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Abstract: Coronary computed tomography angiography (CCTA) is an effective imaging modality,
increasingly accepted as a first-line test to diagnose coronary artery disease (CAD). The accurate
segmentation of the coronary artery lumen on CCTA is important for the anatomical, morphological,
and non-invasive functional assessment of stenoses. Hence, semi-automated approaches are currently
still being employed. The processing time for a semi-automated lumen segmentation can be reduced
by pre-selecting vessel locations likely to require manual inspection and by submitting only those for
review to the radiologist. Detection of faulty lumen segmentation masks can be formulated as an
Out-of-Distribution (OoD) detection problem. Two Normalizing Flows architectures are investigated
and benchmarked herein: a Glow-like baseline, and a proposed one employing a novel coupling
layer. Synthetic mask perturbations are used for evaluating and fine-tuning the learnt probability
densities. Expert annotations on a separate test-set are employed to measure detection performance
relative to inter-user variability. Regular coupling-layers tend to focus more on local pixel correlations
and to disregard semantic content. Experiments and analyses show that, in contrast, the proposed
architecture is capable of capturing semantic content and is therefore better suited for OoD detection
of faulty lumen segmentations. When compared against expert consensus, the proposed model
achieves an accuracy of 78.6% and a sensitivity of 76%, close to the inter-user mean of 80.9% and 79%,
respectively, while the baseline model achieves an accuracy of 64.3% and a sensitivity of 48%.

Keywords: out-of-distribution; normalizing flows; coronary computed tomography angiography;
lumen segmentation

1. Introduction

Coronary computed tomography angiography (CCTA) is an effective imaging modal-
ity, increasingly accepted as a first-line test to diagnose coronary artery disease (CAD).
Advancements in CCTA have allowed for minimal radiation exposure, effective coronary
characterization, and detailed imaging of atherosclerosis over time. Due to the increasing
body of evidence showing the effectiveness of CCTA [1,2], recent ACC/AHA chest pain
guidelines recommend CCTA as a first line test for patients with stable and acute chest pain.

The rapid progress in Artificial Intelligence (AI) approaches for pattern recognition
over the last decade has led to several concepts, applications, and products built around the
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primary goal of augmenting and/or assisting the radiologist in their reading and reporting
workflow, mainly focusing on automatic detection and characterization of features and on
automatic measurements in the images. The majority of state-of-the-art CCTA image analy-
sis algorithms are powered by artificial intelligence (AI) [3]. The accurate segmentation
of the coronary artery lumen on CCTA is a crucial step for the automated detection and
assessment of CAD for numerous use cases:

• Anatomical quantification of stenosis—for instance, minimum lumen area, minimum
lumen diameter or percentage diameter stenosis [4].

• Morphological quantification: amount and composition of coronary plaques [5].
• Functional quantification of coronary function—for instance, CFD or machine learning

based Fractional Flow Reserve (FFR) computation [6,7].

While the performance of AI based methods has improved markedly over the years,
given the importance of an accurate lumen detection, semi-automated approaches are
currently still being employed. Thus, the lumen is first automatically detected, and then
manually inspected and edited by the radiologist if deemed necessary. This process,
together with coronary artery centerline editing, required, e.g., between 10 and 60 min in
a study assessing the diagnostic performance of ML-based CT-FFR for the detection of
functionally obstructive coronary artery disease [6]. One potential approach for significantly
reducing the time required for a semi-automated CCTA lumen analysis is to pre-select
locations which are likely to require inspection and editing, and to present only those for
review to the radiologist. Considering that a Deep Neural Network (DNN) is responsible
for generating the lumen segmentation masks, this pre-selection step can be linked to the
topic of confidence and out-of-distribution detection in Deep Learning. It is known that
the output of classic DNNs may be unreliable when applied on out-of-domain, noisy or
uncertain input data. Many methods have been proposed for assessing model output
confidence. van Amersfoort et al. [8] uses a bi-Lipschitz deep feature extractor which feeds
a sparse Gaussian Process (GP): segmenting an image involves at the lowest level many
classification sub-problems, where each pixel is labelled according to the object/class it
pertains to. Therefore, a GP can be adapted to model a segmentation task as a classification
task, and, hence, the associated output uncertainty value can be extracted for each pixel.
Image segmentations which display large mask uncertainties can be flagged as unreliable
and proposed for human inspection. Another approach is to employ energy-based models.
Liu et al. [9] shows that a model trained with a SoftMax final activation contains implicitly
a density estimator. An energy-score can be computed for each pixel and aggregated
mask-scores can be compared to predefined thresholds to determine which samples require
manual inspection. Within these two methods, the model confidence is shaped during
learning the target task. Therefore, in classification problems, the output confidence is low
whenever the input sample is either far away from the training distribution or it is placed
close to the nonlinear class-separation manifold in the input space.

Regular confidence methods do not provide a reason why the output confidence is
low, and the class separation learnt by the model is highly dependent on the target task and
on the model architecture. Normalizing Flow (NF) models on the other hand can be trained
explicitly to model input data probability densities. Given a downstream target task T, if
only its input data is employed for building the NF model, then estimating the likelihood
of input samples for the target task can be obtained through the NF model. Input samples
with low probabilities can be flagged as out-of-distribution and the target model’s output
should be considered unreliable, as it would operate outside its training distribution. An
NF model can also be built by stacking the input samples with their expected GT output.
This way, the NF model can be placed downstream of the target task and act as an Audit
model, detecting cases where the previous model provided faulty predictions. In either
scenario, the NF is a separate model and therefore imposes no constraints on the model
responsible for the target task. NFs are a class of generative models which can perform
exact log-likelihood computation. They have been employed in various setups, for instance:
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• Image generation[10,11]: Being reversible models, random samples from the prior dis-
tribution can be transformed into the data domain, therefore obtaining new synthetic
datapoints.

• Prior for variational inference: Instead of employing a fixed distribution (usually the
normal distribution) in the KL term for ELBO maximization in variational inference,
NF can be employed to model a much more expressive prior distribution. In a
variational auto-encoder (VAE), this allows the encoder to better capture input patterns
by not placing a fixed constraint on its computed embeddings. Ziegler and Rush [12]
employed such a method for character-level language modeling and polyphonic music
generation.

• Out-of-Distribution (OoD) detection: As log-likelihood values can be exactly and
efficiently computed, NF may be good candidates in outlier detection [13].

NF can usually operate efficiently in both directions: forward (or inference) direction,
where input samples x from the input domain X are transformed into embeddings z which
are likely under a chosen distribution Z. At each layer, the input is modified towards Z
and the logDet value (i.e., ln

(∣∣∣det
(

∂ f
∂x

)∣∣∣), where f is the NF) is summed with the current
layer contribution. The backward (or generative) direction employs the bijection property
of the NF to transform an embedding z into a synthetic sample xnew. Refs. [14,15] offer an
introduction and review into the current approaches used in the NF framework.

In this paper, we present an approach based on NF for the OoD detection of coronary lu-
men segmentations. NF models which are built from coupling layers as proposed in [10,11]
tend to focus on local pixel correlations instead of the global semantic meaning [13,16]
and, as a result, OoD samples may in fact produce larger log-probability values than in-
distribution data. We investigate the usage of a new type of coupling layer, which employs
reversible 1 × 1 convolutions in which the filter parameters are computed based on the
passed-through components. We compare the proposed architecture against a Glow-like
architecture on the task of detecting mismatched pairs of CCTA lumen images and their cor-
responding lumen segmentations. The coronary lumen images and masks are 3D volumes
stacked along the channel axis. We also employ synthetic perturbations on the binary masks
and use the perturbed samples as explicit outliers to further shape the learnt probability
density of “correct” image-mask pairs. The end goal is to flag those samples for which the
given segmentation does not properly match with the lumen image. Overall, we assess the
performance of the NF models as follows: (i) against the synthetic mask perturbations, and
(ii) using expert annotations.

2. Methods
2.1. Patients and Imaging Protocol

Two datasets were used for the purpose of this study: a primary dataset as basis for
the conventional train\validation\test split and an additional secondary separate test set.

The primary dataset included 560 patients who underwent contrast enhanced CCTA
for clinical indications at Das Radiologische Zentrum (Heidelberg, Germany). CCTA was
performed on a third generation dual-source CT scanner (SOMATOM Force, Siemens
Healthcare GmbH, Erlangen, Germany). Beta-blockers or sublingual nitroglycerin were
administered prior to the scan if clinically indicated. Prospective and retrospective gating
protocols were utilized with a tube voltage varying between 70–150 kV. Reconstructed
matrix size was 512 × 512 with a pixel size between 0.289–0.496 mm. Slice thickness and
increment were 0.6 mm and 0.4 mm, respectively.

The secondary dataset included 53 patients. It was retrospectively collected from
patients who underwent contrast enhanced CCTA from an independent test center. CCTA
was acquired on a dual-source CT scanner (SOMATOM Force, Siemens Healthcare GmbH,
Erlangen, Germany). Beta-blockers were not used since physiological cardiac function
was also assessed. Tube voltages for the scans varied between 80–120 kV. Reconstructed
matrix size was 512 × 512 with a pixel size of 0.391 mm. Slice thickness and increment were
0.75 mm and 0.4 mm, respectively.
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2.2. CCTA Annotations

Three expert readers performed lumen annotations. These experts received 25 h of
theoretical and practical training from a level 3 SCCT certified cardiothoracic imaging
radiologist. Lumen annotations were performed on standard Windows workstations with
a dedicated in-house annotation tool. The tool has two orthogonal curved multiplanar
reconstruction (cMPR) views and one cross-sectional view where the experts can perform
drawing and editing. First, coronary centerlines and corresponding lumen boundaries were
generated using previously developed methods [17,18]. These automatically generated
centerlines and lumen boundaries were then manually edited to obtain the final lumen
annotations. Lumen annotations were performed only between the proximal and distal
lesion markers defined by the expert readers before starting the lumen annotation process.
To this end, annotators placed markers at the start and end of the diseased coronary artery
regions to define lesions for every branch. These lesions were then extended proximally
and distally by 5 mm to include healthy coronary artery regions. If the lesions overlapped
after the extension, the lesions were merged. For each extended lesion, the experts first
checked and edited the lumen boundaries in 4 cMPR views. They also reviewed their
results in the cross-sectional view and edited the contours if required. The window and
level were automatically set using values extracted from the DICOM tags; however, the
experts were encouraged to modify these values according to existing guidelines [19] to
achieve the best visualization of the coronary lumen.

2.3. Data Preparation for Convolutional Neural Networks

For each extended lesion, the centerline is sampled equidistantly at 0.25 mm intervals.
Unit vectors that are tangential to the centerline are computed. To define a 2D local
coordinate system along the centerline, two other unit vectors are determined at every
centerline point using a rotation minimizing frame technique [20]. Cross-sectional images
are then generated by sampling the CCTA volume at regular grid positions around the
centerline along the local 2D coordinate system. Distances from the corresponding branch
mesh to regular grid positions are also computed to generate corresponding cross-sectional
distance maps, which then can be binarized to obtain lumen masks. The resulting cross
sectional images and masks have a size of 64 × 64 pixels with 0.125 mm isotropic pixel
spacing.

2.4. NF Architectures

We investigated the use of a Glow-style NF architecture, combining layers previously
introduced in [10,11], such as checkerboard and channel masking coupling layers, invertible
1 × 1 Convolutions, Split and Squeeze layers. Our baseline network is depicted in Figure 1
and described in Table 1. We employed affine coupling layers as in Equation (1), where x
and y are the input and output tensors, respectively. Subscripts a and b typically denote the
two halves of the tensors: one which is passed-through unchanged and the other one which
is updated in a linear fashion with respect to itself, but in a highly non-linear fashion with
respect to the former half, through functions s and t (which are Deep Neural Networks).

ya = xa

yb = (xb − tDNN(xa)) sDNN(xa)
(1)

Networks s and t are in our case a two-head 3D CNN, with its architecture described
in Table 2. The final activation function of head s was chosen as exp(tanh(x)) in order
to easily compute the contribution to logDet (as ∑ tanh(x) across all spatial dimensions
and channels) and provide a bound of [e−1, e1] to the scaling done at each coupling layer,
ensuring numerical stability and a bounded global maximal value of logDet.

The input samples consist of chunks of 8 adjacent cross sections (down-sampled to
32 × 32 resolution) and 2 channels (the concatenation of the angiography and the binary
mask volumes). There are 3 squeezing operations which contract the input resolution
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23 times down to 1 × 4 × 4, with increasing number of channels, being the same setup
as used in Glow [11] (however we employed fewer layers on each scale due to runtime
considerations). The effective receptive field of a coupling layer is given by the receptive
field of the s and t network, in this case, 5 × 5 × 5. Stacking coupling layers and using
multiple scales (i.e., squeeze layers) increase the final NF receptive field, similar to the
operation of classical CNNs.

Figure 1. Baseline model architecture. Activation norm not depicted.

Table 1. Glow-style baseline architecture.

Stage No. Blocks Block Description Resolution No. Channels Total Number
of Parameters

1 4
Affine coupling layer using
checkerboard mask; Activation
Norm (if not last block)

8 × 32 × 32 2

∼2 millions

2
3
4

1 3D Squeeze operation

Stage 2: 4 × 16 × 16
Stage 3: 2 × 8 × 8
Stage 4: 1 × 4 × 4

Stage 2: 16
Stage 3: 64
Stage 4: 256

3
Activation Norm; Invertible 1 ×
1 Convolution; Affine coupling
layer using channel-wise masking

1 Split channels After stage 2: 8
After stage 3: 32

Table 2. s and t network architecture.

Stage Block No. Filters Cumulative
Receptive Field

1
Conv3D with 3 × 3 × 3 kernel,
stride 1, padding 1; BatchNorm;
LeakyReLU

64 3 × 3 × 3

2
Conv3D with 1 × 1 × 1 kernel,
stride 1, padding 0; BatchNorm;
LeakyReLU; Dropout

64 3 × 3 × 3

3
Conv3D with 3 × 3 × 3 kernel,
stride 1, padding 1; BatchNorm;
LeakyReLU; Dropout

64 5 × 5 × 5

4 − s Conv3D with 1 × 1 × 1 kernel,
stride 1, padding 0 As many as x’s channels for

checkerboard masking or half
for channel masking

5 × 5 × 5

4 − t Conv3D with 1 × 1 × 1 kernel,
stride 1, padding 0

In [13], it has been shown that NFs which employ affine coupling layers are prone to
focus more on local pixel correlations instead of semantic content and exploit coupling layer
co-adaptation in order to maximize the final log-probability, i.e., the inductive bias of a
stack of affine coupling layers encourages them to encode information about masked pixels
in subsequent layers so that t is a good approximation to xb and thus s can be increased,
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leading to larger final log-probabilities. Therefore, stacks of affine coupling layers are
incentivized to guess local pixel values by exploiting texture correlations and information
feed-forward by bypassing the masks, instead of building features increasing in complexity
and expressivity as it is happening for classical stacks of convolutional layers. Semantic
features can describe higher level characteristics of the modeled objects, such as global
shapes (e.g., the relatively circular shape of the lumen with its spatial continuity between
slices), global appearance (e.g., how distinguishable is the lumen from the background)
and object correlations (e.g., the mask’s spatial alignment to the lumen; calcifications, if
present, should be around the lumen, etc.).

Behrmann et al. [21] shows that by constraining a general-purpose residual network [22]
to be bi-Lipschitz, it can be used as a NF architecture. The expressive power of ResNets
is shown to be preserved even with this constraint. On a classification task the invertible
ResNet performed better while on a density modeling task it performed similar to affine-
coupling networks. However, sampling from a NF consisting of a ResNet is an iterative
process at each residual layer and training/inference involves approximating the logDet
at each layer through a power series truncation. Therefore, such ResNet-based models
are not that straight-forward in their operation as, e.g., Glow-based models. Ref. [23,24]
tackle the problem of conditional probability modelling through the use of NF. In coupling
layers, instead of using only the passed-through portion of the layer input to compute s
and t, an additional embedding (dependent on the conditioning variable) is also employed.
In addition, several layers such as Activation Norm (ActNorm) and invertible 1 × 1
Convolutions no longer have constant (but trainable) parameters for all inputs/samples,
but instead their weights are computed based on the conditional embedding, therefore
tailoring their effect for each particular pair of (condition, sample).

Inspired by the above research, we propose the use of a novel type of coupling layer,
one which can operate efficiently for both NF directions, does not focus on local pixel
correlations and has an inductive bias similar to conventional CNNs. The layer resembles
a standard Glow-like sequence of 1 × 1 Invertible Convolution, channel masking, affine
coupling layer. However, the last step is replaced with a 1 × 1 convolution (with applied
bias) whose parameters are computed based on the passed-through channels, as in [25]. The
applied bias is broadcasted to all spatial positions, therefore is it the same across the width,
height and depth of the resulting tensor, meaning that the layer is no longer capable to
reproduce masked pixel values as revealed in [13]. The same (sample specific) convolution
kernel is applied at all spatial positions, in contrast to the element-wise computation done
in (1). This behavior is similar to classical CNNs, with the exception that now the filter
weights are not the same for all samples. Equation (2) describes the layer’s operation, with
simplified notation: ∗ means 1 × 1 Convolution with kernel k and + is a broadcasting
sum. k is computed by a CNN and has shape cmodi f -by-cmodi f , where cmodi f is the number
of channels which are updated. b is a vector of cmodi f elements. The CNN responsible for
computing k and b is described in Table 3.

ya = xa

yb = xa ∗ k(xa) + b(xa)
(2)

It is observed that the layer is self-conditioned, i.e., it does not employ an external
conditioning network or another parallel flow as in [23,24], since the lumen binary mask
and the angiographic image were not treated separately, but were concatenated on the
channel axis. This is possible because the mask and the image should be highly correlated
spatially in order to achieve high log-probability.

A new NF architecture was designed employing the above coupling layer. The first
stage is a sequence of Additive Coupling Layers with checkerboard masking. According to
[13], these layers will focus mainly on local pixel correlations, but this is equivalent to the
functioning of the first layers in classical CNNs, where the receptive field-of-view is small
and the filters tend to search for simple patterns such as corners, edges, textures, etc. As
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opposed to affine couplings, additive couplings are volume preserving, i.e., they do not
contribute directly to logDet and final log(p(x)), but indirectly through the upstream layers.

Table 3. CNN architecture for computation of k and b employed inside the coupling layer.

Stage Block No. Filters Cumulative
Receptive Field

1 Conv3D with 3 × 3 × 3 kernel, stride 1, padding
1; BatchNorm; LeakyReLU 64 3 × 3 × 3

2 MaxPool3D 2 × 2 × 2, stride 2 4 × 4 × 4

3 Conv3D with 1 × 1 × 1 kernel, stride 1, padding
0; BatchNorm; LeakyReLU; Dropout 64 4 × 4 × 4

4 Conv3D with 3 × 3 × 3 kernel, stride 1, padding
1; BatchNorm; LeakyReLU; Dropout 64 8 × 8 × 8

5 − k Conv3D with 1 × 1 × 1 kernel, stride 1, padding
0; Average pooling c2

modi f full

5 − b Conv3D with 1 × 1 × 1 kernel, stride 1, padding
0; Average pooling cmodi f full

The next stages consist of cascades of coupling layers, as described in Figure 2 and
Table 4. In contrast to a classical CNN, where filters of shape 3 × 3 (or larger) and strides
larger than 1 are used (either in convolutional or max pool layers) to increase the effective
field-of-view (FoV), in our architecture the FoV in these stages is increased solely by the
squeeze operations. After squeezing, a 1 × 1 × 1 patch of pixels is formed from a patch of
2 × 2 × 2 pixels which were flattened spatially into the channel dimension. Therefore, the
FoV doubles on each spatial axis for each squeeze step. This allows 1 × 1 Convolutions to
operate on increasingly larger FoV, similar to the functioning of a classical CNN, while still
retaining the capability of efficient forward/backward NF computation. There are enough
squeeze operations so that the resolution on the last stage decays to 1 × 1 × 1. Naturally,
we restrict the input spatial dimensions to be powers of 2.

One possible disadvantage is that after each squeeze operation, the number of channels
ci (at stage i) increases exponentially with the number of squeezed dimensions (see Table 4).
This directly impacts the proposed coupling layer’s runtime and complexity, since it must
produce matrix k whose size scales with the square of ci. In addition, inference and sampling
involve computing the determinant and inverse of k, respectively. One workaround to
alleviate this issue is to modify the splitting layers so that the tensors are not split in half
along the channel axis anymore, but instead only a quarter is retained for the rest of the
computation graph while the other 75% of channels are factored out. This can be applied
especially in the first stages, where the embeddings mostly describe texture. After such
a split, the input to the next squeeze has only ci/4 channels, half that of a regular split.
Cascading such splits throughout the network can alleviate the effect of the exponentially-
increasing ci, especially for larger resolution inputs. In our experiments, the first split layer
only retains ci/4 channels. The net effect is that there are only 512 channels in the last stage,
as opposed to the original 1024 (as described in Table 4), resulting in faster runtimes and
fewer model parameters.

In this new architecture, BatchNorm was employed instead of ActNorm. In classical
CNNs, batch norm acts by computing the batch statistics and then using them to normalize
the output. In our approach, two running averages of the batch mean and standard-
deviation are employed for normalization and they are updated with current batch statistics
after their use, so that the normalization procedure is dependent only on past batches and
any cross-talk between samples in the current batch is eliminated. In either CNN and NF
cases, batch norm’s main purpose is to provide “checkpoints” for activations inside the
network, i.e., after each BatchNorm layer the activations have preset statistics (i.e., are
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centered around 0 with a std. dev. of 1). This has been shown to improve the training
process [11,26].

In all our experiments, the network weights are initialized such that the layers are
an identity mapping in the beginning of training, as suggested in [11]. We employed the
PyTorch DL framework with the Adam optimizer with a learning rate of 1 × 10−4 and
trained until the validation loss plateaued.

Figure 2. Comparison between baseline inner architecture (top) and proposed inner architecture
(bottom) employing the novel coupling layer. Updated parts are highlighted in red. Normalization
layers not depicted.

Table 4. Improved NF architecture employing the novel coupling layers.

Stage No. Blocks Block Description Resolution No. Channels Total Number of
Parameters

1 4
Additive coupling layer using
checkerboard mask; BatchNorm
(if not last block)

8 × 32 × 32 2

∼8.7 millions2
3
4
5
6

1 3D Squeeze operation

Stage 2: 4 × 16 × 16
Stage 3: 2 × 8 × 8
Stage 4: 1 × 4 × 4
Stage 5: 1 × 2 × 2
Stage 6: 1 × 1 × 1

Stage 2: 16
Stage 3: 64
Stage 4: 256
Stage 5: 512
Stage 6: 1024

4
BatchNorm; Invertible 1 × 1 Con-
volution; convolutional coupling
layer using channel-wise masking

1 Split channels

After stage 2: 8
After stage 3: 32
After stage 4: 128
After stage 5: 256

2.5. Synthetic Mask Perturbations

Our application’s goal is to detect incorrect pairs of (angiography image, lumen mask),
i.e., samples where the segmentation is not in full agreement with the image. To test our
models, we devised a method to obtain “wrong” datapoints (or samples which are not in
the distribution of “correct” image-mask pairs) starting from our initial data (considered to
be “correct”).
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We augmented the datasets by applying preset perturbations on the lumen segmenta-
tion binary mask, while keeping the angiographic image untouched. Three types of mask
perturbations were employed:

• zooming:we applied zoom in/out operations on the mask image with respect to the
mask center, so that the resulting mask is still aligned with the angiography, but
larger/smaller than before. Figure 3 displays an example for various levels of zoom.

• morphing: we applied dilations or erosions along 4 directions on the height ∗ width
plane: left-right, top-bottom, topLeft-bottomRight and topRight-bottomLeft. This
perturbation only affects one part of the mask (the eroded or dilated part), while
the other part is left untouched. Figure 4 displays an example for various levels of
morphing. By convention, negative and positive levels refer to the two ways in the
selected direction, with zero meaning original mask position (levels are expressed
as ratios of the original mask size along the chosen direction). At every level, either
dilation (resulting in prolonged masks) or erosion (resulting in shortened masks) can
be applied.

• translations: in the same 4 directions on the height ∗ width plane, we translated whole
mask images. Each level increment signifies a pixel shift. Figure 5 shows an example
for various levels of translation.

For each network architecture, we performed two training procedures: one employing
only original (unperturbed) data and one employing a dataset consisting of the original
data and its perturbed version. The perturbations are applied during train time, similar to
data augmentation techniques, such that each original data sample gets perturbed on all
perturbation types, levels and directions over the training epochs. At each epoch, the ratio
between untouched and perturbed data is 1-to-1.

When only original data is used, the training loss function consists of maximizing the
log-probabilities across the train set. When perturbed data is also employed, we used a
train loss function (Equation (3)) similar to the hinge loss introduced in [13,27], where the
model tries to maximize predicted log-probs for original (untouched, in-distrib) samples
and tries to decrease predicted log-probs under a certain threshold T for perturbed samples
(OoD). The hinge loss allows us to shape the learnt probability density modeled by the NF,
by directly offering supervision in regions around the original samples in the input domain.
Therefore, the NF can be trained to be sensitive to the used synthetic perturbations and to
mark perturbed samples as OoD

L(θ, x) = Ex∈inDistrib(ln(pθ(x))− Ex∈OoD(max(0, ln(pθ(x))− T))
θoptimal = argmaxθ L(θ, x)

(3)

where pθ is the probability density modeled by the NF.
Training only on original data and then testing on synthetic perturbations gives

insight into the OoD detection capability which stems purely from the inductive bias of
the NF architecture. In addition, we argue that NF models, being a class of generative
models, provide a form of explainability by being able to produce samples from their
learnt probability density. By sampling repeatedly from the model and computing the
associated log-probs, one can observe the kind of samples which the model considers to
be in-distribution. We believe that this gives insight into the semantic content which is
interpreted by the model and into the functioning of the computational chain of layers.
Section 3.3 will discuss in further detail.
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Figure 3. Example of zoom perturbation on lumen mask. Only the mask contour is shown.

Figure 4. Example of mask morphing perturbation in the left-to-right direction. Top row shows
dilations (the mask is prolonged), bottom row shows erosions (the mask is shortened). Only the mask
contour is shown.

Figure 5. Example of mask translation perturbation in the topLeft-bottomRight direction. Only the
mask contour is shown.

3. Results and Discussion
3.1. Evaluation on Synthetic Mask Perturbations

First, we evaluated the baseline and the proposed networks trained on original (unper-
turbed) data. We applied the synthetic perturbations on the testset in increasing levels of
severity and measured how well the models can distinguish between log-probs of original
and log-probs of perturbed samples. At each perturbation level, we computed the area
under the RoC curve. Figures 6–8 display the AUROC values for translation, zooming and
morphing perturbations, respectively. We use AuRoC as a metric for assessing how well
two individual data distributions can be separated by using a probability threshold. A
value close to 1 indicates that there are probability thresholds which yield near 100% accu-
racy in detecting perturbations, while values close to 0.5 indicate that the probabilities of
the two data distributions have high overlap and are therefore indistinguishable by simple
thresholding. Hence, the closer the AuRoC values are to 1, the better is the performance of
the method. Zoom level 1.0× and translate level 0 do not have any effect on the test data,
so naturally the AuRoC is 0.5 since it is comparing the same distribution against itself.
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Figure 6. AuRoC performance for the baseline and proposed architecture when tested against mask
translation in various directions. Training done only on original data.

Figure 7. AuRoC performance for the baseline and proposed architecture when tested against mask
zooming. Training done only on original data.

Figure 8. AuRoC performance for the baseline and proposed architecture when tested against mask
morphing in various directions. Training done only on original data.

It is observed that the proposed model has superior performance across all pertur-
bation types and levels. Zooming under 1.0× actually yields higher log-probs for the
baseline model, resulting in AuRoC values under 0.5. Even at small mask perturbation
levels (e.g., 0.9×/1.1× zooming, ±2 pixels translation), the proposed model has much
larger sensitivity in detecting the mask alterations (even though it was not trained explicitly
to do so) in contrast to the baseline model, where the log-probs start to decrease more
significantly only at larger perturbation levels. The mask morphing is the hardest to detect
since part of the mask remains the same. Thus, the baseline model is largely insensitive
to this type of perturbation as the maximum AuRoC at a high perturbation level of 60%
is under 0.65. In comparison, the AuRoC for the proposed network has a much faster
variation for increasing perturbation severity, achieving values over 0.9 for some directions
at 60% morphing.

Next, we evaluated the test-time sensitivity against synthetic perturbations after
training using the augmented trainset and loss from Equation (3). We employed the
following perturbation levels to generate OoD samples for training:

• translation (in all 4 directions) of ±3 or ±4 pixels;
• zooming levels of 0.65×, 0.8×, 1.2×, and 1.35×;
• morphing (in all 4 directions, erosions/dilations) levels of 0.2 and 0.35 (ratio of initial

mask size).
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Any OoD sample had only one type of perturbation applied to it. In addition, given
the fact that each sample is a 3D volume consisting of 8 2D slices, the perturbation could
be applied on each slice following some preset variation for its severity/level along the
slice axis (see Figure 9 for the employed severity variation types). A severity variation
type is sampled randomly for each OoD sample and each component 2D slice is perturbed
according to its corresponding severity.

Figure 9. There were 7 perturbation severity variations employed for OoD samples generation. Each
slice index has its corresponding relative severity level, according to the chosen severity variation.

Figures 10–12 display the test-set AUROC values for translation, zooming and morph-
ing perturbations, respectively. The two models perform similarly well, except for some
morphing directions, where the proposed model has slightly lower AuRoC values for small
perturbation levels.

Figure 10. AuRoC performance for the baseline and proposed architecture when tested against
mask translation in various directions. Training done on augmented dataset using the hinge loss in
Equation (3).

Figure 11. AuRoC performance for the baseline and proposed architecture when tested against mask
zooming. Training done on augmented dataset using the hinge loss in Equation (3).
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Figure 12. AuRoC performance for the baseline and proposed architecture when tested against
mask morphing in various directions. Training done on augmented dataset using the hinge loss in
Equation (3).

This training procedure yields models which show high sensitivity towards samples
from the outlier distribution used explicitly during training, and which can separate the
log-prob distributions even for small levels of perturbations. However, in [13] it is reported
that even though NF models can achieve good separation between in-distrib and OoD sets
used explicitly during training, there may also be other OoD sets (unseen during training)
which still achieve log-probs as high as in-distribution data. Therefore, the inductive bias
of the model still plays a major role in the generalization and usability of a NF model
in the face of new data, even if it was explicitly tuned to decrease log-probabilities for
some forms of outliers. The next sections will further inspect the two models trained on
augmented data and will provide evidence that the baseline model, even though it can now
detect some outliers, does not model a useful probability density which is descriptive of
the training data.

To obtain a log-probability signal which describes the likelihood of an entire vessel
segment, a sliding window approach was employed in which overlapping chunks of 8
adjacent cross-sections are fed through the NF model to obtain the log-prob values for each
chunk. Using this procedure, middle cross-sections can participate in at most 8 chunks,
therefore there may be up to eight predicted log-probability values linked to each middle
cross-Section. A voting scheme based on averaging is employed, where the final log-prob
value for each cross-section is computed by averaging the linked predicted log-probs.
Figure 13 depicts such an example, where a synthetic perturbation is applied with a known
severity variation. The proposed NF model detects when the perturbation severity is high
enough, while outputting high log-prob values when the perturbation is negligible.

3.2. Evaluation on Expert Annotations

The results in the previous section indicate that the herein proposed model is supe-
rior to the Glow-like baseline. Hence, we first ran the proposed model (trained on the
augmented trainset) on the secondary dataset described in Section 2.1. We employed two
relative thresholds of 60% and 90% of the mean log-probability value observed on the
primary dataset’s test split, when no perturbation was applied. All lesions which had
at least one cross-Section log-probability value under the 60% threshold were selected as
candidates with possibly wrong mask annotations, yielding a total of 31 of these lesions.
To construct the bin of candidates with possibly correct mask annotations, we randomly
sampled 31 lesions from those for which all cross-Section log-probability values were above
the 90% threshold. Thus, we did not consider lesions which had any intermediate values of
log-probability (i.e., between the 60% and 90% thresholds) without also having at least one
low log-probability cross-section, to avoid the effect of model uncertainty for data which
it considers to be near the separation manifold between correctly annotated lesions and
faulty ones. We then further excluded lesions which had a reference diameter (computed as
average of healthy proximal and distal diameters) lower than 1.5 mm (the typical threshold
employed in CCTA based studies assessing CAD anatomically and functionally). As a
result, a test set containing 56 lesions from 35 patients was employed for the evaluation.
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Figure 13. Whole vessel-segment prediction using a sliding window approach and the proposed
architecture. A zooming perturbation with a known severity variation (top plot, gray signal) is
applied (note that zoom level 1.0× is an identity transform). The resulting log-prob signal (top plot,
red signal) dips whenever the perturbation is severe enough, compared to the original log-prob
signal in the absence of any perturbation (top plot, purple signal). The bottom 2 plots display
two lateral views of the vessel segment (2 projections on different axes), with the perturbed mask
contour overlaid.

The selected test set was manually and independently annotated by three expert
readers at lesion-level: each lesion was marked as being either “correctly” or “incorrectly
annotated”, based on the following instructions: a lesion should be marked as “incorrectly
annotated” if at least one cross-sectional contour would require editing; otherwise, if no
cross-sectional contour requires editing, then the lesion should be marked as “correctly an-
notated”. The annotator instructions were devised so as to match the procedure employed
to construct this separate test set, with the goal of being able to directly compare the labels
from the NF model to the ones provided by the annotators.

The Glow-like baseline NF model was also applied on the 56 lesions and the same
relative thresholds and criteria were employed to classify each lesion. Evaluating the two
NF models against the human annotations was framed as a binary classification problem.
Table 5 summarizes relevant metrics (accuracy, sensitivity, specificity, PPV and NPV) for
the proposed and baseline models. Annotation consensus was obtained through a majority
vote between the three annotators. The mean inter-user metric values were obtained by
averaging all 6 possible metric values pertaining to pairs of annotators, e.g., Annotator_1
(as GT) versus Annotator_3 (as Prediction), Annotator_3 (as GT) versus Annotator_1 (as
Prediction), etc. When compared against annotation consensus, the proposed model has
higher performance than the baseline on all considered metrics.

Of special interest is the sensitivity metric, which measures the percentage of NF-
flagged lesions as being incorrect from the set of lesions considered incorrect by the human
annotators’ consensus. The higher this metric value, the more capable is a NF model in
detecting faulty segmentation masks. We observe that the proposed model has sensitivity
of 76.0%, close to the inter-user value of 79.0%, while the baseline model only achieves 48%.
Overall, according to the majority vote of the expert readers, 25 lesions were annotated as
requiring editing, out of which 17 had unanimous annotations and 8 had non-unanimous
annotations. The NF model correctly classified 16 out of the 17 unanimously annotated
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lesions and three of the eight non-unanimously annotated lesions. This indicates a 94.1%
sensitivity on the unanimously annotated lesions.

The overall accuracy score also increases to 78.6% (close to the inter-user value of
80.9%) for the proposed model, as compared to an accuracy value of 64.3% for the baseline
Glow-like model. These results reinforce the observation that the baseline model is unable
to fully capture semantic content while the proposed model does. Similar behavior was
observed in the previous section, where the proposed model had better AuRoC values in
detecting synthetic perturbations when trained only on original data.

Table 5. Metrics on the secondary dataset for the baseline and the proposed model. The proposed
model consistently outperforms the baseline and has metric values close to inter-expert agreement.

Metric Inter-Expert Agreement
Average [Min, Max] Baseline Model Proposed Model

Accuracy 0.81 [0.79, 0.86] 0.64 0.79

Sensitivity 0.79 [0.70, 0.87] 0.48 0.76

Specificity 0.83 [0.76, 0.90] 0.77 0.81

PPV 0.79 [0.70, 0.87] 0.63 0.76

NPV 0.83 [0.76, 0.90] 0.65 0.81

3.3. Sampling from the Models

We employed the models trained on the augmented trainset to generate novel samples.
Similar to sampling procedures in [11], we employed N (0, 0.6 · I) instead of the actual
prior distribution (i.e., standard normal multivariate distribution) in order to produce
samples with larger log-probs and which look more realistic. Each new sample was run
back through the model in the forward direction to compute the log-probs, confirming
that the sample is in fact in-distribution (the sampling procedure may seldomly generate
samples of lower log-probability). Figure 14 shows samples from the two models.

As already revealed in [13], the baseline model tends to focus more on textures and
is unable to capture the semantics of the training data. We observed that in most of the
generated samples, the segmentation mask is lacking (i.e., only zeros are generated on the
mask channel). In addition, the usual round shape of the lumen is not distinguishable in
the image channel. In [11], the proposed Glow model can indeed generate realistic samples.
That model operates on the same spatial resolution as ours (32 × 32) and uses the same
number of 3 spatial scales (i.e., squeeze operations); however, it employs up to 48 coupling
layers per scale (as opposed to ours, which only uses 3 coupling layers per scale due to
runtime considerations). We hypothesize that many glow-like layers are required at each
scale because of their tendency to disregard semantic content and a deep stack of such
layers can approximate some semantic content as very complex textures.

In contrast, the proposed architecture uses a small number of 4 (novel) coupling layers
per scale and manages to capture the semantic content of a usual data point: the lumen has
the typical shape in the image channel, the segmentation mask is present (with plausible
pixel-values, e.g., close to either 0 or 1) and respects the shape and position of the lumen in
the image channel.

We argue that inspecting the generated samples is an explainability mechanism which
offers insight into the learnt probability distribution, i.e., the model can provide example
inputs which are very likely under the learnt density and by repeating the sampling
procedure enough times, an approximation of the typical set of the learnt distribution may
be constructed. If a generative model consistently produces samples with high associated
log-probabilities but which have low quality under manual inspection and are implausible
considering the specific topic/domain, then this is proof that the learnt probability density
is not a good approximation of the true probability density and, therefore, the model cannot
be reliably used for OoD detection (even if its train-time loss function encouraged the
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separation of some OoD data sets). In practice, the amount of available OoD data is usually
limited and the inductive bias of the model still holds a huge importance in the quality of
the distribution fitting. Zhang et al. [27] shows that “even good generators can still exhibit
OoD detection failures”, therefore the above condition of good/plausible sample generation
is necessary, but not sufficient. It is necessary because the learnt probability density should
match the underlying data probability density as closely as possible. However, even for a
good generator (with high validation-set likelihoods) there may be small-volume regions
of the sample space where the model assigns high-density but low overall probability mass.
This faulty assignment of high-density might be caused by model estimation error [27], but
because the overall probability mass may be negligible (due to the small volumes of poorly
modeled regions), it does not affect the generation of synthetic samples. Still, training
a generative model for OoD detection can require accurate estimation in regions which
are unimportant for good generation [27]. Using an ensemble of generative models may
alleviate the effect of model estimation errors, as each model instance may mis-predict on
different regions of the sample space and thus errors could be averaged out.

Figure 14. Three samples (pairs of lumen image and segmentation mask) generated by the proposed
network (right) and by the baseline model (left).

3.4. Inspecting the Flows

The main hypothesis in [28] is that, in hierarchical VAEs, the lowest latent variables
“learn generic features that can be used to describe a wide range of data” and thus OoD data
can achieve high likelihoods “as long as the learned low-level features are appropriate”.
It is further suggested that “OOD data are in-distribution with respect to these low-level
features, but not with respect to semantic ones”.

Inspired by the hierarchical likelihood bounds approach in [28], we inspected the
progressive transformation of mask-perturbed samples as they are passed through the
sequence of coupling layers inside the NF models (i.e., going in the forward direction from
x ∈ X to z ∈ Z). We recorded the likelihood of the first factored out embeddings (termed
zbottom) after the first splitting operation and their associated logDet values at that stage.
We computed pseudo-likelihood values, associated to these “bottom features”, by ignoring
the rest of the computational chain and the part of the embeddings which were not factored
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out (termed ztop). We also computed pseudo-likelihood values associated with the “top
features”, i.e., by summing the likelihood (under the prior) of embeddings ztop and the
updates to logDet done at stages after the first splitting operation.

Intuitively, the “bottom features” operate at a smaller field-of-view and tend to capture
more local patterns, while the “top features” are built based on the “bottom features” and
at larger fields-of-views, therefore being able to access the global semantic content of a
sample. Formally, the two pseudo-likelihoods are computed as in Equation (4):

Lbottom = ln(p(zbottom)) + ln(|det(∇( f1 ◦ f2 ◦ . . . ◦ fk))|)
Ltop = ln

(
p
(
ztop

))
+ ln(|det(∇( fk+1 ◦ fk+2 ◦ . . . ◦ fM))|)

(4)

where M is the number of layers in the NF model and k is the index of the splitting layer
which factored out zbottom and retained ztop for the upstream layers. Because the chosen
prior distribution is a diagonal multivariate Gaussian, the sum of Lbottom and Ltop yields
exactly ln(p(x)).

Employing models trained only on original (unperturbed) data, we computed AuRoC
values for the two pseudo-likelihoods when applying perturbations of increasing severity
and compared performances to the standard case where the regular log-probabilities are
used to discriminate OoD samples. Figure 15 shows the AuRoC values for the baseline
and proposed models when detecting mask translations in various directions. For the
baseline model, the bottom features have worse performance in detecting outliers, while
the top features perform better than regular log-probs. This observation is in line with
the hypothesis in [28], that higher level latent variables can better discriminate through
semantic content, while lower level latents would yield similar likelihoods for OoD data if
textures appear to be in-distribution.

However, the proposed model shows consistent performance across the top and
bottom level features and regular log-probabilities. This suggests that even at the first
spatial scale, the novel coupling layers try to capture semantic features instead of local
spatial correlations and that the inductive bias of this coupling layer is better suited for
OoD detection than regular affine coupling layers (as used in [10] or [11]).

Inspecting the proposed model also on mask-morphing or mask-zooming pertur-
bations reveals the same behavior. However, despite the fact that pseudo-likelihoods
of bottom-features exhibit similar OoD detection performance as regular log-probs, the
network architecture cannot be truncated to use a smaller number of spatial scales. An
experiment where only four spatial scales were employed (instead of the original 5) was
conducted. The resolution on the final spatial scale was 1 × 2 × 2 instead of 1 × 1 × 1.
The experiment revealed that the network in this configuration is unable to ensure spatial
coherency across the entirety of the input image (of resolution 8 × 32 × 32) but only on
patches of 8 × 16 × 16, since each pixel position in the 1 × 2 × 2 map has a field-of-view
of 16 pixels. Even though the k-and-b network has a full receptive view, the k kernel is
applied on a 1 × 1 basis and cannot semantically link adjacent spatial sections in the xb
tensor. Therefore, the proposed network decays the spatial resolution down to 1 × 1 × 1,
where the computed k kernel can operate on the entire receptive field of the input. Figure 16
shows samples generated from a model with only four spatial scales instead of five. The
samples reveal that the 4 quadrants are not semantically connected.
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Figure 15. Baseline model (first row) compared to proposed network (last row): AuRoC values for
separating OoD mask-translated samples, using either top-features or bottom-features. Dashed black
lines represent default model performance using regular log-probs.

Figure 16. Generated samples are not coherent across the entire 32 × 32 spatial resolution, but only
on the 16 × 16 quadrants.

4. Conclusions

While the performance of AI based methods has improved markedly over the past
few years, semi-automated approaches are currently still being employed. One potential
approach for significantly reducing the processing time is to pre-select regions of interest
which are likely to require manual inspection and editing. Herein, we linked this pre-
selection step to the topic of confidence and out-of-distribution detection, based on NF. The
usage of a novel coupling layer which exhibits an inductive bias favoring the exploitation
of semantical features instead of local pixel correlations was investigated on the task
of detecting mismatched pairs of CCTA lumen images and their corresponding lumen
segmentations. A network architecture employing such layers was tested against a Glow-
like baseline. The proposed network showed better performance in OoD detection when
tested against synthetic perturbations, while the sensitivity of detecting faulty annotations
was close to inter-expert agreement. Samples from the model confirm that the learnt
probability density managed to capture the relevant informational content from the training
samples, instead of just modelling plain textures.
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During model development and testing stages, only manual annotations were em-
ployed in the input mask-channel; therefore, the use of the investigated models is not
tied to any specific segmentation model. Thus, any model-specific segmentation artefacts,
which could possibly alter the observed probability density of correct image-mask pairs,
are avoided by learning only from manual annotations (e.g., possible segmentation failure
modes are not included in the learnt probability density). In deployment scenarios, the
mask channel would be fed by a separate segmentation model and the proposed NF can
therefore act as an independent audit model, detecting cases where the mask is not in
full agreement with the underlying lumen images. As the failure modes of the NF model
would be uncorrelated with the failure modes of the segmentation model, the proposed
setup is better suited for robust pre-selection of vessel locations which are likely to require
inspection and editing, leading to time savings when performing semi-automated CCTA
lumen analysis.

CCTA is a powerful non-invasive test for ruling out CAD, i.e., avoiding unnecessary
invasive coronary angiography (ICA). A recent review has summarized the latest aspects
addressing the CCTA suitability for selecting patients for invasive coronary angiography
(ICA) and subsequent revascularization [29]. Clinical trials have shown that performing
CCTA in patients receiving a clinical indication for ICA results in lower costs and more
effective patient care [30].

However, small errors in the CCTA interpretation (e.g., minimal lumen area or di-
ameter) can have a significant influence on the interpretation of the anatomical and/or
functional significance of a stenosis. A large grey zone of uncertainty in the clinical inter-
pretation may be the consequence.

The method proposed herein allows for more confident decision making using CCTA
imaging alone. Using the proposed out-of-domain detection method, the gray zone in the
clinical interpretation can potentially be narrowed down.
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Abbreviations
The following abbreviations are used in this manuscript:

CCTA Coronary computed tomography angiography
OoD Out-of-Distribution
NF Normalizing Flows
AI Artificial Intelligence
CNN Convolutional Neural Network
GT Ground truth
CAD Coronary artery disease
AuRoC Area under the Receiver operating Characteristics
FFR Fractional Flow Reserve
AHA American Heart Association
CFD Computational fluid dynamics
KL Kullback–Leibler divergence
logDet Logarithm of determinant
cMPR curved Multiplanar Reconstruction
VAE Variational Auto-Encoder
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