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Abstract: Accurate identification of field pests has crucial decision-making significance for integrated
pest control. Most current research focuses on the identification of pests on the sticky card or the
case of great differences between the target and the background. There is little research on field
pest identification with protective color characteristics. Aiming at the problem that it is difficult to
identify pests with protective color characteristics in the complex field environment, a field pest
identification method based on near-infrared imaging technology and YOLOv5 is proposed in this
paper. Firstly, an appropriate infrared filter and ring light source have been selected to build an
image acquisition system according to the wavelength with the largest spectral reflectance difference
between the spectral curves of the pest (Pieris rapae) and its host plants (cabbage), which are formed
by specific spectral characteristics. Then, field pest images have been collected to construct a data
set, which has been trained and tested through YOLOv5. Experimental results demonstrate that the
average time required to detect one pest image is 0.56 s, and the mAP reaches 99.7%.

Keywords: deep learning; hyperspectral technology; pest identification; YOLOv5; near-infrared
imaging technology

1. Introduction

Accurate identification of field pests can provide basic data for scientific pest control.
It is an essential prerequisite for effective pest investigation, pest prediction, and accurate
pest killing [1–3], as well as a critical foundation for appropriate pesticide application,
contributing to decision-making significance for integrated pest control [4–6].

In recent years, the automatic pest identification method based on digital image
processing technology has become a research hotspot for experts and scholars [7–9]. The
traditional machine learning technology mainly includes three steps: image preprocessing,
feature extraction, and pest identification [10,11]. Ebrahimi M.A. et al. [12] proposed a
method to identify thrips using the SVM (Support Vector Machines) method with region
index and intensify as the color index. The average error of the classification was less
than 2.25%. Yao et al. [13] developed a rice light-trap insect imaging system to automate
rice pest identification. The experimental results revealed that the average accuracy of
the identification of the four species of Lepidoptera rice pests was 97.5%. Wen et al. [14]
designed an invariant local feature-based insect classification method to automatically
classify certain common insects in orchards.

Although the traditional machine learning technology has made great progress in pest
identification, its identification effect depends on the effect of feature extraction and the
performance of the selected classifier, resulting in weak generalization ability and poor
robustness of its identification model [15]. Agriculture field pests are a kind of visual target
with small sizes and diverse posture changes. Additionally, its identification environment
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is complex. Since most field pests have the characteristics of protective color (such as
Pieris rapae), the identification model of deep learning with strong generalization ability
is more suitable for field pest identification. This method adopts a convolutional layer,
activation layer, normalization layer, and pooling layer to continuously superimpose,
automatically extracts the characteristics of pest, and recognizes pests through the fully
connected layer [16,17]. Lu et al. [18] proposed a classification algorithm based on feature
optimization to identify rice planthoppers and reached the identification accuracy of 96.19%.
Zhang et al. [19] improved the Faster R-CNN (Convolutional Neural Networks) model by
replacing the VGG16 (Visual Geometry Group) with the depth residual network (ResNet50)
to identify aphids and leaf miners on sticky cards. The results suggested that the precision of
the improved Faster R-CNN model reached 90.7%. Patel D. J. and Bhatt N. [20] compared
three widely used deep learning meta-architectures (Faster R-CNN, SSD (Single Shot
MultiBox Detector) Inception, and SSD Mobilenet) as object detection for selected flying
insects, and Faster R-CNN meta-architecture presented the most outstanding performance
with an accuracy of 95.33%. Thenmozhi K. and Reddy U.S. [21] proposed an efficient
deep CNN model to classify insect species on three publicly available insect datasets.
Rustia et al. [22] designed a multi-class insect identification method for yellow sticky paper
and obtained it from wireless cameras using cascaded convolutional neural networks.
The multi-class insect classifier had an accuracy of 86–92%. Although the identification
accuracy of the above methods is high, most of them are for the identification of pests on
the sticky card, or for the identification of pests with large differences between target and
background. At present, there are few studies on field pest identification with protective
color characteristics.

Pieris rapae and its host plant (cabbage) with a similar color to Pieris rapae were selected
as experimental objects in this paper (Figure 1). As an extension of computer vision
technology, near infrared imaging technology, especially the conventional imaging in the
first NIR (NIR-I) window of 700 to 900 nm [23], can distinguish the target objects similar
to the background in appearance characteristics [24]. It is widely used in insect species
identification [25,26] and plant disease monitoring [27], but there is little research on pest
identification. Thus, near-infrared imaging technology and YOLOv5 have been used to
the identification of pests with protective color. Firstly, the average spectral characteristic
curves of Pieris rapae and cabbage were obtained by hyperspectral experiment. By analyzing
and comparing these two curves, the wavelength with the largest difference in spectral
reflectance is obtained. According to this wavelength, the appropriate infrared filter,
ring light source and other image acquisition equipment are selected to build an image
acquisition platform. Collect a large number of pest images, and construct pest image
data set by optimizing and expanding pest images. Finally, the appropriate deep learning
model (YOLOv5) is selected to achieve the identification of field pests with protective
color characteristics.
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2. Materials and Methods
2.1. Hyperspectral Test

The hyperspectral test platform is illustrated in Figure 2. The platform uses SOC
710 portable hyperspectral spectrometer produced in the United States to collect spectral
data of cabbage and Pieris rapae in a good life state. The spectrometer is composed of a
built-in push-broom mode, a total of 128 wavelengths, a spectral range of 400–1000 nm,
and a spectral resolution of 4.6875 nm. The platform can collect images by setting the
acquisition wavelength. The imaging speed is 30 lines per second, and the image resolution
is 696 pixel × 510 pixel. The light source adopts a controllable halogen lamp powered by a
precision-regulated power supply. The height of the objective table is adjustable.
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Figure 2. Schematic diagram of the hyperspectral test. (a) Spectrometer, (b) lens, (c) halogen lamp,
(d) pest sample, and (e) objective table.

Pieris rapae was collected from the experimental field in Yunyuan of Hunan Agricul-
tural University. To effectively reduce measurement errors, 20 Pieris rapae of fifth larval
instars were randomly divided into 4 groups, and then the imaging spectral data were
measured. Before measurement, Pieris rapae and the reflection reference plate were placed
on the objective table. Additionally, the height of the objective table and the light intensity
were adjusted to make the image in the clearest state. The spectrogram was corrected with
the reflection reference plate. In the process of measurement, the angle of the viewing
field of the spectrometer was adjusted to 15◦, and the distance between the lens and the
sample was set to 28 cm [28]. The surveyors in the dark-colored clothes without strong
reflection operated the instrument at the backlight to collect spectral images. Then, the
spectral image was imported into SRAnal710e software to calibrate black field and space,
spectrum, and spectral radiation. On this basis, the reflectivity was converted. Finally, the
spectral reflectance data of Pieris rapae is extracted by ENVI5.3 software. The hyperspectral
data of the 7th to 9th abdominal segments of Pieris rapae were used as the hyperspectral
data of this Pieris rapae [29]. In each group, the mean reflectance at the 7th to 9th abdominal
segments of 5 Pieris rapae was taken as the spectral reflectance of this group [30]. The
5-point weighted smoothing of spectral data obtained by MATLAB software can effectively
eliminate the influence of interference factors of original spectral data [31].

The leaf head, inner leaves (1–6 leaves outside the leaf head), and outer leaves (leaves
outside the seventh leaf) of cabbage are the main edible parts of Pieris rapae. The areas
damaged by insects of inner leaves account for 62.6–72.6% of the total damaged area by
insects [32]. Therefore, the inner leaves of cabbage were selected as the main experimental
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object. The hyperspectral experimental scheme of cabbage was consistent with that of Pieris
rapae. In this study, 5 points are measured for each cabbage leaf, and each point is repeated
three times to take the mean value. The mean value was smoothed by 5-point weighted
smoothing as the hyperspectral characteristic curve of the leaf.

2.2. Pest Image Data Set

Using the Pieris rapae and cabbage spectral information obtained by hyperspectral
technology, specific spectral characteristics of Pieris rapae and cabbage can be formed on the
spectral curves, and comparing these two curves to get the wavelength with the largest
reflectivity difference [33,34]. According to this wavelength, the appropriate camera, light
source, filter, and other key components are selected to build the image acquisition system.
As exhibited in Figure 3, the system mainly consists of the color camera of The Imaging
Source with model DFK 41BU02, industrial lens of Computar with a focal length of 8.5 mm,
850 nm infrared filter, and 850 nm ring light source.
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Figure 3. Schematic diagram of the relative position of camera, filter, and ring light source. (a) The
imaging source, (b) the industrial lens, (c) 850 nm infrared filter, and (d) 850 nm ring light source.

With the image acquisition system, pest images were collected in the cabbage plan-
tation of Yunyuan, Hunan Agricultural University. With the purpose of improving the
robustness of the identification algorithm, the original data set covers Pieris rapae under
different camera angles, different postures, and other conditions, as well as images with oc-
clusion and overlap, such as Pieris rapae in curled state and Pieris rapae in an extended state
(Figure 4a,b), a Pieris rapae and multiple Pieris rapae (Figure 4c,d), unobstructed Pieris rapae
and covered Pieris rapae (Figure 4e,f), and Pieris rapae on the left side of the image and Pieris
rapae in the middle of the image (Figure 4g,h). After image acquisition, 500 pest images
with high image quality are obtained by manually screening pest images to eliminate the
blurred images and distorted images.

The original image data set was expanded through data enhancement to enhance
the diversity of the data set, avoid overfitting, and boost the generalization ability and
robustness of the identification algorithm [35–37]. Common data enhancement methods
include rotation, flip, clipping, adding noise, jitter, blur, translation, and staggered transfor-
mation [38–40]. In this paper, the original image data set was expanded from 500 images to
1500 images through rotation, flip, translation, and changing brightness considering the
factors such as the influence of camera angle and light intensity (including the lighting
conditions simulating sunny or cloudy days and exposure or insufficient light) on the
identification algorithm (Figure 5).
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Figure 4. Pest images in different states. (a) Crouching pests, (b) Extended pest, (c) A pest, (d) Multi-
ple pests, (e) Unobstructed pests, (f) Sheltered pests, (g) Pest on the left side of the image, (h) Pest in
the middle of the image.
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Figure 5. Data enhanced pest image. (a) Image rotation, (b) image flip, (c) image translation, and
(d) change the brightness of the image.

The pest images were labeled one by one by labelimg software. The images of Pieris
rapae were labeled with a rectangular box and then named. The annotation information was
saved in the format of the Pascal (Pattern Analysis, Statical Modeling and Computational
Learning) VOC (Visual Object Classes) dataset, which contained the coordinates, labels,
and serial numbers of each box. Pest images, labeled files, and other files are built into the
dataset following the directory structure of the Pascal VOC dataset. Then, the pest images
and annotation files are divided into training set, verification set and test set according
to the proportion of 6:2:2, respectively. The training set was employed to fit the detection
network. The validation set was adopted to adjust the super parameters of the detection
network and preliminarily evaluate the network performance. The test set is used to
evaluate the generalization ability of the final model.

2.3. Pest Identification Model

There are many kinds of target detection algorithms based on deep learning, and
YOLO (You Only Look Once) is one of the most advanced target detection methods [41].
Different from the target detection algorithm based on region prediction, YOLO directly
extracts features from the network to predict object classification and location. In this study,
the prediction size of a fixed format was obtained to make the convolutional neural network
traverse the whole image. Firstly, the image was adjusted to a fixed size of 416 × 416 and
then divided into 13 × 13 nonoverlapping grid cells. Next, B possible bounding boxes and
confidence were detected for each cell, including 5 prediction parameters: x, y, w, h, and
confidence. Among them, (x, y) represents the coordinates of the target, (w, h) indicates the
width and height of the outer rectangle of the target, and the confidence is used to trade off
the prediction results through the threshold [42].

Compared with YOLOv1, YOLOv2 improves the performance of the model by refer-
ring to anchors [43]. In YOLOv3, multi-dimensional anchors and residual networks are
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used to further improve the performance of the model [44]. In YOLOv4, the Backbone
network adopts CSPDarknet53 (Cross Stage Partial), while PANet (Path Aggregation Net-
work) and SPP-Net (Spatial Pyramid Pooling Network) are introduced to adapt to the
input of different sizes [45]. In YOLOv5, Mosaic data enhancement, adaptive anchor, and
adaptive picture scaling are employed in the input. The Backbone network can quickly
extract the features of the target adopts through Focus and CSPNet (Cross Stage Partial
Network). In the Neck network, FPN (Feature Pyramid Network) and PANet are used for
multi-scale fusion of the extracted features. Besides, GIoU_Loss (Generalized Intersection
over Union) is used as the loss function of the target detection frame in the output. The
NMS (Non-maximum suppression) is introduced to filter out the overlapping candidate
frames and obtain the best prediction output. These improvements ensure the accuracy
and speed of YOLOv5 on small targets. Additionally, YOLOv5 has advantages such as
shallow structure, small weight file, and relatively low requirements for equipment con-
figuration [46]. The structure of YOLOv5 is illustrated in Figure 6. The CBL module is
composed of Convolution layer, BN (Batch Norm) layer and Leaky_relu activation function,
and it is a basic convolution module. The BottleneckCSP module mainly performs feature
extraction on the feature map and extracts rich information from the image [47].
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Figure 6. YOLOv5 structure.

YOLOv5 forms different models with different parameters by adjusting the depth and
width of the BottleneckCSP module: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. With
the deepening and widening of the network, the ability of the network to feature extraction
and feature fusion is enhanced by sacrificing speed. In YOLOv5, the detection speed of
YOLOv5s is the fastest, and the precision of YOLOv5x is the highest. Comprehensively
considering the complexity and variability of field pest identification and the needs of
practical application scenarios, the requirements for the detection speed of YOLOv5 are
relatively higher than the requirements for identification accuracy. Therefore, YOLOv5l
guaranteeing both speed and identification accuracy is selected to achieve pest identification
with protective color characteristics.
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3. Results and Discussions
3.1. Comparison and Analysis of Spectral Characteristics

The comparison curve of spectral characteristics between cabbage and Pieris rapae is
presented in Figure 7.
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As observed from the figure, the spectral reflectance of cabbage was generally higher
than that of Pieris rapae. In the visible band range of 375–690 nm, there was little difference
in the spectral reflectance between cabbage and Pieris rapae. The spectral reflectance of
cabbage was significantly different from that of Pieris rapae when the wavelength was
greater than 690 nm. In the range of 780–1000 nm in the near-infrared band, there is a
large difference in the spectral reflectance between cabbage and Pieris rapae. As shown in
Figure 8, the spectral reflectance difference between cabbage and Pieris rapae is the largest
at 823 nm wavelength. Based on the products of many filter production companies on the
market, the optional filters in the near-infrared band range (780–1000 nm) are divided into
850 nm and 950 nm. Therefore, 850 nm infrared filter and 850 nm ring light source were
selected to acquire pest images.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

Figure 7. Comparison curve of average spectral characteristics between cabbage and Pieris rapae. 

As observed from the figure, the spectral reflectance of cabbage was generally higher 

than that of Pieris rapae. In the visible band range of 375–690 nm, there was little difference 

in the spectral reflectance between cabbage and Pieris rapae. The spectral reflectance of 

cabbage was significantly different from that of Pieris rapae when the wavelength was 

greater than 690 nm. In the range of 780–1000 nm in the near-infrared band, there is a large 

difference in the spectral reflectance between cabbage and Pieris rapae. As shown in Figure 

8, the spectral reflectance difference between cabbage and Pieris rapae is the largest at 823 

nm wavelength. Based on the products of many filter production companies on the mar-

ket, the optional filters in the near-infrared band range (780–1000 nm) are divided into 850 

nm and 950 nm. Therefore, 850 nm infrared filter and 850 nm ring light source were se-

lected to acquire pest images. 

 

Figure 8. Curve of spectral reflectance difference between cabbage and Pieris rapae. 

Cabbage is sensitive at 850 nm. Figures 4 and 5 presents the pest image collected with 

an 850 nm infrared filter and 850 nm ring light source. It can be seen from the figures that 

the cabbage area is brighter in the pest image while the pest area is darker. Therefore, the 

application of an 850 nm infrared filter and 850 nm ring light source can clearly distin-

guish Pieris rapae from cabbage. 

3.2. Model Training and Performance Evaluation 

Figure 8. Curve of spectral reflectance difference between cabbage and Pieris rapae.



Appl. Sci. 2022, 12, 3810 8 of 13

Cabbage is sensitive at 850 nm. Figures 4 and 5 presents the pest image collected with
an 850 nm infrared filter and 850 nm ring light source. It can be seen from the figures that
the cabbage area is brighter in the pest image while the pest area is darker. Therefore, the
application of an 850 nm infrared filter and 850 nm ring light source can clearly distinguish
Pieris rapae from cabbage.

3.2. Model Training and Performance Evaluation

The operating system is Windows 10, the CPU (Center Processing Unit) is Intel (R)
Xeon (R) CPU e5-2623 V3 × 2, the GPU (Graphic Process Unit) is NVIDIA geforce rtx2080
with 32 GB video memory, and the framework is pytoch.

After the training, we can get curves of loss value of bounding box, objectness and
classification. Classification loss inspires how well the algorithm can predict the correct class
of a given object [48]. Given only one identification target (Pieris rapae) in this paper and no
classification of multiple objects, there is no curve of classification loss. As demonstrated in
Figure 9, it represents curve of loss value of bounding box. The graph on the left shows
the bounding box loss of the training set. The graph on the right shows the bounding box
loss of the verification set. Box loss indicates the extent to which the algorithm can position
the center of the target and the extent to which the predicted bounding box covers the
target. The abscissa of the curve is the epoches of the algorithm, and the ordinate represents
the value of box loss. The smaller the value of box loss, the more accurate the predicted
bounding box is.
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As demonstrated in Figure 10, it represents curve of the value of objectness loss. The
graph on the left shows the objectness loss of the training set. The graph on the right shows
the objectness loss of the verification set. Objectness loss measures the probability that an
object exists in a proposed region of interest. If the objectivity is high, the bounding box is
likely to contain an object. The abscissa of the curve is the epochs of the algorithm, and the
ordinate represents the value of objectness loss. The smaller the value of objectness loss,
the more accurate the target detection is.
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The accuracy evaluation of the identification model mainly consists of visual compar-
ison and performance evaluation index. The visual comparison is to obtain the missing
detection and wrong detection of pests through comparison [49]. The performance eval-
uation index contains identification accuracy and identification speed. The speed index
refers to the average time required to identify a pest image. The basic indicators of identifi-
cation accuracy are precision (P) and recall (R). Precision indicates the proportion of the
actual positive samples in the forecast samples to all positive samples. Recall indicates the
proportion of actual positive samples in all predicted samples. The classification problem
of Pieris rapae can be considered as a binary classification problem. In the classification
problem, Pieris rapae is a positive sample and all types of background are negative samples.
Assuming that the positive sample is expressed as T and the negative sample is expressed
as P, the calculation formulas of precision and recall is as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

where TP represents the number of positive samples correctly predicted as positive samples,
TN denotes the number of negative samples correctly predicted as negative samples, FP
indicates the number of negative samples predicted as positive samples, and FN suggests
the number of positive samples predicted as negative samples [50,51]. The curve of preci-
sion and recall are shown in Figure 11. The graph on the left shows the curve of precision.
The graph on the right shows the curve of recall. The model improved swiftly in terms of
precision and recall before plateauing after about 20 epochs.
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P-R curve is a graph showing the relationship between precision and recall. The ab-
scissa is recall and the ordinate is precision. The area enclosed by P-R curve and coordinate
axis is the AP (Average Precision) of the model. The larger the area between the curve and
the coordinate axis, the better its recognition effect. Figure 12 shows the P-R curve with
a threshold of 0.5 generated in the training process. Since there is only one recognition
target in this paper, the AP is equal to the mAP (mean Average Precision). The mAP is
99.7%. Additionally, the average time required to detect a pest image with a resolution of
480 × 460 is 0.56 s.
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4. Conclusions

In this paper, a field pest identification method based on YOLOv5 and hyperspectral
technology was proposed. The results have demonstrated that this method can effectively
identify pests with protective color characteristics in the complex field environment.

In the process of collecting pest images, to realize the identification of pests with
protective color characteristics, obtain the Pieris rapae and cabbage spectral information by
hyperspectral technology before image acquisition, specific spectral characteristics of Pieris
rapae and cabbage can be formed on the spectral curves. Comparing these two curves to get
the wavelength with the largest reflectivity difference, and an appropriate infrared filter and
ring light source are selected to build an image acquisition system. In order to improve the
accuracy of pest identification, we collect pest images in different situations, expanded the
original pest data set by data enhancement and select the appropriate target identification
algorithm (YOLOv5). The detection results of the test set showed that compared with
the existing research articles [37,38,52,53], the combination of YOLOv5 and hyperspectral
technology can effectively identify field pests with protective color characteristics. This
paper takes Pieris rapae and its host plant (cabbage) as the experimental object, its mAP was
99.7%, and the average time required to detect a pest image is 0.56 s.

Considering the future application scenario of pest identification, the current algorithm
has some limitations in detection speed. In order to improve the detection speed of target
detection algorithm, efficient models can be designed to accelerate the algorithms, such
as decreasing the redundancy in weights by network pruning and knowledge distillation.
While improving the detection speed, how to ensure the detection accuracy is also an aspect
to be considered in the future. In addition, although only one pest with protective color
characteristics (Pieris rapae) is considered in this paper, the relevant literature has proved
that the near-infrared technology can distinguish the target objects with similar appearance
characteristics and background [24], so this method can still be used to identify other pests
with protective color characteristics and their host plants. For different pests, only the
wavelength with the largest spectral reflectance difference between pests with protective
color characteristics and their host plants needs to be obtained through hyperspectral test,
so as to select the appropriate infrared filter. Replace the original infrared filter on the
original image acquisition platform. That is, almost the same setting can be implemented
in many different situations. In the future, other pests with protective color characteristics
will be tested to further improve the universality of this method.
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