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Abstract: In this paper, a new maximum power point tracking (MPPT) framework for photovoltaic
(PV) systems is presented based on the remora optimization algorithm (ROA) subjected to standard
and partial shading conditions. The studied system includes a PV array, a DC/DC converter, and a
load and MPPT control system. The control variable is the voltage, and the optimization variable is
the converter duty cycle, which is optimally determined using the ROA that is inspired based on the
parasitic behavior of remora for achieving the maximum power of the PV system. In this study, the
ability of the ROA is compared with manta ray foraging optimization (MRFO) and particle swarm
optimization (PSO) methods for the MPPT solving of different shading patterns in view of extracted
power, efficiency, and tracking rate. The results show that the ROA is a competitive method with
higher efficiency in maximum power tracking and convergence accuracy than the MRFO and PSO for
the MPPT solving of different patterns with higher exploration power. Moreover, an examination of
the two partial shading patterns also showed that the power extracted using the ROA is higher than
the MRFO and PSO while also reaching the global power value more quickly. The ROA achieved a
tracking efficiency of 99.97% in a partial shading condition, with faster tracking in comparison with
the MRFO and PSO methods. Therefore, the ROA is a high-speed tracking optimization method for
enhancing the PV system’s efficiency in standard and especially in shading conditions.

Keywords: photovoltaic system; maximum power point tracking; global power; partial shading
condition; remora optimization algorithm

1. Introduction

In recent years, the use of renewable energy due to an increasing energy demand has
been one of the areas of concern around the world along with environmental issues [1,2].
Among all the renewable energy resources, photovoltaic (PV) systems have attracted the
most attention due to their ease of access, non-pollution, and endless nature. Moreover,
due to the rather low efficiency of the PV systems, it is better to use them at the maximum
power point (MPP) in order to have maximum power [3]. Tracing the MPP of PV systems
is a difficult task because of its non-linear V-I characteristic [3]. The power generated by
PV systems changes with variations in atmospheric conditions such as irradiance and the
temperature of PVs. The generation capacity of the PV systems also changes with changes
in weather conditions. Therefore, to obtain the MPP, the PV system must be utilized at a
voltage in accordance with the MPP [4-6].
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The V-I characteristic of the PV cell changes with the variation of irradiance and
operating temperature, and this has a great effect on the optimal MPP. Additionally, under
specific irradiance, there is a single operational point for the PV plate where the output
power is maximized [7-10]. Therefore, to achieve the MPP of the PV system, controlling
the maximum power point tracking (MPPT) is important to improve the efficiency of PV
systems [8]. Moreover, partial shading conditions (PSCs) lead to multiple peaks in the
characteristics of the PV configuration [8,9]. Hence, it is vital to evaluate the acquisition of
the MPP under the PSCs. Among these peaks, the point with the highest value is called the
global MPP (GMPP). The others are called local MPPs (LMPPs) [8,9]. Traditional MPPT
methods, which assume only one peak, are unable to obtain convergence to the GMPP;
these methods are often trapped with one peak because of their instability in distinguishing
between local and global points [9]. This requires the application of robust optimization
methods that are able to achieve the MPP under PSCs [7-10].

Today, intelligent optimization methods have replaced traditional methods due to
their high tracking power and efficiency in achieving the GMPP; these methods have been
widely welcomed. In [11], an MPPT algorithm for a PV system is studied to track the MPP
under PSC while considering the maximum voltage corresponding to the GMPP. In [12],
a two-stage method is proposed. At first, the MPP close to the GMPP is moved via the
load line. Then, convergence of the exploitation point is performed for the GMPP. When
the GMPP is on the left side of the load line, the method is ineffective. In [13], a variable
step using the P&O method is suggested, and the step size is found through the Fibonacci
sequence. In this method, the GMPP is not traceable under all conditions. In [14], the MPPT
algorithm is presented as a two-step process, and a sweeping process is used to identify
the GMPP in the first step and then implemented using the P&O technique to converge
to the GMPP. This method needs more time to determine the GMPP because all MPPs
have to be identified to find the GMPP. In [15], a control algorithm for finding the GMPP is
presented under different PSC conditions. This method has better capability and efficiency
in different test conditions, but it depends on the system.

The artificial neural network (ANN)-based MPPT algorithm [16] is applied in order
to use ANN PSC data for finding the GMPP. In [17], an MPPT method is proposed, and
each PV configuration connected to the converter is integrated into the MPP detector. The
results show that the tracking efficiency is good but the cost of implementation is high.
In [18], a fast GMPPT method is presented based on the PSO for a photovoltaic (PV) string
under PSC using a boost DC/DC converter. In [19], the Bat Algorithm (BA) is used to track
the MPP of the PV systems in different PSCs. The BA is a suitable algorithm for achieving
the GMPP of a PV system. In [20], the MPPT of the PV system via the gray wolf optimizer
(GWO) method, inspired by gray wolf hunting behavior, is used to achieve the GMPP. The
results indicate the optimal performance of the MPPT method with the GWO in extracting
the MPP. In [21], the MPPT problem is developed using the flower pollution algorithm
(FPA) to increase the efficiency of the PV system MPPT in partial shading conditions.
In [22], type2-fuzzy is presented to perform the MPPT in standard and PSCs. The obtained
results demonstrate the desirable performance of the proposed method in the maximum
extraction of the PV power. In [23], the MPPT algorithm is developed using atom search
optimization (ASO) to improve the GMPP tracking efficiency of the PV system. In [24], the
multi-verse optimizer (MVO) and in [25], the manta ray foraging optimization (MRFO) are
performed with MPPT solving for the PV system in order to achieve the GMPP in standard
and shading conditions.

Different models of PV cells are proposed for solving the MPPT problem. The literature
review showed that the single-diode model for PV cells is frequently used as a conventional
model for MPPT problems. Therefore, the evaluation of the single-diode model as one of
the desirable models for MPPT solving in PSCs is considered in this study.

In MPPT solving, the maximum power of PV systems should be obtained. Thus, based
on the ratio of the power extracted from the photovoltaic system to the global power of the
photovoltaic configuration, and based on the use of converters, we increase the efficiency



Appl. Sci. 2022,12, 3828 3of21

of this type of system. However, some systems may not be easily traceable due to their
complexity and control structure. Therefore, tracking such systems is associated with high
tracking costs, and the intended goal of improving their efficiency may not be achieved.
In studying the tracking of the maximum power point of photovoltaic systems based on
some traditional methods such as the observation disturbance method, short circuit current
method, open circuit voltage method, and climbing method, in most cases, these are able
to achieve the optimal global solution although they are not tracking systems. Efforts
have been made to combine these methods with optimization algorithms to enhance their
performance. Therefore, using traditional methods, in addition to spending money and
wasting it, cannot guarantee a significant improvement in the efficiency of photovoltaic
systems. For this reason, this paper uses a new intelligent optimization method to solve the
tracking problem.

Moreover, the investigation of a literature review demonstrated that the application of
meta-heuristic algorithms with high capability in optimization is still required to enhance
the PV systems” GMPP tracking in PSCs. This is because one meta-heuristic algorithm may
operate desirably in some optimization problems, but the same method in solving another
problem may not achieve the optimal global solution and does not work well even in the
face of system condition changes. It is also better to use algorithms with fewer control
parameters. By increasing the number of control variables of optimization algorithms and
their high sensitivity to these parameters, the global optimal solution is not achieved, and
the local optimal is also trapped. In this research, a new optimization method named
remora optimization algorithm (ROA) [26], with a low number of control parameters, is
applied for MPPT solving. The reasons for using the ROA to solve the MPPT problem are
the high power of the ROA in preventing trapping in the local optimal, high accuracy in
achieving the global optimal, and also its simplicity. In addition, the low number of control
parameters of this algorithm is another reason for using this method in MPPT solving (see
Table 1).

Table 1. Control parameters of different algorithms.

Method Control Item Value
Social parameters (C1=2,C2=2)
Particle swarm optimization [18] Weights of inertia 0.1-0.9
Velocity 10% of dimension value
Multi-verse optimizer [25] Exploitation accuracy (p) 6
Grey wolf optimizer [20] Convergence control, a From 0 to 2
; Qmin and Qmax Oand 2
Bat algorithm [19] Aandr 0.5and 0.5
Flower pollution algorithm [21] Probability parameter, p 0.8
Crow search algorithm [3] Pa 0.25
Moth flame optimizer [10] g [_2’1_1]
a [01 1]
Manta ray foraging optimizer [25] w [0,1]
rl, r2 and r3 [0, 1]
Mining capability p 1/6
Atom search optimization [23] Random parameters r1, r2, r3 & r4 [0, 1]
Contrast parameter H 0.5
Remora optimization algorithm (ROA) Remora factor C [0,0.3]

In this study, a new meta-heuristic algorithm named the ROA is applied to track the
PV system GMPP in different PSCs. The studied system includes the PV configuration,
the DC/DC boost converter, and the load and MPPT control system. Its output power is
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calculated based on the sampled voltage multiplied by the calculated PV current at each
time and in proportion to its difference with the global peak power, the DC/DC converter
duty cycle is optimally determined by the ROA to extract power in these conditions and
transfer the PV maximum power to the load. In this research, the superiority of the ROA is
examined and compared with the manta ray foraging optimizer (MRFO) [25] and particle
swarm optimization (PSO) in different standard and PSCs conditions. The simulation
results include the current-voltage and power—voltage characteristics of the PV system
drawn in each of the PSCs as well as the PV power and voltage variations based on the
proposed method in the different PSCs.

In Section 2, PV cell and PSC is modeled. The proposed MPPT method based on the
ROA is formulated in Section 3. The simulation results are explained and discussed in
Section 4, and finally, conclusion is described in Section 5.

2. PV Cell and PSC Modeling
2.1. PV Cell Modeling

A PV cell, as illustrated in Figure 1, is made of a combination of PV cells. Various
models have been proposed for a PV cell based on the single-diode model. A mathematical
single-diode model of the PV cell is defined as follows:

R I

AAA_ T o
o B ]
oY

o -
Figure 1. PV Model as single-diode.

The PV cell current based on the mentioned model is defined by [9,10] as follows:

Vo + Ryl
AVev + Rolpy) (Vo + Relpy)

Loy = Ly —1I akT _ Wpv ™ Bslpy) 1
pv ph o X | €Xp Ry 1

where Ry and Ry, represent the ohmic values of series and parallel resistors, I, indicates the
saturation current of the diode, Ln represents the current source, I,y and Vpy define the
current and voltage of the PV cell, k represents the Boltzmann constant, and T refers to the
temperature at °C.

2.2. MPPT and the Effect of PSC

The power-voltage characteristic of a PV cell is illustrated in Figure 2, with an irradi-
ance of 1000 W/m? and a temperature of 25 °C. The black point in the curve indicates the
MPP of the PV cell in standard condition. At this point, the cell voltage and current are the
highest. The performance of a PV cell is proportional to environmental conditions such as
PSCs. The PV cell is often partially or completely shaded by the passing clouds of adjacent
buildings as well as towers and clouds. Under the PSC, the PV characteristic becomes very
complex and has several peaks [9,10]. Among multiple peaks, one peak is named global
MPP (GMPP), and the other peaks are called local MPP (LMPP). On the other hand, the
maximum power of a PV cell occurs at the GMPP.
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Figure 2. PV panel (a) STC configuration, (b) PSC configuration, (c) I-V curve, (d) P-V curve.
3. The Proposed ROA Based MPPT

In this section, the formulation of the ROA based on the initialization, exploration
(Swordfish optimization strategy and Attack experience), and exploitation phases are
described. Additionally, the pseudo-code of the ROA and its implementation in MPPT
solving are presented.

3.1. Overview of ROA

Remora has the ability to swim on the whales, which leads to less energy consumption,
and also stays safe from enemy threats. In a situation in the sea that is full of food, the
remora is separated from its host (whale), and after eating and digesting the food, it is
placed on the new level again and is thus transferred to another part of the sea [26]. The
following sections describe free travel modeling and the thoughtful feeding of remora
according to different situations of remora, as depicted in Figure 3.

SFO Strategy

Change the host

Change the host

WOA Strategy Host feeding

Figure 3. Different situations of Remora.
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3.1.1. Preparation (Initialization)

In the ROA, the candidate’s response is considered as a remora, and its position
(R) in the search space is selected as a problem variable. As the remora in the one-
dimensional space floats to the top, its position changes. The remora’s current position is
as follows:R; = (Rj1, Ry, -..,Riq) [26], where i and d refer to the remora number and its
dimension, respectively.

In other words, Rgest = (R;‘, R3,...,RY) refers to the food (target) in the biological be-
havior of the remora, which indicates the optimal solution to the ROA. In the ROA, each so-
lution has competency fitness. The competency fitness is defined as f(R;) = f(Ri,Rip, ..., Riq)-
f(Rpest) = f(R],R5, ..., Ry) refers to the best amount of merit corresponding to the best
position of the remora [26].

3.1.2. Free Travel (Exploration)

e  Swordfish optimization strategy

In case the remora sticks to the swordfish, its position is updated. Its position update
model is defined as follows [26]:

t t
RiH—1 = %est - (rand(O, 1) x (%) - R:and) 2

where t is the present iteration, T represents the number of maximum iterations, and Ryang
refers to a position taken randomly.

The random selection of remora also requires an exploration of the search space.
The choice of host by the remora depends on whether the host has eaten the prey or
not. In other words, the current eligibility rate is better in comparison with the previous
generation. Therefore, the present value of competency is obtained based on the history of
the attack [26].

e  Attack experience

To change or not to change the host according to the amount of fitness, the remora
must constantly take small steps in the vicinity of the host. This behavior is modeled as
follows [26]:

Ratt = R{ + (R{ — Rpre) X randn 3)

where Rpre and Ratt refer to the position of the previous generation and the test step,

respectively. Likewise, randn represents the small global step of the remora taken randomly.

The remora then randomly evaluates whether the host should change. In other words,

a comparison is made between the fitness value of the current response f(R;;) and the tested

response f(Ruit). If the tested fitness value is less than the current response competency
value [26], then:

f(R}) > f(Raxt) 4)

In this condition, the remora chooses one of the feeding methods for local optimization.
If the tested fitness value is greater than the current response fitness value, then the
remora selects the host [26]:

f(RY) < f(Ratt) ®)

3.1.3. Thoughtful Nutrition (Exploitation)
e  Whale Optimization Algorithm (WOA) Strategy

According to the WOA, the update of the position of the attached remora to the whale
is presented as follows [26]:

Riy1 = D x exp® x cos(2ma) + Ry (6)

a = rand(0,1) x (a—1) +1 (7)
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a=—(1+4) ®)

o T
D = |RBest - Ri‘ (9)

where D refers to the distance within the hunter and the prey, « is a random number
between 1 and —1, a represents a linear number between —1 and —2 and is the number of
maximum iterations.

° Host nutrition

The response space can be limited to the host position space. Considering movement
in the host space with small steps is defined as follows [26]:

Rl = R+ A (10)

A = B x (Rl — C X Rpegt) (11)

B = 2xVxrand(0,1) =V (12)
t

V_2><(1—T) (13)

where the parameter A represents the small step between the fish adhesive and the host. C
represents the coefficient of stickiness to indicate its position and is in the range of [0, 0.3].
The ROA pseudo-code is described in Algorithm 1.

Algorithm 1 Pseudo-code of the ROA

1: Initiate the population and memory location R; and Rpre;
2: Initiate the Rpegt as optimal solution and f(Rpest) as its optimal fitness;

3: Whilet< T do

4 Compute the fitness value of each ROA population;

5 Investigate if any remora goes beyond the search space and amend it;

6: Update a,x and V;

7:  For each remora indexed by i do

8 If H(i) = 0 then

9: Based on Equation (6), update the whales position;

10: Elseif H(i) = 1 then

11: Based on Equation (2) update the Sailfishes position;

12: Endif

13: Make a prediction via Equation (3);

14: Calculate the H(i) value via Equations (4) and (5) to evaluate whether host replacement is vital;
15: In case of non-replacement of the host, Equation (10) is applied as the host feeding state;
16:  End for

17: End while

3.2. Application of the ROA for MPPT

The MPPT system is demonstrated in Figure 4. The PV power is computed with
a multiplier based on voltage and current obtained values. The MPPT based on the
ROA generates a duty cycle (d) and activates the converter. The d value is taken as the
agent position, and the corresponding extracted power is taken as the agent optimization
probability. Thus, the ROA determines the optimal d to maximize the PV system power
and its efficiency.
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Figure 4. Block diagram of an ROA —based MPPT.
In MPPT solving via the ROA, power of the PV system is formulated as follows:
Maximize Ppy(d) (14)
The optimization variable (d) is constrained by:
dmin < d < dmax (15)

where dmin and dmax are the low and high values of d, respectively.

In this study, the ROA has been used as a direct control method to optimally adjust the
d of the converter of the PV system and reduce the fluctuations of the system steady state.

The steps to implement the ROA in solving the MPPT problem are as follows:

Step (1) In this step, ROA information is entered (population number 5 and number
of iterations 330). Additionally, the minimum and maximum intervals of the duty cycle
are applied.

Step (2) For each of the population, the duty cycle in its allowable range is randomly
selected by the ROA and the voltage, while the current and consequently the PV power are
calculated for it.

Step (3) The agent corresponding to the best PV power in step 2 is selected as the best
agent of the algorithm.

Step (4) The ROA population set (d) is updated according to the exploration and
exploitation phases of the ROA based on the following equations:

t
di*t = di+ (2% (1)) x (2xrand(0,1) = 1) x (df x (1-C)) (16)
where ditJrl refers to the duty cycle in t + 1 iteration related to ith remora and t is the ROA
iteration number.
In addition, the PV system power using the ROA-based MPPT problem is defined

as follows:
P({™) > p(d}}) (17)

ij

Step (5) For the updated population (selection of new duty cycles), the objective
function, i.e., PV power, is calculated.

Step (6) The best agent with maximum power is selected as the population representa-
tive in step 5. If the solution is better compared to step 3, replace it.

Step (7) If the convergence conditions are achieved, which are to achieve maximum
power and perform maximum repetitions of the ROA, go to step 8; otherwise, go to step 4.
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Moreover, at this stage, because of the variations in environmental conditions, the
output power of the PV system changes. Hence, the ROA population must be re-quantified
to achieve the GMPP according to the following logic:

(C_Iter+1) (C_Iter)
PPV — PPV

P(C_Iter) = AP (18)
PV

Step (8) End (achieving maximum power and determining the optimal duty cycle).
Flowchart of ROA implementation in problem solving is demonstrated in Figure 5.

Generation of initial ROA population and
parameters

i

Selection of the variables (duty cycle of the converter) in
allowable range, randomly for each population

It

Evaluate PV power of each remora (maximum value refers to best

value) and determination of the best remora with more PV power

Update the ROA population in random selection of variables
(duty cycles) using Eq. (16)

.

Compute the PV power for updated ROA population,

determination of the best remora with highest PV power and

replace with the old value if this is more than it

If convergence criteria met?

Print Best duty cycle with highest PV

power

End

Figure 5. Flow chart of ROA implementation in proposed MPPT solutions.

4. Simulation Results

The capability of the ROA in MPPT solving is evaluated in different patterns of PV
configurations. Additionally, the capability of the ROA is compared with that of the MRFO
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and PSO algorithms in achieving the GMPP. The PV module parameters are given in Table 2.
The peak power of a PV module is 56.75 W [9]. A DC/DC boost converter is applied to
the MPPT system and its data are presented in Table 3. The size of the population and the
maximum iteration of the ROA and PSO methods are 8 and 200, respectively.

Table 2. PV module parameters [9].

Item Value
Maximum of PV power 56.75 W
Voltage of open circuit 21V
Maximum of PV voltage 14.56 V
Current of short circuit 5A
Maximum of PV current 3.898 A
Coefficient of voltage temperature —0.085V/°C
Coefficient of current temperature 0.0051 A/°C

Table 3. DC/DC boost converter parameters [9,10].

Item Value
Frequency of switching 50 kHz
C 440 x 10796 F
L 25%x 1073 H
R 50 Ohm

In order to implement the proposed method, the following patterns are considered in
STC (pattern 1) and PSC (patterns 2 and 3). It should be noted that the PV configuration
consists of two modules in series as a 2S structure.

Pattern (1) STC with uniform radiation of 1000 W/m?;
Pattern (2) PSC with non-uniform radiation of 1000 and 700 W/ m?;
Pattern (3) PSC with non-uniform radiation of 900 and 600 W /m?.

The characteristic curves of the all patterns are depicted in Figures 6-8. As can be seen,
characteristic curves of pattern 1 has one peak and patterns 2-3 have two peaks due to PSC.
The obtained peak power of patterns 1-3 are 113.42 W, 90.54 W, and 79.7 W.

Current, A

120

T T T .‘\
Case STC b
] -l X:2042
Y: 1134
80
2
° L
¢ 60
g
40 -
20
0 L L 1 1 1 1 1 O 1 1 1 1 1 1 1 1
0 5 10 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Voltage, V Voltage, V

(a)

(b)

Figure 6. Characteristics of PV panel for pattern 1: (a) P-V, (b) I-V.
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Figure 7. Characteristics of PV panel for pattern 2: (a) P-V, (b) I-V.
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Figure 8. Characteristic curves of PV panel for pattern 3: (a) P-V, (b) I-V.

4.1. Results of Pattern 1

The performance of the ROA in solving the MPPT problem is evaluated in pattern 1
(STC). In addition, the ROA results are compared with MRFO and PSO. The PV power,
current, voltage, and duty cycle curves obtained using the ROA, MRFO, and PSO are
showed in Figure 9. The peak power of pattern 1 is 113.42 W. According to the obtained
figures, it is clear that the steady-state fluctuations of the ROA-based MPPT are very low
compared to those of the MRFO and PSO methods. The MPPT method based on the ROA
is a fast method that reaches the global peak value with small transient fluctuations. In
contrast, the transient fluctuations of the MRFO and PSO are high compared to the ROA.

Table 4, shows the numerical results of ROA, MRFO, and PSO performance in MPPT
solving for the PV system in view of output power, efficiency, and tracking speed for
different methods. As seen in Table 4, extracted PV power equal to 113.39 W, 113.36 W, and
113.32 W were obtained for the ROA, MRFO, and PSO as well as a tracking efficiency equal
10 99.97 %, 99.94 %, and 99.91 % also for these methods. On the other hand, it is obvious
that the ROA obtained higher peak power value with higher tracking efficiency at a higher
tracking speed compared with the MRFO and PSO. The tracking rate achieved was 0.66 S,
1.12 5, and 3.01 S for the ROA, MRFO, and PSO, respectively. Therefore, the results proved
ROA superiority for MPPT solving in pattern 1, with higher capability for obtaining the
GMPP with higher tracking efficiency and rate.

Table 4. Numerical results of the ROA, MRFO, and PSO methods in pattern 1.

Parameter/Method ROA MFRO PSO
Global power (W) 113.42 113.42 113.42
Extracted power (W) 113.39 113.36 113.32

Tracking efficiency (%) 99.97 99.94 99.91

Tracking rate (S) 0.66 1.12 3.01
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Figure 9. (a) PV power, (b) PV voltage, (c) PV current, (d) Duty cycle in pattern 1 using different methods.

4.2. Results of Pattern 2

In this section, the results of ROA capability in MPPT solving in PSC in pattern 2 is
presented and its capability is also compared with that of the PSO. The PV configuration is
2S, with radiations of 1000 and 700 W/m?2. Curves for the power, voltage, and current of PV
system as well as the duty cycle in MPPT solving are illustrated in Figure 10. Furthermore,
ROA performance is compared with the MRFO and PSO methods in these figures. The
maximum extracted power of the PV system obtained in pattern 2 were 90.52 W, 90.47 W,
and 99.45 W from a GMP equal to 90.54 W using the ROA, MRFO, and PSO methods,
respectively. These figures demonstrate that the ROA has better capability in obtaining
more PV power with less steady-state fluctuations, and more tracking efficiency and speed
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than the MRFO and PSO. Thus, the ROA is superior to the MRFO and PSO in MPPT solving
in pattern 2, in partial shading condition with higher global power.
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Figure 10. (a) PV power, (b) PV voltage, (c) PV current, (d) Duty cycle in pattern 2 using different methods.



Appl. Sci. 2022,12, 3828

14 of 21

In Table 5, the numerical results of ROA implementation in pattern 2 solving in terms
of PV output power, tracking efficiency, and speed for different methods are presented and
also compared with the MRFO and PSO. In Table 5, the tracking efficiency of the ROA,
MRFO, and PSO are given as 99.97%, 99.92%, and 99.90%, and the tracking rate is at 1.08 S,
2.25S, and 2.78 S, respectively. These prove the superior capability of the ROA in MPPT
solving in pattern 2, and in achieving more power and efficiency with a better tracking rate.
Therefore, the proposed ROA is more efficient compared to the MRFO and PSO.

Table 5. Numerical results of ROA, MRFO, and PSO methods in pattern 2.

Parameter/Method ROA MFRO PSO
Global power (W) 90.54 90.54 90.54
Extracted power (W) 90.52 90.47 90.45
Tracking efficiency (%) 99.97 99.92 99.90
Tracking rate (S) 1.08 2.25 2.78

4.3. Results of Pattern 3

In this section, the PSC condition with non-uniform radiation values of 900 and
600 W/m? (Pattern 3) for the 2S PV configuration is considered to evaluate the ROA’s
ability to obtain the GMPP and also the results compared with the MRFO and PSO in
this pattern. Changing the PV power, voltage, and current and also the converter duty
cycle in tracking process are demonstrated in Figure 11. The GMPP in this pattern is
equal to 79.72 W. The obtained results show that the extracted power using the ROA,
MRFO, and PSO are 79.69 W, 79.65 W, and 79.61 W, respectively. Figure 11 confirmed
the better capability of the ROA in achieving GMPP with lower fluctuations and more
tracking efficiency and speed in comparison with the MRFO and PSO. Hence, the ROA is a
competitive method with lower control parameters compared to the MRFO and PSO in
MPPT solving.

The numerical results of ROA application for tracking the PV system’s GMPP in
pattern 3 is presented in Table 6. As shown, the ROA is achieved to maximum power, with
a tracking efficiency equal to 99.96%; the values obtained for the MRFO and PSO methods
are 99.91% and 99.86%. Furthermore, the results clarify that the ROA is a fast tracking
method in comparison with the MRFO and PSO in achieving the PV maximum power. The
ROA reached the GMPP in 0.90 S, but the MRFO and PSO obtained this point in 2.20 S and
3.10 S. Thus, the results confirm the better capability of the ROA in comparison with the
MRFO and PSO in terms of higher tracking efficiency and rate.

Table 6. Numerical results of the ROA, MRFO, and PSO methods in pattern 3.

Parameter/Method ROA MEFRO PSO
Global power (W) 79.72 79.72 79.72
Extracted power (W) 79.69 79.65 79.61
Tracking efficiency (%) 99.96 99.91 99.86

Tracking rate (S) 0.90 2.20 3.10
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Figure 11. (a) PV power, (b) PV voltage, (c) PV current, (d) Duty cycle in pattern 3 using different methods.

4.4. Results Comparison of Patterns 1-3

The results of MPPT solving based on the ROA, MRFO, and PSO methods in STC and
PSC conditions in three patterns are compared in view of tracking efficiency and rate in

Figures 12 and 13, respectively. The main findings are presented as follows:

The implementation of the ROA in MPPT solving is easy, its complexity is low, and it

is also not trapped in the local optimal solution.

The ROA achieved global power in all patterns with desirable exploration power.

The ROA extracted more PV maximum power in all patterns than the MRFO and
PSO methods. The PSO algorithm is an optimization method that may be involved
in premature convergence and trapped with a local optimal solution in solving the
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optimization problem. The random selection of reference points in the early itera-
tions weakens the exploitation capability of MRFO. Furthermore, hain foraging tends
to lead the algorithm into local optimum. However, the ROA has high exploita-
tive, exploratory, and local optimal avoidance capabilities. Therefore, these cases
increase the accuracy of tracking and reduce state steady errors in a shorter time than
other methods. The above cases are the reasons for the superiority of the ROA over
other methods.

e The ROA with highly competitive capability has been able to solve the PV MPPT
problem for different patterns with higher efficiency and tracking rate.
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Figure 12. Results comparison in terms of tracking efficiency for different methods and patterns.
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Figure 13. Results comparison in terms of tracking rate for different methods and patterns.

4.5. Results of Pattern 4

In this section, the performance of different methods is evaluated, considering patterns
with three local optimal points, as demonstrated on the P-V and I-V curves in Figure 14.
Pattern 4 includes four PV cells with different radiation values of 1000, 600, 300, and
100 W/m? (Pattern 4) for the 4S PV configuration. Pattern 4 is a more difficult pattern for
tracking than the other patterns. The GMPP in this pattern is equal to 80.62 W. Based on
the obtained results shown in Table 7, the extracted power using the ROA, MRFO, and PSO
are at 80.37 W, 80.25 W, and 79.68 W, respectively. In addition, the tracking efficiency of
ROA, MRFO, and PSO are at 99.68%, 99.54%, and 98.83%, respectively. Figure 15 shows the
better performance of the ROA in obtaining GMPP with lower tolerance and more tracking
efficiency in comparison with the MRFO and PSO.



Appl. Sci. 2022,12, 3828

17 of 21

T T T

Pattern 4

4 = -
<
g3
o
5
O2r
1 =
0 = 1 Il 1 1 1 1 Il 1
10 20 30 40 50 60 70 80
Voltage, V
(a)
80 C T T T .\ T T T T ]
X 3271
Y: 80.62
60 - 1
=
Laor .
o)
a
20 - 8
0 1 1 Il Il Il Il 1 1
10 20 30 40 50 60 70 80
Voltage, V
(b)

Figure 14. Characteristics of the PV panel for pattern 4: (a) P-V, (b) I-V.

Table 7. Numerical results of the ROA, MRFO, and PSO methods in pattern 4.

Parameter/Method ROA MFRO PSO
Global power (W) 80.62 80.62 80.62
Extracted power (W) 80.37 80.25 79.68
Tracking efficiency (%) 99.68 99.54 98.83
Tracking rate (S) 0.70 0.91 1.22

4.6. Results of Temperature Variations

In this section, the effect of temperature changes on the characteristic curves of PV
cells (Figure 16) as well as MPPT solving based on the ROA to achieve maximum power
at different temperatures (Figure 17) are evaluated for pattern 4. As can be seen, with
increasing temperature values (25, 50, and 75 °C), the power of the PV module decreases
and vice versa. Additionally, with increasing temperature, PV module voltage decreases
and the current increases. As shown in Figure 17, with increasing temperature, the amount
of maximum power extracted decreases.
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Figure 15. (a) PV power, (b) PV voltage, (c) PV current, (d) Duty cycle in pattern 4 using different methods.
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Figure 17. PV power in pattern 4 considering temperature changes using the ROA.

4.7. Results Comparison with Previous Studies

The obtained results of MPPT solving via ROA in partial shading conditions is com-
pared with some previous studies in Table 7. In [27-29], the cuckoo search (CS) algo-
rithm, PSO, and whale optimization algorithm were implemented to solve the PV with
MPPT solving. According to Table 8, better performance for the ROA is proved in PV
with MPPT solving in the PSC in comparison with the CS, PSO, and WOA with higher

tracking efficiency.
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Table 8. Results comparison with previous studies.

Parameter/Method ROA CS [27] PSO [28] WOA [29]
Global power (W) 99.96 99.94 99.90 99.70

5. Conclusions

In this study, a new meta-heuristic algorithm named ROA was performed to track
the PV system’s GMPP in different patterns of standard and PSCs. The studied system
consists of the PV panel, boost converter, and the load and MPPT control system. The
control variable was voltage while the optimization variable was the converter duty cycle,
which was optimally determined using the ROA to maximize the PV system power. The
capability of the ROA with lower control parameters was compared with the MRFO and
PSO methods in MPPT solving in different standard and partial shading patterns, in
views of maximum extracted power, tracking efficiency, and rate. The results showed
that the ROA is a competitive and robust high-speed tracking method for the extraction
of the PV system’s maximum power than the MRFO and PSO in standard and shading
conditions with higher tracking efficiency and rate. Access to accurate radiation data is one
of the limitations in this study, prompting the authors to use smart measuring devices to
access this data more accurately and realistically. MMPT solving with the use of a hybrid
ROA-PSO method is suggested for future work subjected to partial shading conditions.
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