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Abstract: Cold medical gas plasmas are under pre-clinical investigation concerning their hemostatic
activity and could be applied for intra-operative bleeding control in the future. The technological leap
innovation was their generation at body temperature, thereby causing no thermal harm to the tissue
and ensuring tissue integrity. This directly contrasts with current techniques such as electrocautery,
which induces hemostasis by carbonizing the tissue using a heated electrode. However, the necrotized
tissue is prone to fall, raising the risk of post-operative complications such as secondary bleedings
or infection. In recent years, various studies have reported on the ability of medical gas plasmas
to induce blood coagulation, including several suggestions concerning their mode of action. As
non-invasive and gentle hemostatic agents, medical gas plasmas could be particularly eligible for
vulnerable tissues, e.g., colorectal surgery and neurosurgery. Further, their usage could be beneficial
regarding the prevention of post-operative bleedings due to the absence or sloughing of eschar.
However, no clinical trials or individual healing attempts for medical gas plasmas have been reported
to pave the way for clinical approvement until now, despite promising results in experimental animal
models. In this light, the present mini-review aims to emphasize the potential of medical gas plasmas
to serve as a hemostatic agent in clinical procedures. Providing a detailed overview of the current
state of knowledge, feasible application fields are discussed, and possible obstacles are addressed.

Keywords: hemostasis; kINPen; plasma medicine; reactive oxygen species; ROS

1. Introduction

Intraoperative bleeding is a severe complication of any surgical procedure. Although
surgical mortality is low in most elective surgical procedures, bleeding complications can
escalate mortality rates from <1% up to 20% [1,2]. Consequently, many scoring systems
designed to assess operative morbidity and mortality risk (e.g., POSSUM, TRISS) reflect
the impact of major blood loss during surgery [3,4]. Apart from inadequate surgical
hemostasis, major risk factors include dilutional thrombocytopenia, systemic clotting factor
depletion, and new oral anticoagulants (NOACs). An aging population with multiple
comorbidities further contributes to the risk of intraoperative bleeding [5]. Uncontrolled
bleeding contributes to a rapidly evolving vicious cycle in which the combination of
hemodilution, hypothermia, the consumption of clotting factors, and acidosis further
enhances the bleeding [6]. Surgical interventions to manage blood loss include, e.g.,
topical absorbable hemostats, conventional surgical methods, and electrocauterization,
each with its own limitations [7]. In the latter, a direct or alternating current passes through
an electrode wire, generating heat and thus necrotizing and profoundly destroying the
tissue [8,9]. However, the necrotized tissue can disconnect and fall off, causing secondary
bleedings hours and days after surgery. This is similar to scratching of the scab of a
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skin wound, causing it to bleed again, which is, however, much more severe for internal
wounds. Moreover, post-operative complications, including infection, abscess formation,
and hematoma, put patients at additional risk [10]. There are cost-intensive developments
for intraoperative hemostasis to minimize the thermal damage caused by the heat generated.
Well-known manufacturers developed energy-based surgical vessel sealing devices, e.g.,
the LigaSure technology from Medtronic, the Harmonic from Ethicon Johnson and Johnson,
and the Thunderbeat from Olympus. The various sealing instruments have in common
the fact that they try to minimize heat generation in the surrounding tissue by means of an
insulating layer or structural features, and that they are often contain expensive single-use
compartments, raising surgery costs significantly. Hence, an alternative process avoiding
or minimizing single-use components providing intraoperative bleeding control in at least
a fraction of surgical situations might support cost-effectiveness in the healthcare sector,
with similar performance provided.

Blood is composed of several components (Figure 1). Hemostasis is the process of
blood clotting at the site of an injury [11], and its molecular mechanisms have been out-
lined in detail [12,13]. Briefly, hemostasis is a complex orchestrated process that can be
subdivided into primary (cellular) and secondary (plasmatic) hemostasis. During primary
hemostasis, platelets become activated, involving multiple ligands and downstream signal-
ing of various activated membrane receptors [14]. This results in versatile morphological
changes enabling cross-linking of activated platelets, which form an initial white clot. In the
following, the plasmatic hemostasis involves to cleavage of the protein fibrinogen to fibrin,
which further stabilizes the clot [15]. Due to the many molecules involved in hemostasis,
some components and their roles in this process are still not fully understood. For instance,
several molecular functions in the process of hemostasis, such as integrin binding, are
subject to redox control, as evident by functional disulfide bonds [16], suggesting a role of
reactive oxygen and nitrogen species (ROS/RNS).
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Figure 1. Blood and compartments, including segmentation of the hematocrit across weight-
correlated abundancies of erythrocytes, thrombocytes, and leukocytes. Created with biorender.com
(accessed on 1 February 2022).

In 2005, the impact of a novel technology, medical gas plasmas, on blood hemostasis
was first reported [17]. Often referred to as the fourth state of matter, gas plasmas are
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generated by ionizing gases using sufficient energy or temperature supply [18]. Medical
gas plasma technology is a multi-component tool featuring a variety of factors, including
UV radiation, electric field, and a versatile mix of ROS/RNS being generated simultane-
ously [19]. All these components are known to have biological consequences when applied
at sufficient doses. However, it is established that gas plasma-mediated effects primarily de-
pend on the generation of ROS/RNS [20,21]. The technical leap innovation was the ability
to generate gas plasmas at body temperature, distinguishing them from other hemostatic
techniques such as electrocauterization or argon plasma coagulation (hotter plasmas way
above body temperature) [22]. Until today, several medical product class IIa approved gas
plasma devices are available, primarily indicated for disease control and wound healing
support in dermatology [23]. Gas plasma jets are of particular interest because of their
pencil/scalpel-like utilization across bodily surfaces.

Multiple experimental studies have successfully demonstrated the ability of gas plas-
mas to serve as hemostatic agents, and several mechanisms have been proposed, with
platelet activation receiving particular emphasis [24]. This mini-review aims to summarize
the current knowledge on gas plasma-mediated blood coagulation to highlight their poten-
tial to be applied for intraoperative bleeding control, providing important implications for
possible clinical applications in the future.

2. Platelets in Cellular Blood Hemostasis
2.1. Platelet Functional Morphology

Platelets are non-nucleated cells that arise from the strangulation of megakaryocytes
in the bone marrow as well as in the lungs and are released into the bloodstream [25,26],
where they circulate for approximately 8–12 days until they are degraded by splenic
macrophages or liver Kupffer cells [27]. They play an essential role in blood hemostasis and
further immune defense and control of inflammation [28]. Notwithstanding their biological
relevance, platelets account for only 7% of all cellular blood components, compared to
93% by red blood cells (erythrocytes) (Figure 1). Platelets are highly adapted to their
functions by their structure. Being discoid in shape, they have an overall size of 1.5–3 µM.
Their outer region, the so-called hyalomer, is devoid of organelles but enriched with actin
filaments and a circumferential band of microtubules, which together enable significant
morphological changes upon platelet activation [29]. Platelets contain numerous vesicles,
which can be further subdivided into alpha, delta, and lambda-granules (=lysosomes) that
are collectively called granulomeres. Alpha and delta granules store various molecules that
aid in blood hemostasis, whereas lysosomes contain enzymes involved in the degradation
of pathogens. Vesicle exocytosis is facilitated by deep membrane invaginations, the open
canalicular system (OCS) [30,31]. Although platelets lack transcribable genetic information
due to the lack of a nucleus, they are stunningly still capable of protein biosynthesis as they
are equipped with ribosomes, mRNA, and mitochondria of their precursors. Likewise, their
internal Ca2+ storage, the dense tubular system, originates from the smooth endoplasmic
reticulum of the megakaryocyte [32].

2.2. Primary Hemostasis

Primary hemostasis starts with vasoconstriction within seconds after vascular damage.
Thereby, blood flow can be diminished at the side of vascular lesion, and the resulting
increase in shear stress promotes platelet adhesion. Platelet adhesion is initiated by the
interaction of subendothelial collagen with a blood circulating protein called von Wille-
brand factor (vWF) produced by endothelial cells and megakaryocytes. Upon endothelial
damage in vascular lesions, subendothelial collagen is exposed, and binding of vWF occurs
under sufficient pressure and shear-stress conditions [33]. In arterial lesions, vWF serves
as a cross-linker between exposed connective tissue and circulating platelets that express
a glycoprotein receptor (GPIb-IX-V receptor complex) with specified binding sides for
vWF [34,35]. Thus, a first layer of platelets is formed that covers the endothelial damage
and further induces activation of multiple hemostatic components [36].
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2.3. Signaling Involved in Platelet Activation

Platelet activation is a complex orchestrated process in which various intracellular
biochemical reactions cause versatile changes, including the formation of pseudopodia,
alterations of the plasma membrane, and release of vesicles [14]. This serves to recruit
additional platelets, which attach to the first layer, forming a cross-linked white thrombus
that is later solidified by the formation of fibrin [37]. The involved signaling cascades are
highly interconnected and predominantly mediated by G-coupled proteins that consist of
different subunits and exhibit different functions. Further, various other platelet receptors,
e.g., immunoreceptor tyrosine-based activation motif (ITAM) receptors, ligand-dependent
ion channels, and glycoprotein receptor complexes, contribute to their impressive ability to
react within seconds after a blood vessel’s endothelial wall is disrupted [38].

Several platelet receptors, including the adenosine diphosphate (ADP)-responsive
purinergic receptors P2Y12 [39] and P2Y1 [40], the thromboxane receptor TxA2-R [41],
and the thrombin protease-activated receptors PAR1/4 [42], are coupled to Gq/Gi
proteins. Gq/Gi-induced activation of phospholipase C-β (PLC-β) initiates cleavage of
phosphatidylinositol-4,5-bisphosphate (PIP2), a phospholipid mainly located in the inner
cell membrane under the emergence of diacylglycerol (DAG) and inositol triphosphate
(IP3) [43]. The second messenger DAG further activates protein kinase C (PKC), followed
by signaling involved in thromboxane A2 synthesis, vesicle secretion, and activation of
phosphodiesterase (PDE) [44]. Upon binding to IP3 receptors located at the dense tubular
system, IP3 initiates the distribution of intracellular Ca2+ [45,46].

Besides Gq-mediated signaling, coupling of PAR1/4 to G13 proteins induces activation
of the small GTPase Rho, which is crucial for changes in platelet shape [42]. Rho mediates
actin polymerization and increases myosin light chain kinase (MLCK) activity by inhibiting
its opponent myosin light chain phosphatase (MLCP). Together with increased intracellular
Ca2+ level downstream PLC-β activation, this facilitates actin–myosin interactions [43,47].

Integrin activation downstream phosphoinositide 3-kinase (PI3K) signaling is needed
for sufficient cellular cross-linking during clot formation [48,49]. PI3K can be activated by
Gi proteins [50], but also through glycoprotein VI (GPVI) and the receptor complex GPIb-
IX-V [51]. GPVI is a member of the immunoglobulin (Ig) superfamily present on platelets
and an established receptor for cellular cross-linking upon contact with collagen [52]. The
GPIb-IX-V complex, part of the leucine-rich repeat (LRR) family, is activated upon binding
of vWF and essential for platelet adhesion under high shear stress conditions. GPIV-IX-V
signaling requires cooperativity of PAR1/4 and vice versa, making the interconnection
of both receptors an important driver of platelet activation, especially at low thrombin
concentrations [53]. Secondly, PI3K activation can cause increased formation of nitric oxide
(NO.) by NO. synthase (NOS) via Akt [54]. Being an uncharged gas, NO. can diffuse across
cell membranes and plays a biphasic role in blood hemostasis [55]. Initially, it promotes
platelet activation via soluble guanylate cyclase (sGC)/PKG/p38 [47,56], whereas, as blood
coagulation progresses, it acts as a suppressant to hemostasis [57].

Platelet activation is finely regulated and can be counteracted by protein kinase A
(PKA) signaling. PKA is activated by cyclic adenosine monophosphate (cAMP), which
emerges from the cleavage of adenosine triphosphate (ATP) by adenylate cyclase (AC) [58].
PKA mediates multiple responses, such as reducing the intracellular Ca2+ concentration
and subsequently decreasing platelet shape change [59]. During primary hemostasis, AC is
inhibited downstream signaling of the epinephrine receptor α2A, the prostacyclin (PIG2)
receptor, and P2Y12 [60,61] (Figure 2).
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2.4. Secondary Hemostasis

Secondary (plasmatic) hemostasis results in the formation of macromolecular com-
plexes of fibrin that further solidify the initial platelet plug [62]. This involves a variety of
zymogens (inactive precursors), mainly serine proteases, cofactors, and fibrinogen. Serial

motifolio.com
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activation and feedback amplification loops end in the central conversion of fibrinogen to
fibrin by thrombin. This enables covalent cross-linking of individual fibrin molecules to
form a stable complex in which platelets and erythrocytes become trapped. Dependent on
the initial trigger factor, the stated signaling cascades can be further subdivided into an
intrinsic or extrinsic pathway that finally ends up in a common path [63] (Figure 3).
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3. Medical Gas Plasma as a Hemostatic Agent

Blood coagulation by medical gas plasma was first described more than 10 years
ago [17]. Since then, many studies have emphasized the pro-coagulant potential of medical
gas plasmas on blood from healthy donors. Moreover, sufficient hemostasis has been
achieved in vivo on mouse saphenous veins [64], rat and mouse livers [8,65,66], and rabbit
spleens [67], as well as acute skin wounds of mice and pigs [68,69] (Table A1).

Initially, the clot-promoting effect was attributed to the provision of Ca2+, which initi-
ates platelet activation and enables versatile platelet shape changes [70]. This was suggested
as ethylene diamine tetraacetic acid (EDTA)-anticoagulated blood samples, which exhibit
decreased free Ca2+ concentration due to chelation, showed increased platelet activation
upon medical gas plasma treatment compared to heparin-anticoagulated blood [71]. How-
ever, the role of free Ca2+ was further refuted by subsequent studies observing that Ca2+

fluctuations only occur at longer treatment times and thus cannot contribute to the early
processes of blood coagulation since visible coagulation processes occur before that [72].
At the same time, dominating effects of temperature and electric field effects were negated,
which distinguished gas plasma-mediated blood coagulation clearly from clinically em-
ployed argon plasma coagulation (hot plasma) or electrocauterization. Conversely, the
suggestion was that medical gas plasma instead interferes in plasmatic hemostasis by
direct cleavage of fibrinogen as the aggregate formation of a fibrinogen solution could be
observed after gas plasma exposure. In addition, histopathologically visible membrane for-
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mation was noted in samples obtained after bleeding control using medical gas plasmas in
C57BL/6 mice, and protein aggregation was further investigated. However, scanning elec-
tron microscopy (SEM) and macroscopic examination of platelet-rich plasma (PRP) already
revealed a pro-coagulant effect on platelets directly, though the underlying mechanisms
remained unclear [65,68].

In other biomedical research areas, including wound healing or oncology, gas plasma-
mediated effects have been mainly linked to the variety of ROS/RNS being generated
simultaneously [20]. Along those lines, it seemed evident that ROS/RNS also play a
significant role in gas plasma-mediated platelet activation. In most in vitro gas plasma
applications using gas plasma jets, a dominating role of long-lived species such as hydrogen
peroxide (H2O2) [73] and hypochlorous acid (HOCl) [74] is evident. Hence, it seemed
plausible that addition of these agents would recapitulate the hemostatic action of gas
plasma treatment. Surprisingly, this was not the case, independent of the concentration that
was added [24]. Vice versa, scavenging of H2O2 via catalase also failed to protect from gas
plasma-mediated hemostasis. In general, due to their high reactivity, the influence of short-
lived ROS is challenging to control. The influence of superoxide anions (O2

.-) in thrombin-
mediated platelet activation has been documented [75,76], but scavenging thereof using
superoxide dismutase (SOD) could not reduce gas plasma-mediated platelet activation. In
the same view, increased platelet aggregation has been observed when exposing PRP to
gaseous ozone [77]. NO. is abundantly generated by gas plasma jets [78], being known
for its pleiotropic functions in hematology [79], and its role concerning plasma-mediated
effects has been discussed [55,57,80]. Diffusion of NO. across the platelet membrane enables
platelet activation via sGC, PKG, and p38 activation initially [47,56,57] but acts inhibitory
as blood coagulation progresses [57]. However, NO. can additionally react with free
oxygenated hemoglobin (Hb) to form Met-Hb and nitrate as a major pathway for NO.

elimination in our body [81], which reduces the bioavailability of the latter [82]. In addition
to related signal transduction processes in the platelet, this restricts the contribution of
NO. to the onset of gas plasma coagulation. Still, the direct effect of gas plasma on platelet
activation can only account for a fraction of hemostatic activity observed, which is reasoned
with regard to the proportionate biomass among the total hematocrit [24] (Figure 1).

In the course of studying the side effects of medical gas plasma treatment, lysis of
blood cells was investigated early already, although cell types seemed to be affected to
different degrees [83]. Likewise, Miyamoto and colleagues described membrane formation
from lysed erythrocytes as a second mechanism of action, but differences were found
depending on the plasma source used [84]. However, in this case, blood coagulation
was only traced to the coagulant membrane formation, and platelets’ importance was not
further discussed. In 2017, platelets were suggested being the primary mediators of gas
plasma-initiated hemostasis, which was demonstrated by using clopidogrel anticoagulation,
an inhibitor of platelet aggregation [8]. Strikingly, it was found that platelet activation’s
central trigger could be attributed to hemolysis in response to gas plasma exposure [24].
This was demonstrated because the coagulating effect was enhanced in whole blood (WB)
compared to platelet-rich plasma (PRP). Furthermore, the blood coagulation could be
mimicked by adding equal concentrations of an isotonic hemolysate to WB. Hemolysis as a
mediator of platelet activation has been addressed and discussed before in the pathogenesis
of vaso-occlusive diseases [85].

During hemolysis, various molecules and DAMPs (damage-associated molecular
patterns) are being released, such as hemoglobin, heme, and the nucleotides ADP and
ATP [85,86]. The latter can act directly at platelet receptors, thereby activating platelets [87].
In line with this, inhibition of gas plasma coagulation by clopidogrel, whose active metabo-
lite inhibits the ADP receptor P2Y12, was described previously [8,88]. P2Y12 is a Gi-protein
coupled receptor whose β/γ subunit can initiate PI3K/Akt/p38 signaling upon activa-
tion [47,50] and was later identified as a central pathway. By using Ly294002, a PI3K
inhibitor, a decrease in gas plasma-mediated platelet activation by 56% was observed,
equaling the predetermined percentage attributed to hemolysis [89]. Using inhibitors of
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different isoforms of PLC, the contribution of Gq-mediated signaling upon gas plasma
exposure could be excluded [43]. In patients with sickle cell disease, free hemoglobin could
lead to platelet activation associated with hyperpolarization of the mitochondrial mem-
brane and increased intracellular ROS production. This has been attributed to inhibiting
complex V respiratory chain activity [90]. A similar mode of action could be suggested,
as hyperpolarization of mitochondrial membrane potential has been observed upon gas
plasma exposure [24] (Figure 4).
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Studies in various pre-clinical models successfully demonstrated the potential of
medical gas plasmas as a putative hemostatic agent for clinical application. Contrary
to suggestions made in the beginning, direct effects of gas plasma treatment on either
cellular or plasmatic hemostasis as critical drivers of blood coagulation were less observed.
Instead, platelet activation could be traced back to ROS/RNS-induced hemolysis, resulting
in the local release of hemostatic DAMPs. This directly contrasts with currently applied
electrocauterization or argon plasma coagulation that achieves blood hemostasis by tissue
carbonization at the injured side.

4. Application Fields and Clinical Obstacles

Medical gas plasma technology provides hemostasis in a localized, controlled, and
specific manner when applied to the injured side. Major advantages include preserving
tissue integrity, few side effects, and restoring physiological tissue structure (restitutio
ad integrum), which is emphasized by long-term studies in vivo [66,67]. In this view, the
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application of medical gas plasma is particularly eligible for hemostasis in sensitive tissues
and several types of surgery in, e.g., unintended colon tissue damage during laporscopy or
laparotomie, neurosurgical procedures, or cerebral microhemorrhages (CMBs).

In gastrointestinal surgery, partial hepatectomy is associated with high mortality and
morbidity rates. Patients are at particular risk for secondary bleeding, infection, and loss
of liver function due to deficient surgical bleeding control [91]. Healing courses after
liver and splenic resection in experimental mouse and rabbit models indicated few side
effects of intra-operative bleeding control using medical gas plasma technology. Further,
physiological tissue structure could be preserved, preventing major loss of functional
tissue [66,67] and emphasizing gastrointestinal surgery as a feasible application field for
gas plasma-mediated blood coagulation. Preservation of functional tissue and tissue
integrity is not only relevant concerning long-term follow up of patients undergoing
surgical procedures. Surgical procedures that put patients at high risk for severe post-
operative bleedings after sloughing of eschar, such as tonsillectomy [92], could benefit from
medical gas plasma technology along similar lines.

Besides surgical application fields, the ability of medical gas plasma to induce fast,
local hemolysis with subsequent platelet activation and blood hemostasis could be used to
stop acute bleeding, such as epistaxis originating from small artery ruptures located in the
Kiesselbach’s plexus. Moreover, portable medical gas plasma devices could be a significant
relief for hemophilia patients. Due to a mostly inherited genetic disorder, the process of
plasmatic hemostasis is heavily impaired in those patients. By that, spontaneous bleedings
occur, often without any preceding visible injuries. Fast local control of such bleedings
using medical gas plasma as a home care device could be a relevant, liberating benefit.

Further advantages of medical gas plasma technology include simultaneous disin-
fection and promotion of wound healing and bleeding control, which have already been
addressed in the treatment of chronic wounds [93]. In this regard, another potential benefit
could be provided by applying cold physical plasma to acute nonsterile skin wounds. Clini-
cal practice dictates open-wound care for nonsterile wounds or treatment with long-lasting
vacuum-assisted wound closure, which requires inpatient treatment or drainage. Due
to antimicrobial effects, blood coagulation, and wound healing stimulation, it would be
conceivable to provide wound care using gas plasmas [23] (Figure 5).

As overshooting ROS production is linked to increased autoimmunity and the patho-
genesis of many other diseases, questioning immune-mediated complications upon ex-
posure to gas plasma-derived ROS seems evident. Antigen-independent proliferation of
T cells or generation of neo-cryptic epitopes, which might serve as autoantigens, could
put patients at risk for autoimmune reactions. Medical accredited plasma devices have
been investigated in clinical trials for wound care since 2010 [94], and clinical data exist
from multiple dermatological centers in central Europe. Until now, no evidence indicates
increased occurrence of adverse side effects and has neither been reported in follow-up
studies in patients [95] nor in mice [96]. Moreover, T-cell-driven skin sensitization could
not be observed in a standardized murine model after repeated gas plasma exposure using
an OECD accredited assay [97]. It is suggested that the generated ROS mixture does not
drive non-specific, redox-mediated T-cell activation, and neither increased phosphorylation
of NF-κB [98] nor proliferation [99] could be observed in viable TH cells upon gas plasma
treatment per se.
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Figure 5. Potential fields of application of gas plasma-mediated hemostatic activity. Created with
biorender.com (accessed on 1 February 2022).

Disadvantages of medical gas plasma predominantly concern application practice,
physicochemical heterogeneity of available plasma sources, sterilization, and economic
questions. Plasma jet devices require a continuous supply of an inert gas (e.g., argon), which
increases treatment costs. However, the expenses should be covered by a few Euros per
application. It should be noted that gas plasma treatment is currently under observation of
the national health council for cost reimbursement by social healthcare insurance providers,
at least in Germany. It is worth noting that available and clinically approved plasma sources
differ with regard to the expelled ROS/RNS chemistry [20]. While the chemistry of some
sources such as plasma jets is dominated, for instance, by singlet delta and atomic oxygen
as well as ozone, other accredited devices such as the DBDs have been found to generate
high amounts of NO2 [74,100]. In addition, new application fields, e.g., care of internal
bleedings, would require creating suitable endoscopic devices that have been designed by
research centers without entering clinical practice [101–103]. Moreover, sterilization of gas
plasma applicators is a compelling basis for widespread application during surgeries that
have to be taken into account. Finally, the scalpel-like application of plasma jets is better

biorender.com
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suited for hemostatic action in the clinics that flat-shaped dielectric barrier discharges. A
scheme of the thus far only plasma jet device approved in Europe for medical applications,
the kINPen MED, is shown below (Figure 6). It has been found that direct connection of
the plasma jet with its target (Figure 6, right image), such as a bleeding wound, is much
more potent that the remote deposition of the cloud of ROS being generated [104].
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Figure 6. The approved (medical device class IIa) atmospheric pressure argon plasma jet kINPen MED.
Current medical indications are decontamination and promotion of wound healing. (Left) Scheme
of a prototype of the kINPen plasma jet with argon gas used as feed gas that is excited in a high-
frequency electrode before driven out into the ambient air to generate reactive oxyxgen and nitrogen
species. (Middle) kINPen MED equipped with a space. (Right) kINPen MED plasma jet connecting
to the skin. Image reproduced from [93].

5. Conclusions

Medical gas plasma has excellent potential to serve as a hemostatic agent with ad-
vantages over existing procedures. Intensive research has demonstrated its potential in
different application fields, and underlying mechanisms have become increasingly well
understood. As a novel potential component of surgical blood hemostasis, gas plasma-
induced hemolysis initiates platelet activation via local DAMP release. Upon receptor
binding, DAMPS, including hemoglobin or ADP, induce biological downstream signal-
ing, resulting in morphological changes and the release of pro-hemostatic granules by
platelets. By that, medical gas plasma provides gentle and physiological blood coagulation
and enables the restoration of functional tissue structures. However, investigation of this
technology within clinical trials or individual healing attempts on the hemostatic activity
of medical gas plasmas are absent thus far. In this light, studying the hemostatic efficacy in
humans compared to gold-standard therapies would be worth of being addressed, together
with potential pitfalls in the application practice before medical gas plasma treatments can
be implemented in clinical care.
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All authors have read and agreed to the published version of the manuscript.
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Appendix A

Table A1. Overview of blood coagulation studies using gas plasma technology, and main findings,
sorted by date of appearance. H = human; P = porcine; M = murine; R = rat; Rb = rabbit; D = dog;
PRP = platelet-rich blood plasma; PPP = platelet-poor blood plasma.

Ref. Plasma Source Sample Species Main Findings

Ex Vivo

Fridman et al.
(2005) [17] DBD - H - first report of medical gas plasma application for blood coagulation

Fridman et al.
(2006) [70] FE-DBD PRP, spleen H

suggested mechanism:

- increased free Ca2+ levels from plasma-bound proteins due to pH
decrease and redox reactions → free Ca2+ initiates clotting cascade

Kalghatgi et al.
(2007) [72] FE-DBD

WB,
fibrinogen
solution

H

- effective clotting of citrate anticoagulated blood
- first description of platelet involvement: pseudopodia formation
- fibrin formation
- Ca2+ as catalysator refuted
- exclusion of pH, temperature, and electric field effects
- clotting of fibrinogen solution

suggested mechanism:
- direct conversion of fibrinogen to fibrin

Chen-Yen et al.
[105] (2009) Plasma jet WB, PPP, PRP H

- temperature effects excluded
- coagulation only in PRP, not PPP
- multiple short treatments more effective than a single long treatment

suggested mechanism:
- platelet activation by reactive oxygen species

Dobrynin et al.
(2011) [69]

FE-DBD,
pin-to-hole spark

discharge
skin wound P - fast superficial blood coagulation

- deep layers intact and without damage

Baik et al.
[83] (2012) Plasma jet WB D

- harming effects of plasma on blood cells with different sensitivity
- first description of plasma-induced hemolysis (highest with

nitrogen-rich plasmas)

Miyamoto et al.
(2016) [84]

Plasma-Jet (He),
BPC-HP1,

PN-110/120TPG
WB, isolated

RBCs H

- membrane formation of erythrocyte lysate
- hemolysate dependent on amperage of the specified plasma source

(high amperage + long treatment time needed)

suggested mechanism:
- RBC membrane formation as third component next to plasmatic and

cellular hemostasis (RBC clot)

Bekeschus et al.
(2018) [71]

kINPen and
kINPen MED
(various feed

gas admixtures)
WB H

- gas plasma induces platelet activation aggregation and
exosome release

- effects of gas admixtures: highest efficacy of dry argon plasma
- activation in heparinized blood increased compared to

EDTA-anticoagulated blood

suggested mechanism:
- platelet activation by reactive oxygen species

Bekeschus et al.
(2021) [24]

kINPen and
kINPen MED PRP, WB, BL H

suggested mechanism:
- local hemolysis leading to platelet activation and hemostasis via

PI3K signaling

Jia et al.
(2021) [106]

microsecond-
pulsed helium

plasma jet
WB, PRP R

suggested mechanism:
- platelet activation via increased release of pro-coagulating proteins
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Table A1. Cont.

in vivo

Fridman et al.
(2008) [64] FE-DBD

vena
saphena/WB
(anticoagulated)

M/H

- effective hemostasis in vascular and anti-coagulated blood
(Heparin, EDTA)

suggested mechanism:
- direct conversion of fibrinogen to fibrin
- platelet activation

Ikehara et al.
(2013 [65]) Plasma jet femoral artery M - description of membrane formation

Ikehara et al.
(2015) Plasma jet

proteins in
buffer

solution, skin
wound

M

- proteins aggregate upon gas plasma exposure
- tissue damage reduced compared to clinically approved

electrocauterization

suggested mechanism:
- serum protein aggregation as third component

Aleinik et al.
(2017) [66] DBD hepatectomy R

- sufficient hemostasis after 1 min
- complete cure after 30 d
- no restriction in liver function

Nomura et al.
(2017) [107]

plasma jet,
various gas
admixtures

WB, gastric,
and liver
incision

H/P

- no tissue damage
- argon plasma lowest efficacy

suggested mechanism:
- ROS-mediated platelet activation

Bekeschus et al.
(2017) [8] kINPen MED

WB, liver
incision
model

M

- pH and fibrinogen levels decreased, Ca2+ levels constant
- hemostatic effects of gas plasma abolished upon

clopidogrel anticoagulation
- similar efficacy of gas plasma compared to electrocauterization in

murine liver incision model
- low tissue damage, superficial platelet, and fibrinogen deposition

suggested mechanism:
- platelet activation as the primary mediator

Aleinik et al.
(2018) [67] DBD splenic surgery Rb - sufficient blood hemostasis after 90 s

- restitution ad integrum after 90 d

Yan et al.
(2018) [108]

microsecond-
pulsed helium

plasma jet

WB,
hepatectomy R

- sufficient blood hemostasis on liver

suggested mechanism:
- membrane formation of platelets

Rad et al.
(2018) [109] helium plasma jet liver incision

model M - plasma treatment induces platelet aggregation
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