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Abstract: From entertainment to medicine and engineering, artificial intelligence (AI) is now being
used in a wide range of fields, yet the extent to which AI can be effectively applied to the creative
arts remains to be seen. In this research, a neural algorithm of artistic style was used to generate
six AI paintings and these were compared with six paintings on the same theme by an amateur
painter. Two sets of paintings were compared by 380 participants, 70 percent of whom had previous
painting experience. Results indicate that color and line are the key elements of aesthetic appreciation.
Additionally, the style transfer had a marked effect on the viewer when there was a close correspon-
dence between the painting and the style transfer but not when there was little correspondence,
indicating that AI is of limited effectiveness in modifying an existing style. Although the use of
neural networks simulating human learning has come a long way in narrowing the gap between
paintings produced by AI and those produced in the traditional fashion, there remains a fundamental
difference in terms of aesthetic appreciation since paintings generated by AI are based on technology,
while those produced by humans are based on emotion.

Keywords: human artist; artificial intelligence; painting creation; cognition and communication

1. Introduction

Painting is a way of imitating nature and can be seen as a kind of reproduction of the
real world. Photography also reproduces the natural world, but it can also reproduce the
artwork in large quantities. Benjamin [1] argues that the mass reproduction of a unique
work of art devalues its “aura”. In surveying the history of art, it can be seen that whenever
there is a major advance in science and technology it inevitably affects how art is understood
and created, spurring continuous innovation. As a kind of tool, technology has always
been used by the artist, but in modern times technology has become a medium of artistic
creation, bringing both new opportunities and challenges to the field of art in terms of
creation, experience, and aesthetics. However, artificial intelligence (AI) is a technological
advance of an entirely different order because it has the potential to replace the artist. Yet,
it remains to be seen to what extent AI can succeed in replicating the human element which
plays such a central role in the production and appreciation of art. Whatever medium
is used—literature, dance, drama, or music—the purpose of an artistic endeavor is to
express the artist’s perceptions and emotions generated by the interplay between his social
context and his personal observations. By observing a work of art, the viewer comes to
appreciate the inner world of the artist, thereby enlarging his breadth of understanding.
Thus, the goal of using AI to produce artwork is not merely to produce a work that is
indistinguishable from a work created by a human being but to create a work of art rich in
cultural significance that elicits an emotional response in the viewer.
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1.1. The Application of AI in Painting

Kurzweil [2] predicts the imminent arrival of the AI era in his famous book named The
Singularity Is Near: When Humans Transcend Biology. At the time of the book’s publication,
AI was limited to the laboratories of a small number of research institutions, but following
the widespread application of such AI technologies as AlphaGo to a variety of fields [3]
AI research and applications began to rapidly expand and in recent years developments
in visual technology have made it possible to analyze paintings by using complex algo-
rithms [4,5] that extend the knowledge and capabilities of artists, scholars, and curators [6].
Machine Learning (ML) is a branch of AI and computer science that focuses on the use
of an artificial neural network (ANN) and algorithms to imitate the way that humans
learn; the most widely used form is Deep Learning (DL). DL is based on a large number
of deeply embedded units [7], which makes it possible to analyze complex relationships
in a set of data [8]. In the first application of neural networks to the production of art,
Gatys et al., [9] formulated a neural algorithm of artistic style capable of transferring any
style. Since then, there have been a large number of related studies covering areas such
as style, conversion efficiency, and application to related technologies. The methods used
in training and feature extraction are divided into two categories: paired and unpaired.
The paired method is a kind of pretraining model in which a style map and a content map
are used to convert a particular artistic style as used by Gatys et al., [9] in formulating
Adaptive Instance Normalization (AdaIN) and Whitening and Coloring Transforms (WCT).
In the unpaired method, common features of multiple images are extracted from a data set
and then an algorithm is used to carry out the style transfer as used in formulating Pix2Pix
and CycleGAN.

Among the many paired methods, Gatys et al., [9] were the first to formulate an image
iterative operation based on a Gram matrix, which separately represents the content of
an image and its stylistic features; the main drawbacks are low operation efficiency and
wash-out artifacts, resulting in missing details. Despite these limitations, the algorithms
subsequently developed in this field have been largely based on the methods pioneered
by Gatys et al., [9], many of which attempt to address the issues of efficiency and wash-
out artifacts. The problem of efficiency was solved by the use of a rapid style transfer
based on a feedforward network that greatly reduces the conversion time [10]; however, a
separate model is required for each different style. Afterward, Li et al., [11] further added
WCT, which enhances the coloring effect and can be applied to any style. Huang and
Belonhie [12] used the multi-feedforward network AdaIN to standardize the transfer of
stylistic features in any style. However, WCT, AdaIN, and similar methods are not good
at maintaining the structural characteristics of an image and are also subject to wash-out
artifacts, resulting in a large number of blurred details. Adopting the style distribution
approach, Zhang et al., [13] formulated Multimodal Style Transfer (MST), which better
preserves the margins and improves the matching of stylistic features. Based on MST,
Chen [14] devised Structure-emphasized Multimodal Style Transfer (SEMST), in which
the extraction and matching of the structure are optimized to solve some of the problems
relating to structural details unaddressed by MST such as the inability to take structural
information into account in an environment of high dimensionality and low resolution.

In terms of practical applications, Saraev’s [15] program 1 Second Painting uses a
deep neural network (DNN) programmed by thousands of abstract paintings, including
works by the American abstract expressionist Jackson Pollock (28 January 1912–11 August
1956) and the French painter Robert Delaunay (12 April 1885–25 October 1941), one of
the representatives of the Orphism avant-garde. Unlike other drawing software and
applications, most of which adopt a “what you see is what you get” model, the paintings
produced by 1 Second Painting are highly unpredictable. Generated by an algorithm based
on a database of more than 14,000 abstract paintings, each work produced by 1 Second
Painting is a unique creation without any easily discernable pattern; however, some users
may find that it deprives them of a sense of participation. Amongst the more notable
instances of the application of AI to art are:
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• Edmond de Belamy, a generative adversarial network portrait produced in 2018 by
Paris-based arts collective Obvious, which was auctioned at Christie’s in New York in
October 2019 for $432,500—more than 40 times its estimated value.

• The Next Rembrandt project that uses digital analysis of Rembrandt’s major works in
an attempt to create one more painting by the great master.

• A joint project in which Samsung’s Moscow AI Center and the Skolkovo Institute of
Science and Technology have built an AI model that uses a single image of a person’s
face to generate a talking animation—all without the use of such traditional methods
as 3D modeling.

Moreover, BBC Science and Technology reporter Lawrie [16] pointed out: “Can a
computer, devoid of human emotion, ever be truly creative? Is this portrait really art? Does
any of that matter if people are prepared to pay for it? And as artificial intelligence evolves
and eventually perhaps reaches or surpasses human-level intelligence, what will this mean
for human artists and the creative industries in general?” This has become one of the core
points of our research.

1.2. Models of Artistic Creativity and Cognition

Artistic creativity can be seen as an expression of the artist’s pursuit of beauty, char-
acterized by a complementary process in which connotations are experienced through
form; what is connoted enriches form. In painting, abstract connotations and concepts are
transformed into concrete forms evocative of emotion. In the process of artistic creation,
form (style) and connotation (concept) complement one another [17]. But how does this
relationship between connotation and form generate a creative visual concept? There seems
to be a certain degree of correspondence between form and connotation, such that within
the form can be found traces of connotation. Regarding art as a form of symbol transmis-
sion, the artist encodes a particular message into his work, which is later decoded by the
viewer [18–20]; exploring the cognition of artistic creation from the perspective of audience
decoding helps to understand the artist’s creative process [21–24]. Artistic creativity can be
seen as consisting of the two levels of denotation and connotation [24,25]. What is denoted
is largely ineffable but can be found in the relationship between the symbols in the painting
and the things to which they refer. According to the procedural school of communication
theory [19], if the artist’s (sender) signal is to be successfully communicated to the viewer
(receiver), certain requirements must be met on three levels [24]. The details are as follows:

• On the technical level, the artist must accurately convey the message he intends to
transmit so that the recipient can see, hear, touch, and even feel it.

• On the semantic level, the recipient needs to accurately understand the message
being transmitted.

• On the effect level, the message needs to affect the recipient in such a way as to elicit a
particular response or behavior.

Past research on artistic creativity has mostly focused on the role of the artist while
paying little attention to the role of the viewer, yet the viewer plays an integral role in
the complete artistic process. An understanding of the cognitive processes involved in
art appreciation can improve an artist’s ability to create stunning works of art. From
the perspective of design and creativity, concepts and intelligence are an integral whole.
Therefore, Norman’s [26] three psychological concepts can be modified into three modes:
the artist mode, the viewer mode, and the artwork [24]. The mode refers to the artist’s
conceptual understanding of the work of art. The viewer mode refers to the process by
which the viewer perceives the external aesthetics and internal meaning of a painting.
Ideally, there is a high degree of congruity between the artist mode and the viewer mode,
which allows the artist to effectively convey his message to the viewer by using language
or symbols familiar to the viewer and presented in a suitable context [20].

Jakobson also formulated a model of communication in which successful communica-
tion takes place through six corresponding functions: (1) the emotive function, based on
the relationship between the artist and the viewer, (2) the conative function, based on the
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effect that the artist wants to have on the viewer, (3) the referential function, based on the
actual meaning expressed in the artwork, (4) the poetic function, based on the aesthetic
expression of the work of art itself, (5) the phatic function, which conveys the medium in
which the work of art is communicated, and (6) the multilingual function, which confirms
the coding system used for communication. The communication model based on these six
corresponding factors and functions is shown in Figure 1 [24].
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Figure 1. The six corresponding factors and functions of artistic communication. (Reprinted with
permission from [24]. Copyright 2017 Lin, R. et al.).

Recently, human factors engineering has begun to emphasize a user-centered approach
and its design concept has begun to receive greater importance. We have little difficulty
in using the various types of gadgets and appliances which have become a part of our
daily lives, because we have a familiar conceptual model for these products. When we
start using a new device, we gradually learn how to operate it, either simply by using
it or through formal training. Past research on artistic creativity has mostly focused on
the role of the artist, while paying little attention to the role of the viewer. However, the
viewer plays an integral role in the artistic process and an understanding of the cognitive
processes involved in art appreciation can improve an artist’s ability to create stunning
works of art. From the perspective of design and creativity, concepts and intelligence are
an integral whole.

In terms of communication theory, the process by which the artist (addresser) expresses
the artistic concept is called encoding and the way in which the viewer (addressee) comes
to gain an intuitive understanding of a work of art is called decoding [19,20]. Performance
can be seen as the realization of creative inspiration, wherein the artist’s creative intention is
expressed through the artwork and a painting is a completed performance. In the creative
process, the artist’s thoughts, feelings, and imagination are reproduced in a tangible work
of art; the completed work of art is a manifestation of the artist’s subjective world, the
display (communication) of which generates a kind of rapport between the artist and
the audience [24]. For the viewer, there are three key steps in understanding a work of
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art: attention (recognition), correct cognition (understanding), and a profound response
(reflection) [22–24,27]. Recognition is a form of contextualized awareness, by virtue of
which the work of art attracts the viewer’s attention. Understanding is a form of conceptual
cognition, by virtue of which the viewer makes sense of the message embedded in the work
of art. Reflection is a form of affective response, by virtue of which the viewer comes to be
deeply moved by the work of art.

From the point of view of human factors engineering, the cognitive process described
above broadly agrees with the design concept model proposed by Norman [26], including
the design model, the user model, and the system impression, representing the artist’s
mode of thinking, the viewer’s mode of cognition, and the work of art, respectively.
Norman [28] earlier formulated a design process consisting of three levels: the instinctual
level, the behavioral level, and the reflective level, representing the viewer’s aesthetic,
connotative, and emotional experience, respectively, all of which are functions of the
cognitive and affective changes which take place in the viewer in the process of processing
the message. On a deeper level, understanding the process by which the viewer comes to
recognize the external form and the internal meaning of a work of art enables the artist to
use symbols familiar to viewers, resulting in a work of art that generates resonance and
rapport between the artist and his viewers [22,24,27]. In coming to comprehend a painting,
the factors attended to by the viewer include lines, color, pattern, and composition [29],
where lines are used to imitate nature and to express the essential form of an object while
ignoring the details [30], and even when using short-wave infrared spectroscopy to examine
ancient paintings, lines and color still provide essential information for making the final
authentication [31]. Color is a key factor in painting and also plays a central role in the
psychology of art [32]. Different colors can generate a wide range of feelings, including
warm or cool, light or heavy, soft or hard, and even tension or relaxation [33], and a color’s
vividness and brightness have been found to be key factors in a color’s ability to affect
mood [34]. Artists express delicate emotions through color and through brushstrokes [35],
viewers can perceive the painter’s movements by observing the brushstrokes used in the
painting [36], and the studied connoisseur can even catch a snapshot of the artist’s mind
simply by observing the brushstrokes of a painting [37]. Indeed, numerous recent studies
on style transfer have taken color and brushstroke as the key characteristics of style [38,39].

1.3. Purpose

Artwork produced using AI has begun to attract the attention of the art market and
this trend is likely to gain momentum as the application of neural networks and deep
learning enables computers to approximate human learning. While AI algorithms are best
at handling routine tasks, amateur artists tend to emphasize intuition rather than technique,
expressing their inner feelings in a direct way, making their artwork more varied than
the artwork produced by professional artists and this stylistic variation is relatively more
difficult to effectively integrate into AI style transfer. In addition, a piece of art establishes a
kind of resonance between the artist and viewer and a successful piece of AI art needs to
retain the elements that produce this resonance. Thus, in determining the key differences
between AI art and amateur art, it is necessary to identify the factors that affect the viewer’s
inner feelings and to compare AI art with amateur art. The main questions addressed in
this study are as follows:

• On the technical level, can viewers differentiate between AI art and human art?
• On the perceptual level, what are the factors of AI art that have an emotional impact

on viewers?
• On the creative level, what are the current limitations of AI art?

2. Materials and Methods
2.1. Paintings

The paintings by amateur artist Sandy Lee on the topic of family life were analyzed to
obtain the theme “Home Sweet Home”, which consists of the function of residence and the
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feeling of comfort, based on which a content image of Home Sweet Home was generated.
Next, three algorithms were selected for carrying out style conversion: WCT, Gatys, and
SEMST. Finally, for the style image, experts in the fields of art history and aesthetics selected
6 famous paintings on the theme of home (Table 1).

Table 1. 6 paintings with the theme of home.

Information Figures Website

1. Jan van Eyck, The Arnolfini Portrait,
1434. The National Gallery, London.
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Each of the algorithms retains different levels of detail and discussion with experts
determined that WCT would be best suited for this study. The stimuli in this study consisted
of 2 groups (each with 6 paintings). The first group (HU-1~HU-6) was completed by human
artist Sandy Lee and the other group (AI-1~AI-6) was completed by AI (based on the WCT
method). Figure 2 shows how these two groups of stimuli are produced. The details are
as follows:

1. Combined with the opinions of aesthetic experts, six world-famous paintings depict-
ing “home” were selected as content images.

2. Take a painting by human artist Sandy Lee as “Style Image-a” (SI-a); WCT was chosen
as the method of transformation.

3. Access to 6 AI-transformed works. These works are also used as “Styles Images-b” (SI-b).
4. Sandy Lee was asked to create 6 new works based on SI-b as the first group of samples.

At the same time, these 6 paintings were used as “Style Images-c” (SI-c).
5. The AI again used SI-c as a new style image, also using WCT for transformation,

resulting in 6 new paintings, which became another group of stimuli.
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paintings painted by human artists and AI-1~AI-6 for the paintings generated by AI.

2.2. Participants

Amongst the 380 participants (147 males and 233 females) in this study, about 40%
were 20~30 years old, about 11% were 31~40 years, about 15% were 41~50 years old, about
15% were 51~60 years old, and about 15% were over 61 years old, indicating a fairly even
distribution of age groups apart from the youngest group. About 70% of the participants
had some painting experience and it is possible that the remaining 30% had to spend
relatively more time looking at the 12 paintings. This, coupled with the stronger interest in
the research topic of those with painting experience, likely accounts for the fact that those
with painting experience gave more complete responses.

2.3. Research Design

Based on Norman [28] and Lyu, Lin, and Lin [39], as shown in Figure 3, this study
was divided into three main levels: the technical level, the semantic level, and the effect
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level. The technical level concerns the aesthetic experience of the viewer and is divided
into color, brushstroke, and line. On the technical level, color is subdivided into contrast,
brightness, and vividness, brushstroke is subdivided into fluency, precision, and variation,
and line is divided into vigor, identity, and texture. The semantic layer concerns the
conative experience of the viewer and is divided into happy and lively, rich and varied,
and steady and distinct. The effect level serves as the dependent variable and concerns the
viewer’s emotional experience relating to the theme of Home Sweet Home as measured by
the participants’ feelings of happiness, belongingness, and security. Finally, the participants
identified each painting as being produced by either a computer or by an amateur artist.
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Figure 3. Communication matrix for evaluating artistic style transfer on Home Sweet Home.

To control for any other variables that might influence the participant’s judgment such
as differences in symbols or composition, a process of mutual learning was used to produce
the two sets of paintings and each pair of paintings, one AI and one human, were modeled
on the same famous painting.

2.4. Research Procedures

A short film was used to introduce the participants to the theme of Home Sweet
Home and to explain the difference between human and AI painting. When the two sets
of paintings used in the study were shown, care was taken not to reveal how they were
produced. The medium used in human and AI painting is obviously different, so this
difference was controlled by scanning and printing the human paintings, adjusting the
pixel quality in such a way that, in this respect, they became indistinguishable from their
AI counterparts. Each painting was viewed individually online without the option to
change the size. The questionnaire was also filled out online. Paintings of the same style
were paired together and the sequence was not fixed. Once a response was made, it could
not be changed in order to prevent the participants’ responses from being influenced by
comparisons between the earlier and latter pairs.
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3. Results
3.1. Identifying the AI Works

For each of the six AI paintings, a large proportion of the participants (between 72.1%
and 58.4%) judged them to be human paintings. By contrast, a smaller proportion of the
participants (between 52.1% and 34.7%) judged the six human paintings to have been
painted by real people, i.e., a majority of the participants mistook the AI paintings for
human paintings. In addition, the two types of paintings were presented in pairs (HU-1 vs.
AI-1, HU-2 vs. AI-2, etc.,) and the proportion of correct answers increased towards the end
of the sequence.

The highest percentage of correct answers was for the HU-6 vs. AI-6 group, indicating
that the participants’ ability to distinguish the two types of paintings improved as they
went through the sequence (Figures 4 and 5).
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3.2. Technique: The Emotional Impact of AI Paintings on the Participants

On the level of technique, in the stepwise multiple regression analysis of the affect
relating to the theme of Home Sweet Home, color brightness, line precision, and line fluency
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were treated in order and the joint explained variance was 43.1%. On the level of technique,
in the multiple regression analysis for emotions relating to the theme of Home Sweet Home,
for color brightness the results were β = 0.373 (t = 7.868, p < 0.001), for line precision the
results were β = 0.277 (t = 5.066, p < 0.001), and for line fluency the results were β = 0.126
(t = 2.202, p < 0.05), indicating that these three variables had significant predictive power in
terms of the affect relating to the theme of Home Sweet Home. The equation used in the
regression analysis was as follows:

Home Sweet Home technique level = 0.373 * color brightness + 0.277 * line precision + 0.126 * line fluency (1)

On the semantic level, in the stepwise multiple regression analysis of the affect relating
to the theme of Home Sweet Home, happy and lively and steady and distinct were treated
in order and the joint explained variance was 76.8%. On the semantic level, in the multiple
regression analysis for emotions relating to the theme of Home Sweet Home, for happy and
lively the results were β = 0.729 (t = 22.576, p < 0.001) and for steady and distinct the results
were β = 0.208 (t = 6.447, p < 0.001), indicating that these two variables had significant
predictive power in terms of the affect relating to the theme of Home Sweet Home. The
equation used in the regression analysis was as follows:

Home Sweet Home semantic level = 0.729 * happy and lively + 0.208 * steady and distinct (2)

The technical factors that generated an emotional response relating to the theme of
Home Sweet Home were bright colors and precise and fluent lines; this result may have
been influenced by the emotions implied by the expression “Home Sweet Home”. Although
people have various associations towards the concept of the family, the expression “Home
Sweet Home” is clearly a positive concept, so it was natural for the participants to associate
it with bright colors and lines that are precise and fluent. As for the failure of brushstroke
to have much impact in this respect, this may have been due to the relative subtlety of
brushstroke in contrast to the more obvious qualities of color and line. On the semantic
level, happy and lively and steady and distinct were found to be the key factors. People
associate a happy family with feelings of joy and relaxation as well as strong and orderly
personal relationships and these are the characteristics the participants expected to find in
the paintings on the levels of technique and semantics.

Therefore, this study believes that although “Home Sweet Home” is a relatively
abstract concept, and everyone has a different understanding of it, it does not affect
people’s understanding of this concept. Additionally, “color” and “line” can be regarded as
the external form; people feel the deep content through these elements.

3.3. Creative Art: Areas Where AI Has Lagged Behind

A correlation analysis conducted on the proportion of participants who judged a
painting to be by a human painter and the three factors on the effect level—happiness,
sense of belonging, and sense of security—found no significant correlation. On the semantic
level, a low correlation was also found for happy and lively, rich and varied, and steady
and distinct (Table 2). For all the factors on the technical level, no significant correlation
was found.

Table 2. Participants’ judgments on the effect level and semantic level.

Effect Level Semantic Level

Percentage of participants who judged the painting to have
been painted by a human

Happiness Sense of Belonging Sense of Security Happy and Lively
0.109 * 0.155 * 0.104 * 0.107 *

* p < 0.05.

This shows that the audiences assessed the paintings based on their overall emotional
experience rather than on a specific expressive technique, i.e., the more a painting elicited
emotions associated with the theme of Home Sweet Home the more likely the participants
were to judge it to be a human painting.
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As shown in Figure 6 on the next page, the highest degree of recognition was for the
technical level (green), followed by the semantic level (red), and the effect level (blue),
indicating that the participants found it easier to pay more attention to the technical level,
which is based on sense perception, and relatively less attention to the situation-based
semantic level and the affect-based effect level. The gradual decrease in perception suggests
that a painter’s ability to effectively use the technique to express the spirit of a painting
diminishes as he continues to paint.
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As for the average scores on the effect level, among the 12 paintings, only the score
of the AI painting (solid blue line) in the third pair was higher than the average score
of three, indicating that on the effect level the paintings did not convey the theme very
well. This may have been due to the fact that the paintings in this study emphasized the
physical home rather than the family, making it difficult for the participants to resonate
with the theme.

For five of the six pairs of paintings, the AI paintings were scored higher in terms of
affect relating to the theme, with the AI-5 and HU-5 pair being the lone exception, indicating
that the AI paintings were more effective in this respect, due to machine learning.

The style transfer of the HU-5 and AI-5 pair was based on The Potato Eaters, which is
composed of black and yellow and depicts a family of farmers eating potatoes in the faint
light of a small oil lamp, yet this pair had the lowest score in terms of conveying the Home
Sweet Home theme.

In all three factors on the effect level—happiness, sense of belonging, and sense of
security—for this pair, the human painting scored higher than the AI one and the same
was found for all three factors on the semantic level—happy and lively, rich and varied,
and steady and distinct; moreover, the human painting in this pair was judged to have a
brighter and more vivid coloring and its brushstrokes were judged to be bolder and more
powerful. The same algorithm was used to generate all of the AI paintings and all of the AI
paintings, except for the one in the HU-5 and AI-5 pair, were found to effectively express
the theme of Home Sweet Home, indicating that when there is a discrepancy between
the AI painting’s representation of the subject and the learning source it is not possible to
correct this by adjusting the algorithm (Tables 3 and 4).
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Table 3. Average for affective impact on the theme of Home Sweet Home for the human.

Evaluation Criteria and Averages
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AI-5

Technique Level
color contrast 2.53 line fluency 2.51 brushstroke vigor 2.55

color brightness 1.47 line precision 2.28 brushstroke unity 2.68
color vividness 1.48 line variation 2.74 brushstroke texture 2.90

Semantic Level happy and lively 1.58 rich and varied 2.36 steady and distinct 2.22

Effect Level sense of belonging 1.63 happiness 1.59 sense of security 1.61

4. Discussions

Based on the results of the experiment, and in conjunction with the initial research
objectives, this subsection will discuss three aspects.

4.1. The Significance of a Painting Is Determined by Humans, Yet AI Artwork Cannot Draw on
Real-Life Memories and Associations

In a painting of a village at night, by using a color scheme consisting of black, yellow,
and white, yellow can be used to convey the warm lamplight illuminating each home
and by extension represents the comfort and conviviality of a happy family. This kind of
symbolism is lost to AI, nor can AI make up for this deficiency by drawing upon related
memories; as a result, the AI painting in the HU-5 and AI-5 pair failed to make effective
use of yellow to convey the idea of lamplight on a dark night. Similarly, the color and lines
in a painting do not have significance in and of themselves, but rather this significance is
given by human beings.

Moreover, art is a kind of projection of a person’s experience and feelings, yet AI has
neither of these, therefore drawing on life experience to create a piece of art that touches
the viewer’s heartstrings is beyond the capability of AI.

4.2. AI Is Unable to Comprehend the Social Significance of Particular Colors

AI creates a work of art by using algorithms to summarize the past experience, which
makes it good at programming and dealing with routine situations, and this is why for
most of the pairs the AI paintings were found to be better at conveying the theme of Home
Sweet Home. However, AI is not very good at dealing with unusual situations, as was
seen in the case of the HU-5 and AI-5 pair of paintings, which is based on the reverse
expression style. The HU-5 and AI-5 pair has a black background, a deep and solemn color
implying danger, death, and termination, such that deemphasizing the black tones can be
used to increase the sense of a happy family; an artistic technique that can be thought of as
“retreating in order to advance” and this is why the black sections of the human painting in
the HU-5 and AI-5 pair are less dark in order to reduce the sense of heaviness. In addition,
although in the other pairs the participants preferred the fluent lines, in this pair they found
the bold and vigorous brushstrokes of the human painting more to their liking since they
convey a sense of security.

4.3. Unlike a Human Painter, AI Lacks the Capacity to Reflect on the Overall Composition

Painting a picture is a process of continual revision of details and the overall composi-
tion is based on the artist’s observation of the painting as it comes into being in such a way
that he comes to feel out the relationship between the colors, lines, and brushstrokes. By
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contrast, an AI painting is generated by using an algorithm to arrange pixels in a way that
simulates a human painting. The HU-5 and AI-5 pair of paintings in this study is based
on the contrast between black and yellow, such that the deeper the black the brighter the
yellow, allowing the painter to highlight the yellow elements in order to convey the theme
of a happy family. By contrast, since a computer lacks this reflective capacity, it cannot
reflect upon the effectiveness of the color contrast and make adjustments accordingly. In
sum, a computer can imitate a particular style, but it lacks the artist’s capacity to reflect on
the overall composition.

5. Conclusions and Suggestions
5.1. Conclusions

In producing a painting on the theme of a happy family, the human artist draws upon
his related emotions and memories to form an overall artistic concept expressing joy and
stability and then applies his technical skills to manifest the theme through a combination
of color, lines, and brushstrokes. By contrast, an AI painting is limited to the level of
technique, since a computer is unable to operate on the levels of semantics and effects.
Whereas a human painting originates in the heart and mind of the artist, an AI painting is a
purely technical process, such that an AI painting is more of a simulation than a genuine
work of art. Whereas human art is a function of the mind, AI art is a function of technique
as shown in Figure 7.
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It should be pointed out that as AI becomes more mature this study believes that AI
artists are likely to create like human artists in the future. Then, for human artists how to
maintain their own advantages will be another issue worth exploring.

5.2. Suggestions

Technology intervenes in artistic creation as a double-edged sword. This study sug-
gests that we can explore the following two aspects in depth and also provide a reference
for interested researchers.

1. Both AI and human art is best appreciated when viewed in a gallery. To fully appre-
ciate a work of art, the viewer needs to be in the same physical space and there is a
major difference between viewing paintings on the internet and actually going to an
art museum. Therefore, it is suggested that in future research on this topic both the
human and AI paintings should be viewed in person rather than on the internet, with
the AI paintings being produced using 3D printing. Indeed, the experience of viewing
a painting live is difficult to copy 100% onto the Internet. Subject to conditions, espe-
cially the impact of the COVID-19 pandemic on live viewing at this stage, this study
also considers that such viewing patterns may have a certain impact on the findings
and conclusions of the study. Subsequently, the research team will invite the audience
to the scene to watch and conduct in-depth discussions when conditions permit.
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2. Use semantic recognition to improve AI’s creativity. At present, a lack of self-
awareness and a holistic perspective are the main limitations of AI, even though
semantic recognition technology is already fairly advanced. In this study, the paint-
ings used for the style transfer were selected by experts in art history and aesthetics
rather than by AI itself and this had a major influence on the resulting AI paintings.
Thus, it is suggested that future research on this topic should use semantic recognition
and a painting database to allow AI to select the paintings used for style transfer in
order to diversify the material used in the learning process.
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