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Abstract: In the present study, we propose a methodology that predicts the number of passengers
on new public transport lines based on smart card data and an optimal path finding algorithm. It
employs a deterministic approach that assumes that, when a new line is added to the public transport
network, passengers choose the fastest route to their destination. The proposed methodology
is applied to actual lines (bus and subway lines) in Seoul, the capital of South Korea, and it is
validated through the observed traffic volume of those lines recorded in the smart card data. The
experiments are conducted using smart card data, with more than 100 million trips stored, extracted
from about 1 million passengers who have check-in records in the catchment area of the new lines.
The experimental results show that the proposed methodology predicts the daily average number of
passengers very similar to the observed data.

Keywords: public transport; prediction of ridership; smart card data; validation; deterministic
methodology

1. Introduction

Automated fare collection (AFC) systems using smart cards are used for public trans-
port in many countries [1]. In South Korea and Australia, entry–exit AFC systems are in
operation, and they require users to tap a smart card at the beginning and end of their
trip [2,3]. The public transport agency of Seoul city collects an average of 9.25 million smart
card data per day, and more than 3.4 billion trip records are stored in the database annually.
In Seoul, about 99% of public transport passengers use smart cards. Therefore, data from
almost all passengers are collected in real time.

Smart card big data can provide more valuable insights than traditional surveys
because it contains detailed travel records of passengers, such as their origin (O), destination
(D), travel time, lines, and vehicles [4,5]. The station-to-station data of each individual
provide opportunities to conduct more microscopic research. As a result, various studies
have been conducted, including analysis of travel patterns [6,7], behavioral models such
as mode or route choice [8–10], estimation of the O-D matrix [11,12], and spatiotemporal
dynamics [13,14]. Moreover, high-quality data play a major role in improving public
transport systems by making them more user friendly for stakeholders.

The route choice model is important in public transport planning because it is used to
predict ridership on new lines. Most related studies have described route choice behavior
through logit models based on stochastic methodologies [15–17]. The stated preference
(SP) is a survey that collects individuals’ opinions on the conditions of use assuming the
introduction of new modes or lines of public transport. The SP survey is a key tool to model
the utility function of choice, representing passengers’ decisions when facing different
alternatives [18]. Generally, the utility function consists of factors such as in-vehicle time,
fare, headway, number of transfers, and comfort (congestion) [19].

Van Oort et al., (2015a) predicted future demand using an elasticity model that con-
siders comfort based on the current demand derived from smart card data [20]. This
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methodology was developed as short-term transport planning software to perform vi-
sualization and what-if analysis, and it was applied to a case study in The Hague, the
Netherlands [21]. Xue et al., (2015) proposed short-term bus passenger demand prediction
using a time-series model based on smart card data [22]. Menon and Lee (2017) showed
how short-term demand can be accurately modeled with a neural network [23]. Santanam
et al., (2021) proposed a data-based approach that exploits AFC to predict the demand for
trains when special events, such as sport games and concerts, occur [24].

However, although various studies dealing with short-term public transport demand
forecasting have been conducted [25,26], empirical studies that predict the number of
passengers on actual new lines and that compare this number with observations are
insufficient. Most of the related models were verified based on scenarios in which network
changes were not considered. Updating a public transport network, such as adding new
lines, can cause a large dispersion of overall demand. Therefore, it is very important
to model the short-term ridership forecasting of new lines in order to obtain validation
scenarios that reflect similar conditions. In addition, a model considering the trade-off
relationship or relative weights between variables with different units, such as time, price,
and comfort, or based on an SP survey has limitations in describing real-world situations.

In this study, a methodology that predicts ridership on new public transport lines
using smart card data is proposed. The proposed methodology assumes that, when a new
line is added to a public transport network, passengers choose the fastest route to their
destination [27]. In the updated network, passengers’ new routes are computed using
the optimal path finding algorithm. The path finding algorithm receives the card usage
records of passengers before the network is updated and assigns individual passengers to
the optimal path on the updated network. That is, the proposed methodology predicts the
number of passengers on a new line based on the deterministic approach. Above all, this
study is different from related studies in that it predicts the ridership for actual new lines
in Seoul city and compares them with the observations from the smart card data.

2. Smart Card Data and Public Transport Network

The prediction of ridership on a new line requires a spatiotemporal analysis using
both smart card data and the public transport network. The smart card data of Seoul city
records O-D nodes (bus stop or subway station); times of check in/out; line and vehicle
number; and card type, such as teenager, adult, or senior. Some examples are listed in
Table 1. The card ID represents an anonymous individual. An individual’s journey to their
final destination is completed by connecting the continuous trips of the same card ID.

Table 1. Seoul smart card data sample.

Card
ID

Departure
Node

Arrival
Node

Departure
Time

Arrival
Time

Line
Number

Vehicle
ID

Card
Type

1 100 200 09:00 09:30 1000 1 Senior

2 100 200 09:10 09:40 1000 2 Teenager

2 200 300 09:45 10:05 1500 5 Teenager

3 100 200 09:10 09:40 1000 2 Adult

3 250 350 09:50 10:20 2000 10 Adult

In the examples, passengers 2 and 3 transferred once, and passenger 3 transferred
at another nearby stop. Passengers 1 and 2 used the same line at different times. This
allows the headway of that line to be inferred. Passengers 2 and 3 were on the same vehicle
and moved to node 200. This allows the occupancy and congestion of that vehicle to
be computed.

The public transport network consists of nodes, lines, links, schedules, and walk
links. Figure 1 is a simple example of a network, and Figure 2 shows the data tables of
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the given network. The link consists of two nodes and represents the directionality of the
line containing that link. The walk link is necessary to describe the walking behavior for
transfers. Based on studies of catchment areas [28], neighboring nodes within 500 m of
each node are connected by walk links. The schedule indicates the time when the vehicles
of each line arrive at node.
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3. Methodology

When a new line is added to a public transport network, candidates affected by the
new line are extracted from the smart card data. The candidates represent potential users
of the new line. Then, in the updated network, a search is performed for the optimal route
of each candidate. Among the candidates, passengers with the new line included in their
optimal route become users of the new line.
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Figure 3 shows the updated public transport network and part of the schedule table.
The star-shaped nodes represent nodes included in the catchment area of the new line.
These nodes include not only nodes through which the new line passes but also nodes
connected to those nodes by walk links. The candidates are determined by extracting
passengers with a check-in record from nodes included in the catchment area of the new
line from smart card data.
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A search is performed for the optimal route of each candidate using the RAPTOR
algorithm [29]. The RAPTOR algorithm takes the passenger’s O-D and departure time
as inputs, and it searches for a route that takes the minimum travel time. The minimum
travel time includes in-vehicle time, waiting time, walking time, and transfer penalties. The
transfer penalty is a value converted into time for the psychological resistance caused by
the transfer. In the proposed methodology, a penalty of 5 min per transfer [30] is given.

Figure 4 displays an example of allocating the optimal routes to the passengers in
Table 1, assuming that line No. 5000 has been added to the public transport network.
Passengers 1, 2, and 3 are all included candidates because they have check-in records at the
node through which the new line passes. Before the line was added, passenger 2 arrived at
node 300 with one transfer. Using the new line, passenger 2 can arrive at their destination
10 min earlier without transferring. Similarly, passenger 3 can arrive 15 min earlier without
transferring by walking to node 250. As a result, the ridership on line No. 5000 includes
passengers 2 and 3.
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4. Prediction

In this study, the number of passengers was predicted for two lines in Seoul city using
the proposed methodology. These two lines started operating in August 2018 and October
2017. For this reason, the public transport network and smart card data for September 2017,
a period for which there are no usage records for both lines, were used for the experiment.
The public transport network includes approximately 11,000 nodes, 620 lines, and schedules
for 80,000 vehicles. The smart card data include about 100 million trips recorded over
10 days.

Figures 5 and 6 present maps of the route of bus No. 1167 and Ui-Sinseol subway,
respectively, corresponding to the new lines. In the maps, the red point is the node through
which the new line passes, and the green point is the node within the catchment area.
Passengers on both lines are selected from passengers with a check-in history at nodes
within the catchment area. About 1 million candidates were extracted from the smart card
data applied in the experiment.
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The proposed methodology assumes that passengers will choose the route that reaches
their destination the fastest, and it calculates the optimal route using the RAPTOR algorithm.
To support this logic, the algorithm must be able to predict the route that the passengers
actually select. Therefore, an experiment comparing the routes used by the candidates
recorded in the smart card data for September 2017 with the routes determined by the
algorithm was performed first.

Figure 7 shows the matching rate relative to the number of transfers on the route.
For 483,193 candidates who did not transfer, the algorithm produced the same routes for
404,380 passengers, which corresponded to approximately 84%. For candidates who made
a single transfer, the route calculated by the algorithm matched the actual route by about
88%. Although the matching rate decreased with an increase in the number of transfers,
the overall matching rate reached approximately 70%.
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The ridership numbers on bus No. 1167 and the Ui-Sinseol subway line predicted
using September 2017 data were validated using smart card data from April 2019. Figure 8
shows the daily average number of passengers per node for the two lines. Figure 8a shows
the observed demand and predicted demand for bus No. 1167, and (b) shows the results for
the Ui-Sinseol subway line. The prediction of ridership for both lines was highly accurate.
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The observed daily average number of passengers for bus No. 1167 was 1431, and the
predicted value using the proposed methodology was 1439. The number of passengers for
each node was also similar to the observed value. The largest difference appeared at node
No. 8502298, which is located immediately next to a subway station. The observed daily
average number of passengers for Ui-Sinseol subway line was 38,036, and the predicted
value using the proposed methodology was 37,559. The number of passengers per subway
station was underestimated by about 480 compared to the observed value. The largest
difference appeared at node No. 4713, which is a complex transfer station with several
subway lines.

Figure 9 shows the average number of passengers per hour for each line. The pre-
diction results for ridership per hour on the two lines showed similar patterns to those
of the observed values. In particular, the expected values of the subway line showed a
slight difference from the observed values, with an average error of 10%. The commuting
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patterns in which the number of passengers increases during peak hours in the morning
and evening were also found in both the predicted and observed values.

Appl. Sci. 2022, 12, 3867 8 of 10 
 

difference from the observed values, with an average error of 10%. The commuting pat-

terns in which the number of passengers increases during peak hours in the morning and 

evening were also found in both the predicted and observed values. 

Table 2 shows the prediction errors composed of the Mean Absolute Error (MAE) 

and the Root Mean Squared Error (RMSE) for two scenarios. As of April 2019, the daily 

average ridership numbers per node of bus No. 1167 and Ui-Sinseol subway line were 33 

and 3050, respectively. For both lines, the MAE of the expected demand was found to be 

about 23% of the average value. The RMSE, sensitive to outliers, showed a value higher 

than that of the MAE. The average ridership numbers per hour of both lines were 70 and 

2000, respectively. The prediction errors by time of the bus line were similar to the results 

at the node level. In the case of the subway line, compared to the average value, the MAE 

was 9%, and the RMSE was 13%, which clearly reduced the error compared to the node 

level. 

As explained previously with Figure 8, the prediction error of the daily average num-

ber of passengers on each line was very small, about 1%. However, in the analysis results 

by node and by time period, some differences were revealed due to factors that were not 

considered in the proposed model, such as subway preference trends (node No. 8502298) 

and AFC data error of the complex transfer center (node No. 4713). 

 
(a) 

 
(b) 

Figure 9. Average number of passengers per hour: (a) bus No. 1167; (b) Ui-Sinseol subway line. Figure 9. Average number of passengers per hour: (a) bus No. 1167; (b) Ui-Sinseol subway line.

Table 2 shows the prediction errors composed of the Mean Absolute Error (MAE) and
the Root Mean Squared Error (RMSE) for two scenarios. As of April 2019, the daily average
ridership numbers per node of bus No. 1167 and Ui-Sinseol subway line were 33 and 3050,
respectively. For both lines, the MAE of the expected demand was found to be about 23% of
the average value. The RMSE, sensitive to outliers, showed a value higher than that of the
MAE. The average ridership numbers per hour of both lines were 70 and 2000, respectively.
The prediction errors by time of the bus line were similar to the results at the node level.
In the case of the subway line, compared to the average value, the MAE was 9%, and the
RMSE was 13%, which clearly reduced the error compared to the node level.

As explained previously with Figure 8, the prediction error of the daily average number
of passengers on each line was very small, about 1%. However, in the analysis results
by node and by time period, some differences were revealed due to factors that were not
considered in the proposed model, such as subway preference trends (node No. 8502298)
and AFC data error of the complex transfer center (node No. 4713).



Appl. Sci. 2022, 12, 3867 9 of 10

Table 2. Prediction errors of two scenarios.

Scenario
Daily Average Ridership per Node Average Ridership per Hour

MAE RMSE MAE RMSE

Bus No. 1167 8.4 13.7 18.6 22.7

Ui-Sinseol subway line 682.6 1080.3 190.8 264.1

5. Conclusions

In this study, a deterministic methodology using smart card data and the path finding
algorithm was proposed to predict ridership on new bus and subway lines. The proposed
methodology was applied to actual public transport lines in Seoul, the capital of South
Korea, and it was validated through the observed traffic volume of the lines recorded in the
smart card data. The experimental results show that the proposed methodology predicts
the daily average number of passengers very similar to the observed data. However, it was
found that a more detailed consideration of subway usage preference and transfer behavior
was needed in the process of traffic assignment. This study shows that it is possible to
predict ridership with high accuracy using the abundant amounts of high-quality data
and simple assumptions without the complex modeling of route choice and probabilistic
traffic assignment.

However, this study has some drawbacks. The proposed methodology redistributes
individual passengers to the updated network considering only the demand derived from
the smart card data. It does not take into account passengers who do not use smart cards,
pass holders, and potential consumers who do not currently use public transport. This
study also assumes that the smart card data do not contain errors. Due to missing records
and fare avoidance [31], smart card data can underestimate demand. Therefore, future
research considering a methodology that can supplement the fundamental limitations of
the AFC system and a methodology that can estimate potential demand other than smart
card data is required.

Author Contributions: Writing—review and editing, M.L.; visualization, I.J.; project administration,
C.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant (21NSIP-B135746-05) from the National Spatial
Information Research Program funded by the Ministry of Land, Infrastructure and Transport of the
Korean government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, T.; Sun, D.; Jing, P.; Yang, K. Smart card data mining of public transport destination: A literature review. Information 2018, 9, 18.

[CrossRef]
2. Kieu, L.M.; Bhaskar, A.; Chung, E. A modified density-based scanning algorithm with noise for spatial travel pattern analysis

from smart card AFC data. Transp. Res. Part C Emerg. Technol. 2015, 58, 193–207. [CrossRef]
3. Han, G.; Sohn, K. Activity imputation for trip-chains elicited from smart-card data using a continuous hidden Markov model.

Transp. Res. Part B Methodol. 2016, 83, 121–135. [CrossRef]
4. Bagchi, M.; White, P.R. The potential of public transport smart card data. Transp. Policy 2005, 125, 464–474. [CrossRef]
5. Pelletier, M.P.; Trépanier, M.; Morency, C. Smart card data use in public transit: A literature review. Transp. Res. Part C Emerg.

Technol. 2011, 19, 557–568. [CrossRef]
6. Ma, X.; Wu, Y.J.; Wang, Y.; Chen, F.; Liu, J. Mining smart card data for transit riders’ travel patterns. Transp. Res. Part C Emerg.

Technol. 2013, 36, 1–12. [CrossRef]
7. Zhao, J.; Qu, Q.; Zhang, F.; Xu, C.; Liu, S. Spatio-temporal analysis of passenger travel patterns in massive smart card data. IEEE

Trans. Intell. Transp. Syst. 2017, 18, 3135–3146. [CrossRef]

http://doi.org/10.3390/info9010018
http://doi.org/10.1016/j.trc.2015.03.033
http://doi.org/10.1016/j.trb.2015.11.015
http://doi.org/10.1016/j.tranpol.2005.06.008
http://doi.org/10.1016/j.trc.2010.12.003
http://doi.org/10.1016/j.trc.2013.07.010
http://doi.org/10.1109/TITS.2017.2679179


Appl. Sci. 2022, 12, 3867 10 of 10

8. Agard, B.; Morency, C.; Trépanier, M. Mining public transport user behaviour from smart card data. IFAC Proc. Vol. 2006, 39,
399–404. [CrossRef]

9. Munizaga, M.; Devillaine, F.; Navarrete, C.; Silva, D. Validating travel behavior estimated from smartcard data. Transp. Res. Part
C Emerg. Technol. 2014, 44, 70–79. [CrossRef]

10. Ali, A.; Kim, J.; Lee, S. Travel behavior analysis using smart card data. KSCE J. Civ. Eng. 2016, 20, 1532–1539. [CrossRef]
11. Munizaga, M.A.; Palma, C. Estimation of a disaggregate multimodal public transport Origin–Destination matrix from passive

smartcard data from Santiago, Chile. Transp. Res. Part C Emerg. Technol. 2012, 24, 9–18. [CrossRef]
12. Alsger, A.A.; Mesbah, M.; Ferreira, L.; Safi, H. Use of smart card fare data to estimate public transport origin–destination matrix.

Transp. Res. Rec. 2015, 2535, 88–96. [CrossRef]
13. Tao, S.; Rohde, D.; Corcoran, J. Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card

data and the flow-comap. J. Transp. Geogr. 2014, 41, 21–36. [CrossRef]
14. Kim, M.K.; Kim, S.; Sohn, H.G. Relationship between spatio-temporal travel patterns derived from smart-card data and local

environmental characteristics of Seoul, Korea. Sustainability 2018, 10, 787. [CrossRef]
15. Zhao, J.; Zhang, F.; Tu, L.; Xu, C.; Shen, D.; Tian, C.; Li, Z. Estimation of passenger route choice pattern using smart card data for

complex metro systems. IEEE Trans. Intell. Transp. Syst. 2016, 18, 790–801. [CrossRef]
16. Anderson, M.K.; Nielsen, O.A.; Prato, C.G. Multimodal route choice models of public transport passengers in the Greater

Copenhagen Area. EURO J. Transp. Logist. 2017, 6, 221–245. [CrossRef]
17. Kim, J.; Corcoran, J.; Papamanolis, M. Route choice stickiness of public transport passengers: Measuring habitual bus ridership

behaviour using smart card data. Transp. Res. Part C Emerg. Technol. 2017, 83, 146–164. [CrossRef]
18. Cascajo, R.; Garcia-Martinez, A.; Monzon, A. Stated preference survey for estimating passenger transfer penalties: Design and

application to Madrid. Eur. Transp. Res. Rev. 2017, 9, 1–11. [CrossRef]
19. Nielsen, O.A. A stochastic transit assignment model considering differences in passengers utility functions. Transp. Res. Part B

Methodol. 2000, 34, 377–402. [CrossRef]
20. van Oort, N.; Drost, M.; Brands, T.; Yap, M. Data-driven public transport ridership prediction approach including comfort aspects.

In Proceedings of the 13th Conference on Advanced Systems in Public Transport Conference, Rotterdam, The Netherlands,
20 July 2015.

21. van Oort, N.; Brands, T.; de Romph, E. Short-term prediction of ridership on public transport with smart card data. Transp. Res.
Rec. 2015, 2535, 105–111. [CrossRef]

22. Xue, R.; Sun, D.J.; Chen, S. Short-term bus passenger demand prediction based on time series model and interactive multiple
model approach. Discret. Dyn. Nat. Soc. 2015, 2015, 682390. [CrossRef]

23. Menon, A.K.; Lee, Y. Predicting short-term public transport demand via inhomogeneous Poisson processes. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 2207–2210.

24. Santanam, T.; Trasatti, A.; Van Hentenryck, P.; Zhang, H. Public Transit for Special Events: Ridership Prediction and Train
Optimization. arXiv 2021, arXiv:2106.05359.

25. Lawson, C.T.; Muro, A.; Krans, E. Forecasting bus ridership using a “Blended Approach”. Transportation 2021, 48, 617–641.
[CrossRef]

26. Patel, Y.; Firat, C.; Childers, T.; Sartipi, M. Ridership Prediction of New Bus Routes at Stop Level by Modelling Socio-economic
Data using Supervised Machine Learning Methods. In Proceedings of the Transportation Research Board 100th Annual Meeting,
Washington, DC, USA, 5–29 January 2021.

27. Spiess, H.; Florian, M. Optimal strategies: A new assignment model for transit networks. Transp. Res. Part B Methodol. 1989, 23,
83–102. [CrossRef]

28. Andersen, J.L.E.; Landex, A. Catchment areas for public transport. WIT Trans. Built Environ. 2008, 101, 175–184.
29. Delling, D.; Pajor, T.; Werneck, R.F. Round-based public transit routing. Transp. Sci. 2015, 49, 591–604. [CrossRef]
30. Jeon, I.; Nam, H.; Jun, C. A schedule-based public transit routing algorithm for finding K-shortest paths considering transfer

penalties. J. Korea Inst. Intell. Transp. Syst. 2018, 17, 72–86. [CrossRef]
31. Barabino, B.; Lai, C.; Olivo, A. Fare evasion in public transport systems: A review of the literature. Public Transp. 2020, 12, 27–88.

[CrossRef]

http://doi.org/10.3182/20060517-3-FR-2903.00211
http://doi.org/10.1016/j.trc.2014.03.008
http://doi.org/10.1007/s12205-015-1694-0
http://doi.org/10.1016/j.trc.2012.01.007
http://doi.org/10.3141/2535-10
http://doi.org/10.1016/j.jtrangeo.2014.08.006
http://doi.org/10.3390/su10030787
http://doi.org/10.1109/TITS.2016.2587864
http://doi.org/10.1007/s13676-014-0063-3
http://doi.org/10.1016/j.trc.2017.08.005
http://doi.org/10.1007/s12544-017-0260-x
http://doi.org/10.1016/S0191-2615(99)00029-6
http://doi.org/10.3141/2535-12
http://doi.org/10.1155/2015/682390
http://doi.org/10.1007/s11116-019-10073-z
http://doi.org/10.1016/0191-2615(89)90034-9
http://doi.org/10.1287/trsc.2014.0534
http://doi.org/10.12815/kits.2018.17.3.72
http://doi.org/10.1007/s12469-019-00225-w

	Introduction 
	Smart Card Data and Public Transport Network 
	Methodology 
	Prediction 
	Conclusions 
	References

