experiments and evaluate our contributions using different
datasets from small to large scale. The results show Express Construction is less prone
to mode collapse and is able to generate realistic samples.
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2. Related Works

The training for conventional GANs always starts with a random Gaussian distri-
bution. However, general DNNs can only approximate continuous mappings, while the
optimal transportation mapping is discontinuous if the target measure is disconnected
or just non-convex [6]. Many researchers have observed this drawback and attempted to
solve it.

GMAN [11] is a framework of GANs whose internal samples are created from multiple
generators, and one of them is randomly selected as the final output. The procedure is
similar to the mechanism of a probabilistic mixture model. It can generate diverse and
appealing recognizable objects with different resolutions, and specialize in capturing
different types of objects by the generators. MAD-GAN [12] is another work similar to
GMAN. It also has one discriminator and multiple generators. However, its discriminator
must learn to push different generators towards different identifiable modes rather than
using classifiers. Therefore, both of them are costly with strong constraints. On the other
hand, unrolled GAN [13] is a method to stabilize GANs and increase diversity by defining
the generator objective with respect to an unrolled optimization of the discriminator.
Obviously, the mode collapse problem is still far from solved.

In particular, AE-OT is an effective model which explicitly separates the manifold
embedding and the optimal transportation. It is carried out using an auto-encoder to map
the images onto the latent space. Then, a graphics processing unit (GPU)-based convex
optimization is used to find the discontinuous transportation maps. Finally, composing
the extended optimal transport map and the decode, they can generate new samples from
the white noise [7,14]. Though it effectively tackles the mode collapse problem, the visual
quality of the generated samples is unsatisfactory. GANs can generate very convincing
images, sharper than ones produced by auto-encoders using pixel-wise losses. Therefore,
AE-OT-GAN is proposed to combine the advantages of both models and generate high-
quality images without mode collapse. Similarly, it can also embed the low dimensional
image manifold into the latent space by an auto-encoder, and the semi-discrete optimal
transport (SDOT) map is used to generate new latent codes. However, after the two
steps, they can directly sample from the latent distribution by applying a piece-wise
linear extension map on the uniform distribution to train the GAN model [15]. It can
produce more realistic images, but the SDOT map is still needed to be computed for
constructing a continuous latent distribution, which is time-costing and may reduce the
generating performance.

The most important and direct way to tackle the mode collapse problem is to construct
transportation maps more effectively. However, it is challenging with a high computa-
tional cost, and cannot search. Instead, searching for relay nodes is a more reliable way.
Although some works have been proposed to search for optimal transportation and thus
reduce the discontinuous transportation maps, the computational cost is enormous and
potentially reduces the robustness of the model. Therefore, the search for a more stable and
simple way to search more transportation maps is a significant challenge.

3. Problem Statement

GANs always want to search for a mapping from random noise to the latent space.
Unfortunately, the searching will not converge or will converge to one continuous branch
of the target mapping, leading to the mode collapse problem. Instead, the mapping from
the latent representation to the data distribution is easier to search, and is analogous to
the mapping from random noise to the latent representation. That means it is effective to
tackle the mode collapse problem and potentially speed the training up. Thus, we have
proposed a training methodology for GANs, named Express Construction, and provide
mathematical statements as follows.

We will first recall the regularity analysis for mode collapse [6]. The generator map
gθ : (Z , ζ) −→ (∑, µθ) can be further decomposed into two steps,
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gθ : (Z , ζ)
T−→ (Z , µ)

g−→ (Σ, µθ) (1)

where T is a transportation map, mapping the noise ζ to µ in the latent space Z , g is the
manifold parameterization, mapping local coordinates in the latent space to the manifold Σ.
That is to say, g provides a local chart of the data manifold, and T realizes the probability
measure transformation. By manifold structure assumption, the local chart representation
g : Z −→ Σ is continuous. However, according to the regularity theory of the optimal
transportation map, except in very rare situations, the transportation map T is always
discontinuous. This intrinsic conflict leads to the mode collapse problem. Instead, Express
Construction is able to search for more transportation maps by decomposing the procedure
into two phases, making the manifold transformation in Equation (1) smoother rather than
a drastic transformation from a low dimension to a high one. We now compare them in
terms of training dynamics and total transportation cost, as follows.

We first recall the theory of the perfect discriminator, following [16].

Definition 1. LetM and P be two boundary free regular submanifolds of Rd. Let x ∈ M∩P be
an intersection point of the two manifolds.M and P intersect transversally in x if TxM+ TxP =
TxRd, where TxM means the tangent space ofM around x. Accordingly,M and P perfectly align
if there is an x ∈ M∩P such thatM and P do not intersect transversally in x.

Lemma 1. LetM and P be two regular submanifolds of Rd that do not perfectly align and do
not have full dimension. Let L =M∩P . IfM and P do not have a boundary, then L is also a
manifold, and has a strictly lower dimension than both the one ofM and the one of P . If they have
a boundary, L is a union of, at most, four strictly lower dimensional manifolds. In both cases, L
measures 0 in bothM and P .

Lemma 2. Let Pr (data distribution) and Pg (generated distribution) be two distributions that have
support contained in two closed manifoldsM and P that do not perfectly align and do not have full
dimension. We further assume that Pr and Pg are continuous in their respective manifolds, meaning
that if there is a set A with measure 0 inM, then Pr(A) = 0 (and analogously for Pg). Then, there
exists an optimal discriminator D∗ : X → [0, 1] that has an accuracy of 1 and, for almost any x in
M or P , D∗, is smooth in a neighbourhood for x and ∇D∗(x) = 0.

As mentioned in Lemmas 1 and 2, we can assume that there is a perfect discriminator
D that is smooth and constant almost everywhere inM and P , while both of their supports
are disjointed or lie on low dimensional manifolds.

Definition 2. LetM and P1 be two regular submanifolds of Rd that do not perfectly align and do
not have full dimension, and are analogous for P2. Let Pr be defined as the data distribution that
has support contained inM. Let P1

g be defined as the generated distribution of the transportation
map from random noise to the data distribution that has support contained in P1. Then, let P2

g be
defined as the generated distribution of the transportation maps from the latent representation to the
data distribution, and have support contained in P2. Let L1 = P1 ∩M and L2 = P2 ∩M be two
manifolds that have strictly lower dimension than bothM, and one of P1 and P2, respectively.

Significantly, the latent representation is a low-dimensional mapping related to the
data distribution, which implies that the training dynamics from Z to Σ is always more
stable than the one from ζ to Σ, and we can prove it as follows.

Proof. Assume that Pr, P1
g, and P2

g are continuous in their respective manifolds. Let
x ∈ M \ (L2 − L1), thus, x ∈ P1 is an open set that is a ball of radius εx such that
B(x, εx) ∩ P1 = ∅, which indicates

M̂ =
⋃

x∈M\(L2−L1)

B(x, εx \ 3) (2)
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For P̂1 and P̂2 analogously.
By construction, these are both open sets on Rd. Since M\ (L2 − L1) ⊆ M̂ and

P1 \ (L2 − L1) ⊆ P̂1, the support of Pr and P1
g is contained in M̂ and P̂1, respectively.

This indicates M̂ ∩ P̂1 = ∅. That is to say, D∗(x) = 1 for all x ∈ M̂ and 0 elsewhere,
and ∇xD∗|P̂1

= 0. Namely, D∗(x) is a perfect discriminator to make the training dynam-
ics unstable.

Instead, we can say that ∇xD∗|P̂2
6= 0 and M̂ ∩ P̂2 6= ∅. This is caused by the regular

submanifold ofZ which is undoubtedly higher than ζ, and leads to the transformation from
Z to Σ, and is more continuous than another one. We say that P2 ⊆ P1. Thus, we can say
∇xD∗|P̂2

6= 0. In other words, ∇xD∗ is not a perfect discriminator for the transformation
from Z to Σ.

We then compare the total transportation cost between these two procedures, as follows.
According to the Brenier’s theorem [14], the transport map or generator can be explic-

itly expressed by using the gradient of the optimal discriminator.

Definition 3. Let the probability measures µ and ν be defined on discrete sets, I and J denote the
two disjoint sets of indices. Suppose X̂ = {xi}i∈I and Ŷ = {yj}j∈J are discrete subsets of Rd,
and the cost function is defined by cij = c(xi, yj), where cij > 0 are positive real numbers. Further
suppose the source measure µ(xi) = µi and the target measure ν(yj) = νj. A transport plan ρ

is a real function that takes values on {(xi, yj)|∀xi ∈ X̂ , yj ∈ Ŷ} such that ρij = ρ(xi, yj) > 0,
∑i∈I ρij = νj and ∑j∈J ρij = µi.

The total transportation cost C can be written as:

C = ∑
i∈I

∑
j∈J

cijρij (3)

We then calculate the cost of the transportation map from ζ to Z , the one from Z to Σ,
and the one from ζ to Σ. We can first define the measures of them analogously, as follows.

Definition 4. Let the probability measure µ and ν be defined on discrete sets, I1 and J1 denote the
two disjoint sets of indices. Suppose X̂1 = {xi}i∈I1 and Ŷ1 = {yj}j∈J1 are discrete subsets of Rd,
and the cost function used to map the transportation from random noise to the latent representation
is defined by c1

ij = c1(xi, yj), where c1
ij > 0 are positive real numbers. Further suppose the source

measure µ(xi) = µi, and the target measure ν(yi) = νj. A transport plan ρ1 is a real function
that takes values on {(xi, yj)|∀xi ∈ X̂1, yj ∈ Ŷ1} such that ρ1

ij = ρ1(xi, yj) > 0, ∑i∈I ρ1
ij = νj

and ∑j∈J ρ1
ij = µi. This is analogous to c2

ij and ρ2
ij defined by the transportation map from the

latent representation to the data distribution, and c3
ij and ρ3

ij defined by the transportation map from
random noise to the data distribution.

As we know, the latent representation is a low-dimensional mapping related to the
data distribution, thus we can assume that there is a linear correlation between c1

ij, c2
ij,

and c3
ij, analogously for ρ1

ij, ρ2
ij, and ρ3

ij. Thus, we can say that:

{
c3

ij = k1c1
ij = k2c2

ij

ρ3
ij = k̄1ρ1

ij = k̄2ρ2
ij

(4)

where k1, k2, k̄1 and k̄2 are positive numbers to estimate the relationship between them.
The total transportation cost from random noise to the data distribution can also be the
sum of two components approximately, the transportation cost from random noise to the
latent representation and the one from the latent representation to the data distribution.
This means k1 > 1 and k2 > 1. Besides, the transportation cost from random noise to the
latent representation is significantly lower than the one from the latent representation to the
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data distribution since the former has a smaller dimension. Thus, we can say that k1 > k2.
This indicates that k1 > k2 > 1 and k̄1 > k̄2 > 1. Therefore, the total transportation cost of
the direct mapping defined as C3 can be written as:

C3 = ∑
i∈I3

∑
j∈J3

c3
ijρ

3
ij

= ∑
i∈I1

∑
j∈J1

k1c1
ij k̄1ρ1

ij

= k1k̄1 ∑
i∈I1

∑
j∈J1

c1
ijρ

1
ij

= k1k̄1C1

= k2k̄2C2

(5)

That is to say, the total transportation cost of the direct mapping from random noise
to the data distribution is always larger than the one from random noise to the latent
representation and the one from the latent representation to the data distribution, which
indicates we can reduce the task complexity by Express Construction. Besides, with the
decreasing of the task complex, the stability of the model will be further improved by
searching for more transportation maps with less transportation cost.

4. Materials and Methods
4.1. Datasets

The proposed method is first evaluated on three small datasets: the prevalent
MNIST [17], the Stacked MNIST [18], and the toy dataset [18]. They are well-known
datasets that can be used to evaluate the performance of combating the mode collapse
problem. The CIFAR-10 dataset [19] will be used to evaluate the performance both quanti-
tatively and qualitatively. Finally, the results on two large-scale datasets named CelebA
and CelebA-HQ are described [20,21].

The MNIST of handwritten digits is a subset of a larger set available from NIST, which
provides 70,000 examples in total, with 10,000 of them left out for testing. The digits have
been size-normalized and centered in a fixed-sized image. Besides, the Stacked MNIST
dataset is a dataset in which each image consists of three randomly selected MNIST images
that are stacked into a three channels image in RGB that has 10× 10× 10 = 1000 modes.

Since the toy dataset consists of explicit distributions and known modes, and the
quality of the generated sample can be accurately measured, following [7,18,22–24], we use
2D-ring and 2D-grid to evaluate contributions. Both 2D-ring and 2D-grid are datasets that
have a mixture of 25 two-dimensional spherical Gaussians, which can be used to calculate
the mode coverage of generating models.

CIFAR-10 is a publicly accessible dataset that contains 50,000 natural images that
have been the most widely used for image classification studies and to test the perfor-
mance of generative models. All images in this dataset are in color with an image size of
32 × 32 pixels.

CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with
more than 200K celebrity images, each with 40 attribute annotations. The images in this
dataset cover large pose variations and background clutter which indicates CelebA has
large diversities, large quantities, and rich annotations. Furthermore, another dataset with
a higher resolution, namely the CelebA-HQ dataset with the image size of 256× 256, is also
used to show the performance of the proposed method.

4.2. Method

Express Construction is lightweight method to generate visual images with rich
diversity. No extra hyper-parameters have been used in the proposed method, which
means Express Construction can be used to train any GAN models without extra training
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or hyper-parameter optimization. In this section, we introduce the proposed method
in detail.

4.2.1. Framework

In contrast to the traditional game involving a single group of the adversary, two
groups of adversaries with different scales are trained to achieve Express Construction.
Prior to this, an Auto-Encoder is introduced to embed the data distribution into the latent
space. We show the proposed method in Figure 1 and describe it as follows.

Encoder

Decoder

L2-Loss

Auto-Encoder

Discrimina

tor1

Sample

Generator1

Gaussian 

Distribution

R
ea

l o
r F

a
k

e

GAN1

Latent 

Representation
Generator2

Discrimina

tor2

R
ea

l o
r F

a
k

e

GAN2

Step1

Step2

Step3

Figure 1. The proposed workflow of Express Construction, all components are parameterized by
neural networks. An auto-encoder is trained to map the data manifold into the latent manifold,
as shown with the blue dashed box. Then, an adversarial game between a discriminator and a
generator with a small scale is used to produce a generated latent representation from random noise,
as shown in the green dashed box. Finally, a GAN model with a large scale is trained to construct a
transportation map from the result of the previous step to the data distribution, as the black dashed
box shows.

4.2.2. Data Embedding with Auto-Encoder

We train an auto-encoder using the L1 Loss to calculate the errors between the data
distribution and the reconstructed samples. The encoder is trained to encode the data
manifold from the image space to the latent space and map the data distribution to the
latent code distribution. Then the decoder decodes the latent code back to the data manifold.
In this way, the data distribution is mapped into the latent space, is more abstract but lower-
dimensional, and is easier to learn. In particular, training the auto-encoder is equivalent to
computing the encoding map fθ and decoding map gξ [15]:

(νgt,X )
fθ−→ (µgt, Ω)

gξ−→ (νgt,X ) (6)

where fθ and gξ parameterized by standard convolutional neural networks (CNNs), and fθ :
X → Ω is an embedding, and pushes forward a probability measure νgt in Rd to the
latent data distribution µgt. After training, fθ is a homeomorphism and gxi is the inverse
homeomorphism. This means fθ : X → Ω is an embedding, and pushes forward νgt to the
latent data distribution µgt.

4.2.3. Constructing the Transportation Map from Random Noise to Latent Representation

In practice, we only have the empirical data distribution defined as ν̂gt, which is
pushing forward to be the empirical latent distribution µ̂gt. From the empirical latent
distribution, we construct the transportation map from the random noise ζ to the empirical
latent representation µ̂gt. Thus, the GAN model is trained to compute the transport map
from ζ to µ̂gt on the manifold.

(ζ,Z)
g$−→ (µ, Ω) (7)
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where g$ is parameterized by neural networks and µ is a distribution whose support has a
similar topology to that of µgt. We adopt the vanilla GAN model to do this based on the
Wasserstein distance. In particular, the Wasserstein distance performs better than Kullback–
Leibler (KL), Jensen–Shannon (JS), and total variation (TV) divergence. It correlates with
convergence and sample quality, which can serve as a useful metric over probability
distribution [25,26]. Following [27], the Wasserstein distance in the dual mode is introduced
to evaluate the generated quality, which can be formulated as:

Wasserstein(Pr,Pθ) = sup
‖ f ‖L61

Ex∼Pr [ f (x)]−Ex∼Pθ
[ f (x)] (8)

The generator G1 is used to generate a new latent representation while the discrimina-
tor D1 is used to discriminate if the distribution of the generated samples is the same as
that sampled from the empirical latent distribution µ̂gt. Both G1 and D1 are built with a
small-scale architecture to speed the training up. The training process of is formalized to be
a min–max optimization problem, in which the critic solves the following cost function:

LD1 = Ez∼ζ [D1(G1(z))]−Ex∼µ̂gt [D1(x)] (9)

The training cost of this procedure is very small, less than ten minutes. Compared
to the AE-OT and its variations, the proposed method is lightweight to produce new
distribution close to the empirical latent representation.

4.2.4. Constructing the Transportation Map from Data Latent Representation
to Distribution

Instead of training from the random noise, another GAN model with a large scale is
trained to construct the transportation map from the generated latent representation to the
data distribution, as follows:

(µ, Ω)
gς−→ (νgt,X ) (10)

where gς is parameterized by neural networks. The networks in this model are built around
two functions: the generator G2(µ) maps a sample νgt from µ, and the discriminator D2(x)
determines if a sample x belongs to the data distribution. They have trained alternately,
based on game theory principles. Following the previous step, the Wasserstein distance in
the dual mode is introduced to evaluate the sample quality. The training process is also
formalized to be a min–max optimization problem. Their cost functions are also followed
by the vanilla GAN model, based on the Wasserstein distance. Different models in GANs
are then introduced to verify the generalization ability and improve the performance, which
will be shown in the experiment.

5. Results

In this section, we conduct extensive experiments to evaluate the performance of
Express Construction. Adam optimized with an initial learning rate of 1.00 × 10−4 has
been used to train them, and no transform or data augmentation has been utilized in these
experiments. The prior noise input to the generator in the first step follows the random
Gaussian distribution with 128 sizes. All the experiments are implemented and evaluated
with Pytorch on 8× Nvidia Geforce GTX 1080 Ti [28].

The Inception Score (IS) [29] and the Fréchet Inception Distance (FID) [30,31] are
used for quantitative evaluation of image quality. The Inception Score is a metric that
computes the KL divergence between the conditional class distribution and the marginal
class distribution, and Fréchet Inception Distance is a more principled and comprehensive
metric that is more consistent with human evaluation in assessing the realism and variation
of the generated samples [31,32]. Accuracy in particular is a metric used for classification,
which is the ratio between the number of correct predictions and the total number of data
points in the dataset. Besides, the number of modes, the percentage of high-quality samples,
and the reverse Kullback–Leibler(KL) divergence are used to evaluate the mode coverage.



Appl. Sci. 2022, 12, 3910 9 of 14

The number of modes counts the amount of modes captured by samples produced in a
generative model. The percentage of high-quality samples measures the proportion of
samples generated within three standard deviations of the nearest mode. The reverse KL
divergence measures how well generated samples balance among all modes regarding the
real distribution.

5.1. MNIST and Stacked MNIST Datasets

We use only 1000 MNIST images to train the networks without any data augmentation,
as Figure 2a shows, the contrast of our samples between the foreground and the background
is sharp to see. We have also evaluated our performance on the Stacked MNIST dataset,
as shown in Figure 2b.

(a) MNIST (b) Stacked MNIST

Figure 2. MNIST datasets.

The number of observed modes in a generator on this dataset, as well as the KL
divergence of the generated mode distributions are measured for evaluation. We generate
samples from the generator and each of the three channels in each sample is classified by a
pre-trained classifier to determine which of 1000 modes the sample belongs to. Finally, we
can fully capture all the modes in the benchmark test, and the empirical KL divergence of
them is 0.05± 0.008 that is evaluated by 26,000 samples. The results show that the proposed
method is effective against the mode collapse problem to capture all the modes in the data
distribution.

5.2. Toy Datasets

Under standard benchmark settings in [18], we train the network with 100,000 total
samples in toy datasets and a batch size of 100 samples, whether 2D-ring and 2D-grid,
as shown in Figure 3. Then, there are ten independent experiments in terms of modes
captured, the percentage of high-quality samples, and the reverse KL divergence, and we
evaluate them by calculating the average, as shown in Table 1. We achieve the best
score of high-quality samples and reverse KL divergence on both datasets. Besides, we
achieve a suboptimal result of mode coverage. Significantly, the computational cost of the
proposed method is much less than other state-of-the-art methods. On the other hand,
Express Construction is much better than the baseline schemes, if the GAN model is used.
Therefore, we can say that Express Construction can outperform the baseline schemes and
match other state-of-the-art methods, and is less prone to mode collapse.
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(a) 2D-ring (b) 2D-grid

Figure 3. Toy datasets.

Table 1. Experiments on synthetic datasets under standard benchmark settings, in which we can not
capture more data modes, but also improve the sample quality. We adopt the vanilla GAN model to
train ours1, and the CTGAN to train ours2, respectively. The best score is marked in bold.

2D-Ring 2D-Grid

Modes h-Quality Reverse Modes h-Quality Reverse
Max 25 Samples KL Max 25 Samples KL

GAN [1] 19.7± 0.5 95.3± 0.2 0.45± 0.09 17.3± 0.8 94.8± 0.7 0.70± 0.07

CTGAN [33] 23.8± 0.3 98.3± 0.1 0.04± 0.03 23.5± 0.4 98.0± 0.2 0.05± 0.04

PacGAN [18] 24.7± 0.1 96.5± 0.3 0.05± 0.02 24.6± 0.4 94.2± 0.4 0.06± 0.02

PresGAN [23] 24.7± 0.2 97.2± 0.3 0.04± 0.04 24.7± 0.4 94.5± 0.2 0.05± 0.03

BourGAN [24] 24.8± 0.2 97.9± 0.1 0.02± 0.01 24.9± 0.1 95.9± 0.2 0.02± 0.02

SRGAN [34] 24.8± 0.2 97.5± 0.2 0.02± 0.01 24.7± 0.3 98.4± 0.3 0.03±0.04

AE-OT [7] 24.9± 0.1 99.8± 0.2 0.01± 0.01 24.9± 0.1 99.5± 0.5 0.01± 0.01

AE-OT-GAN [15] 24.8± 0.2 99.9± 0.1 0.01± 0.01 24.8± 0.2 99.7± 0.3 0.01± 0.01

Ours1 22.5± 0.5 97.6± 0.5 0.08± 0.04 22.1± 0.7 97.0± 0.6 0.10± 0.06

Ours2 24.8± 0.2 99.9± 0.1 0.01± 0.01 24.8± 0.2 99.7± 0.3 0.01± 0.01

5.3. CIFAR-10 Dataset

The base cost function of the GAN used in this experiment is the CTGAN. We first
use only 1000 images to train a small neural network, as shown in Figure 4a. The inception
score for the result is 5.33± 0.10, which is better than the baseline for CTGAN of 5.13± 0.12.
Then, we have trained another large-scale ResNet [35] on the full training set, as shown
in Figure 4b. We achieve an inception score of 8.38 ± 0.15 and an FID of 19.97 ± 0.98 that
outperforms the baseline (8.09) by a large margin (+0.29).

We have also tested the performance using different models and compare it with the
benchmark, as shown in Table 2. We can achieve a better result no matter what cost function
is used in the proposed method.

The same with [33], for the semi-supervised learning approach, we follow the standard
training/test split of the dataset but use only 4000 labels in the training. Regular data
augmentation with flipping of the images horizontally and randomly translating the images
within −2 and 2 pixels is utilized. We report the semi-supervised learning results in Table 3.
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Compared to several very competitive methods, Express Construction is able to achieve a
state-of-the-art result that outperforms all the GAN-based methods.

(a) Generated by a small CNN (b) Generated by a large scale ResNet

Figure 4. CIFAR-10 images generated without supervision by a small and large scale network,
respectively.

Table 2. The Inception Score (IS) and the Fréchet Inception Distance (FID) for Express Construction
using different cost functions. We can say that it can outperform or match the benchmark. The best
score is marked in bold.

GANs BEGAN GAN WGAN WGAN-GP CTGAN WCGAN SNGAN

IS 5.62 7.01 7.22 7.78 8.09 8.20 8.22
FID 84.0 31.8 30.3 29.5 22.4 20.4 21.7

IS + Express Construction 6.58 7.60 7.83 8.11 8.38 8.36 8.37
FID + Express Construction 55.1 29.7 28.2 27.3 19.9 20.2 20.0

Table 3. The results of semi-supervised learning methods on the CIFAR-10 dataset. We compare the
proposed method with others using the test error. The best score is marked in bold.

GAN-Based
Improved GANs [29] Improved Semi [36] CTGAN [33] Express Construction

18.63± 2.32 16.78± 1.80 9.98± 0.21 9.64± 0.25

5.4. CelebA

We trained networks using the CelebA dataset for the resolution of 128× 128, as shown
in Figure 5a. Furthermore, we also test the proposed method on images with high resolution
with the CelebA-HQ dataset, as shown in Figure 5b. The cost function is borrowed from
BEGAN, and the FID score for them is 14.7 and 6.8, respectively. Finally, Figure 5c is the
linear interpolation from a man to a woman, in which the change can be seen clearly.

(a) CelebA (b) CelebA-HQ

(c) The linear interpolation between given two generated faces

Figure 5. The generated results trained on the CelebA and the CelebA-HQ dataset.
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6. Conclusions and Discussion

Generative Adversarial Networks can generate very convincing images, but always
fall into the trap of the mode collapse problem. The most important way to tackle this
problem is to search for more transportation maps, which has proven very difficult because
transportation mapping is always implicit. Searching for relay nodes is a more reliable
alternative. Although some works have been proposed to embed the data distribution
onto the latent space and select continuous transportation maps, it is costly and potentially
reduces the robustness of the model. Thus, how to search transportation maps in a stabler
and simpler way is an enormous challenge.

This paper proposes a novel training methodology for GANs to search for more
transportation maps with stabler training dynamics and smaller computational costs,
named Express Construction. The key idea is to decompose the training of GANs into
two phases: an auto-encoder and a small GAN model are trained in the first phase to map
the data distribution into the latent space and generate latent representation from random
noise, respectively. Then, a large-scale GAN model is trained to generate the distribution
closed to the data distribution from the generated latent representation rather than random
noise. The proposed method can search for more transportation maps in the latent space
and the training dynamics that are stabler than previous works with less computational
cost. Besides, no extra hyper-parameters have been used in the proposed method, which
indicates that Express Construction can be used to train any GAN models. To the best of
our knowledge, Express Construction is the first work that can tackle the mode collapse
problem in this way.

Furthermore, Express Construction can achieve a better result by decomposing the
generating procedure into more components if we constantly extend the dimension of
the latent representation in the latent space. With the increase in the content of the latent
representation, the generating performance will be greatly improved. Although Express
Construction is lightweight, the computational cost grows multiple times, and the improve-
ment is not corresponding. This is because the computational cost of the proposed two
phases will be increased simultaneously with the extension of the latent representation.
Therefore, we do not recommend decomposing the generating procedure too many times.
Moderate expansion can improve the generating performance and keep the computational
cost low.

The proposed method admits the followed extension in the future. It is hard for
a single cost function to learn all modes. Instead, multiple discriminators with various
cost functions can yield different gradients, which can cover more data modes implicitly.
Inspired by this, we attempt to train the GAN models in different phases with different
cost functions, thus better tackling the mode collapse problem. There is not any extra
computational cost compared to the current work.
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