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Abstract: Loss of lumbar lordosis in flatback patients leads to changes in the walking mechanism
like knee flexion. Such variations in flatback patients are predicted to alter the characteristics of total
knee replacement (TKR) contact, so their TKR will show different wear characteristics with a normal
gait. However, the relevant study is limited to predicting the wear depth of TKR for normal gait
mechanisms or collecting and analyzing kinematic data on flatback gait mechanisms. The objective of
this study was to compare wear in TKR of flatback patients with people without flatback syndrome.
The main difference between the normal gait mechanism and the flat back gait mechanism is the knee
flexion remain section and the tendency to change the vertical force acting on the knee. Thus, in this
paper, A finite element-based computational wear simulation for the gait cycle using kinematic data
for normal gait and flat gait were performed, and substituting the derived contact pressure and slip
distance into the Archard formula, a proven wear model, wear depth was predicted. The FE analysis
results show that the wear volume in flatback patients is greater. The results obtained can provide
guidance on the TKR design to minimize wear on the knee implant for flatback patients.

Keywords: knee implant; wear prediction; wear simulation; finite element analysis; flatback deformity;
TKR design

1. Introduction

Flatback syndrome results in muscular pain in the upper back and lower cervical
area, knee pain, and inability to stand erect, and is also referred to as “fixed sagittal
imbalance” [1,2]. Flatback syndrome is diagnosed as follows. A plumb line is dropped
vertically from the center of the C7 body, and the horizontal linear distance between the
plumb line and the posterior-superior part of the sacral end plate is measured. If this
distance is more than ±3 cm, it is judged that the spine has deformed [3,4]. Among the
known symptoms associated with flatback syndrome is difficulty in maintaining an upright
posture is due to loss of lumbar lordosis [2]. As a result, the body compensates for the
posture in various ways to maintain the correct posture, one of which is the flexion of the
knee as shown in Figure 1. However, this mechanism to compensate for posture through
knee flexion increases the load on the knee joint and causes the progression to knee arthritis,
causing knee pain [5].
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Figure 1. Standing posture in ambulatory patients with flatback: (a) Patient with flatback who was 
unable to maintain an upright posture with the knee extended fully; (b) Knee and hip flexion as a 
compensatory mechanism allows for an erect torso, protects the hip extensors and spine, but in-
creases the demand on the quadriceps (reprinted with permission from ref. [2]. Copyright 2002 
Wolters Kluwer Health, Inc., Philadelphia, USA). 

Limits in knee extension and knee pain due to continuous knee flexion can be im-
proved by total knee replacement (TKR) [5]. As shown in Figure 2, a knee artificial joint 
consists of the femoral components and tibial insert. The femoral component is a metal 
that is applied to the distal ends of the femur, and the tibial insert is a specially made 
plastic plate that acts as cartilage inserted to reduce friction. The tibial insert is prone to 
wear as it absorbs shocks and allows the knee joints to move smoothly during lower limb 
exercise. The wear of the tibial insert has been regarded as the most important cause of 
complications after TKR, and many studies have been conducted on this [6–8]. However, 
due to the loss of lumbar lordosis, flatback patients are predicted to have different wear 
characteristics from normal gait because the gait mechanism is different from that of peo-
ple without flatback syndrome, and changes the contact characteristics of the knee artifi-
cial joint. 

Figure 1. Standing posture in ambulatory patients with flatback: (left) Patient with flatback who was
unable to maintain an upright posture with the knee extended fully; (right) Knee and hip flexion
as a compensatory mechanism allows for an erect torso, protects the hip extensors and spine, but
increases the demand on the quadriceps (reprinted with permission from ref. [2]. Copyright 2002
Wolters Kluwer Health, Inc., Philadelphia, PA, USA).

Limits in knee extension and knee pain due to continuous knee flexion can be improved
by total knee replacement (TKR) [5]. As shown in Figure 2, a knee artificial joint consists of
the femoral components and tibial insert. The femoral component is a metal that is applied
to the distal ends of the femur, and the tibial insert is a specially made plastic plate that
acts as cartilage inserted to reduce friction. The tibial insert is prone to wear as it absorbs
shocks and allows the knee joints to move smoothly during lower limb exercise. The wear
of the tibial insert has been regarded as the most important cause of complications after
TKR, and many studies have been conducted on this [6–8]. However, due to the loss of
lumbar lordosis, flatback patients are predicted to have different wear characteristics from
normal gait because the gait mechanism is different from that of people without flatback
syndrome, and changes the contact characteristics of the knee artificial joint.
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Figure 2. knee implants replacements (reprinted with permission from ref. [9]. Copyright 2009 Else-
vier). 

Currently, related research can confirm the study on the wear of the knee artificial 
joint in the normal gait mechanism [6,8,10–16] or study the study on the compensation 
mechanism of the spine and knee by collecting and analyzing kinematic data during gait 
of flatback patients [2,5,17–21]. These researchers have presented the results of their study, 
such as a comparison of wear volume according to materials used for friction surface of 
the knee artificial joint, a comparison of wear volume of the knee artificial joint by exper-
iment and computational simulation, a comparison of wear volume of the knee artificial 
joint by ISO standards, and an analysis of the effects of loss of lumbar lordosis on the knee 
in flatback patients by comparing the kinematic data of people without flatback syn-
drome. However, there has been no study to predict the wear on the knee artificial joint 
considering the gait mechanism of the flatback patients that is different from that of peo-
ple without flatback syndrome. Therefore, a comparative study was conducted on the 
wear characteristics of the gait mechanism of flatback patients, which is different from the 
gait mechanism of people without flatback syndrome, and it is necessary to present this 
result as a design guideline for knee artificial joint in flatback patients. 

The purpose of this study is to predict the wear characteristics of the knee artificial 
joint in normal gait mechanism and flatback gait mechanism. To obtain the wear charac-
teristics in flatback patients due to differences from normal gait mechanisms, we used the 
finite element (FE) method in this study. Performing a wear experiment requires a lot of 
time and cost, so it is more efficient in terms of time and cost to predict and analyze knee 
artificial joint wear through computational simulation using finite element analysis. After 
the creation of the finite element model, finite element analysis was performed by apply-

Figure 2. Knee implants replacements (reprinted with permission from ref. [9]. Copyright 2009 Elsevier).

Currently, related research can confirm the study on the wear of the knee artificial
joint in the normal gait mechanism [6,8,10–16] or study the study on the compensation
mechanism of the spine and knee by collecting and analyzing kinematic data during gait of
flatback patients [2,5,17–21]. These researchers have presented the results of their study,
such as a comparison of wear volume according to materials used for friction surface of the
knee artificial joint, a comparison of wear volume of the knee artificial joint by experiment
and computational simulation, a comparison of wear volume of the knee artificial joint by
ISO standards, and an analysis of the effects of loss of lumbar lordosis on the knee in flatback
patients by comparing the kinematic data of people without flatback syndrome. However,
there has been no study to predict the wear on the knee artificial joint considering the gait
mechanism of the flatback patients that is different from that of people without flatback
syndrome. Therefore, a comparative study was conducted on the wear characteristics of
the gait mechanism of flatback patients, which is different from the gait mechanism of
people without flatback syndrome, and it is necessary to present this result as a design
guideline for knee artificial joint in flatback patients.

The purpose of this study is to predict the wear characteristics of the knee artificial joint
in normal gait mechanism and flatback gait mechanism. To obtain the wear characteristics
in flatback patients due to differences from normal gait mechanisms, we used the finite
element (FE) method in this study. Performing a wear experiment requires a lot of time and
cost, so it is more efficient in terms of time and cost to predict and analyze knee artificial joint
wear through computational simulation using finite element analysis. After the creation
of the finite element model, finite element analysis was performed by applying constraint
and loading conditions for Modified ISO 14243-3 in the case of people without flatback
syndrome and for experimental results of previous research [15] in the case of flatback
patients. Through this analysis, contact pressure and sliding distance for one gait cycle
were obtained, and the wear depth was calculated by using Archard’s Law [22–24]. The
wear in the flatback patient’s gait mechanism and the wear in the normal gait mechanism
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were compared by the wear area and contact area results after 5,000,000 cycles. The study
about wear can contribute to guiding TKR design and positioning to reduce wear for
flatback patients.

This paper consists of five sections. Following this section, a finite element model
is performed to derive the contact pressure distribution of the knee artificial joint. Then,
Archard’s Law, which derives the wear depth using the obtained contact pressure, is
introduced, and the process for deriving the wear depth of the artificial joint bearing after
5,000,000 cycles is presented. In the third section, numerical results obtained by employing
the finite element analysis model are exhibited and the accuracy of the results is verified
by comparing the actual experimental results. Furthermore, we compare and analyze the
contact pressure, maximum sliding distance, wear depth, and wear area of the normal gait
mechanism and the flat gait mechanism. In the fourth section, the discussions related to the
results are given. In particular, the effect of the difference in contact pressure very during
the gait cycle due to the difference in the gait mechanism on wear was analyzed. Finally,
conclusions are made in the final section.

2. Methods
2.1. Finite Element Analysis Model

The 3D CAD model of the femoral component and tibial insert of the knee artificial
joint was made using SolidWorks 2020 (Solidworks Corp., Waltham, MA, USA). The
femoral component was modeled as a rigid body with 4-node-shell elements and the tibial
insert was modeled with 8-node hexahedral elements (See Figure 3). Meshing, analysis and
post-processing were performed using ABAQUS 2016 (Abaqus, Inc., Johnston, RI, USA).
Ultra-high molecular weight polyethylene (UHMWPE) was applied as the material of the
tibial insert. UHMWPE material was modeled using the J-2 Plasticity model with a density
of 9.4 × 10−10 tonne/mm3, an elastic modulus of 1051 MPa and a Poisson’s ratio of 0.46.
The stress–strain data used in the J-2 Plasticity model are shown in Table 1 [15].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 16 
 

This paper consists of five sections. Following this section, a finite element model is 
performed to derive the contact pressure distribution of the knee artificial joint. Then, Ar-
chard’s Law, which derives the wear depth using the obtained contact pressure, is intro-
duced, and the process for deriving the wear depth of the artificial joint bearing after 
5,000,000 cycles is presented. In the third section, numerical results obtained by employ-
ing the finite element analysis model are exhibited and the accuracy of the results is veri-
fied by comparing the actual experimental results. Furthermore, we compare and analyze 
the contact pressure, maximum sliding distance, wear depth, and wear area of the normal 
gait mechanism and the flat gait mechanism. In the fourth section, the discussions related 
to the results are given. In particular, the effect of the difference in contact pressure very 
during the gait cycle due to the difference in the gait mechanism on wear was analyzed. 
Finally, conclusions are made in the final section. 

2. Methods 
2.1. Finite Element Analysis Model 

The 3D CAD model of the femoral component and tibial insert of the knee artificial 
joint was made using SolidWorks 2020 (Solidworks Corp., Massachusetts, USA). The fem-
oral component was modeled as a rigid body with 4-node-shell elements and the tibial 
insert was modeled with 8-node hexahedral elements (See Figure 3). Meshing, analysis 
and post-processing were performed using ABAQUS 2016 (Abaqus, Inc., Rhode Island, 
USA). Ultra-high molecular weight polyethylene (UHMWPE) was applied as the material 
of the tibial insert. UHMWPE material was modeled using the J-2 Plasticity model with a 
density of 9.4E-10 tonne/mm3, an elastic modulus of 1051 MPa and a Poisson’s ratio of 
0.46. The stress–strain data used in the J-2 Plasticity model are shown in Table 1 [15]. 

 
Figure 3. FE model of knee artificial joints. 

Table 1. The stress–strain data for the J-2 Plasticity model. 

Stress (MPa) Strain 
12.1 0.00 
21.4 0.03 
23.8 0.11 
44.0 0.55 
92.4 0.98 

135.0 1.09 
515.0 1.34 

Figure 3. FE model of knee artificial joints.

Table 1. The stress–strain data for the J-2 Plasticity model.

Stress (MPa) Strain

12.1 0.00
21.4 0.03
23.8 0.11
44.0 0.55
92.4 0.98
135.0 1.09
515.0 1.34
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A penalty-based method was applied to define the contact between the femoral
component and the tibial insert of the knee artificial joint. For the efficiency of the computa-
tional simulation, the femoral component was modeled as a rigid body [8,10]. However,
the tibial insert was modeled as a flexible body to consider wear and deformation. The
friction coefficient was set to 0.04, which is the result obtained in the experiment of the
previous study [11,14,15]. To apply the motion of the knee artificial joint during the
gait cycle (see Figure 4), in the normal gait mechanism, the knee flexion–extension angle
(see Figure 5a), anterior–posterior displacement (see Figure 5d), and adduction–abduction
angle (see Figure 5c) applied the conditions of the modified ISO 14243-3 [14]. Furthermore,
in the flatback gait mechanism, the knee flexion–extension angle (see Figure 6a, red line) ap-
plied the kinematic data obtained through the experiment on flatback patients in a previous
study [2], but the anterior–posterior displacement (see Figure 5d) and adduction–abduction
angle (see Figure 5d) applied the same data as for the normal gait mechanism. For the verti-
cal force acting on the knee artificial joint, experimental data (see Figure 6b) from a previous
study [2] were applied for both gait mechanisms. The anterior–posterior displacement and
adduction–abduction angle data for the flatback gait mechanism could not be confirmed
in a related previous study. Furthermore, a previous study comparing the kinematic data
during normal gait and flatback gait also focused on the knee flexion–extension angle and
the vertical force acting on the knee. Therefore, it can be inferred that the application of the
data of normal gait case to the anterior–posterior displacement and adduction–abduction
angle of the flatback gait case does not have a significant effect on the comparison of the
two gait mechanisms.
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Figure 4. An illustration of gait phases (reprinted with permission from ref. [25]. Copyright 2019
Mariem Abid et al.).

The boundary conditions and loading conditions were set according to ISO 14243-3 [26].
As shown in Figure 7, IE rotation (see Figure 5c) and AP displacement (see Figure 5d) were
applied to the tibial insert as boundary conditions at a reference point located at the center
of mass of the tibial insert. Medial/lateral (ML) displacement of the tibial insert was left free,
and flexion–extension rotation of the tibial insert was fixed. Flexion–extension rotation was
applied to the femoral component as boundary conditions and other directional degrees
of freedom were fixed. All displacement conditions given to the femoral component were
given to the rigid reference point of the femoral component. The loading point on the
tibial insert was offset to the medial side by a distance of 0.07 times the width of the tibial
insert according to ISO 14243-3 [26]. The summary of the boundary conditions given to the
femoral component and tibial insert can be seen in Figure 7.
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Since this study is a comparison of the distribution of contact pressure and wears
characteristics in the normal gait mechanism and in the flatback gait mechanism, the
experimental result values from the previous study [2] that obtained the load condition
of the flatback gait mechanism were also applied to the load condition in the normal gait
mechanism. The previous experimental result values are given as standardized vertical
ground reaction force values. Since the vertical ground reaction force is proportional to the
axial compression force across the knee joint, it was used by multiplying the appropriate
value to fit the load conditions in ISO 14243-3 [26] (see Figure 5b).

The major difference between the normal gait mechanism and the flatback gait mecha-
nism is that the knee flexion and vertical reaction force [2,26] are maintained continuously
(see Figure 6). Since the vertical ground reaction force approaches indirectly in propor-
tion to the axial compressive force across the knee joint, it can be inferred that the axial
force applied to the knee is also maintained continuously in the flatback gait mechanism.
Furthermore, this seems to affect the wear on the knee artificial joint.

2.2. Wear Prediction by Using Archard’s Law

To calculate the wear depth on the tibial insert, it was numerically formulated using
Archard’s Law. Archard’s Law is an equation introduced to evaluate the linear wear depth
perpendicular to the wear surface between two metal surfaces sliding relative to each other.
The formula known as Archard’s Law of wear is as follows [22]:

H = Kw pS (1)

where H is the linear wear depth, Kw is an experimentally determined wear factor, p
is contact pressure, and S is the sliding distance. For the wear factor Kw, a value of
2.64 × 10−7 mm3/Nm is generally used in a previous study [11].

In the formula mentioned above, the factor that most influences the wear depth is the
contact pressure [13,23]. Therefore, in this study, the wear depth and wear area will be
predicted through the magnitude and distribution of the contact pressure for one gait cycle.

The process for deriving the wear depth was carried out according to the sequence
shown in Figure 8. After performing a finite element nonlinear transient analysis for
one gait cycle, the contact pressure and sliding distance are obtained from the output
file, respectively. In the finite element software ABAQUS used in this paper, the contact
pressure and sliding distance is obtained from CPRESS and CSLIP of the field output file,
which is the ABAQUS result file. where CSLIP is the sum of the tangential distances of
the node of the tibial insert including the slave surface. Therefore, for every time-step,
the INCSLIP value, which is the value of subtracting the CSLIP of the previous time-step
from the CSLIP of the current time-step, is applied. By substituting the obtained contact
pressure and sliding distance into Equation (1), the wear depth at each node was derived,
and the wear depth was multiplied by 500,000. The position of each node was updated
by the derived wear depth after 500,000 cycles, and the worn contact surface shape was
updated. By repeating this process 10 times, the wear depth after 5,000,000 gait cycles can
be derived. Additionally, the position update cycle reflecting the wear depth of each node
was applied to the results of a previous study that the result of updating node position
every 500,000 cycles has convergence [10].
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3. Results
3.1. Model Validation

A convergence study was performed to find the optimum mesh size in the tibial insert
(see Figure 9). Mesh convergence was selected as the mesh size when the maximum contact
pressure values were all within 5% of the following two mesh sizes [27–31]. The average
mesh size suitable for that criterion was 1.1 mm and the number of elements was 16,376.
The mesh size of the face where the femoral component contacts the tibial insert was the
same as the mesh size of the tibial insert and the number of elements in the femoral part
was 7102.
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To verify the wear simulation model performed by finite element analysis, the wear
simulation results were compared with the wear results of a previous study [15]. For the
finite element analysis performed, the load and displacement conditions were applied to
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the standard of ISO 14243-3:2004 [26] to match the actual test conditions, and the results of
the wear rate at 4,000,000 cycles were derived and compared. The wear rate was obtained
by subtracting the mass of the tibial insert after 4,000,000 cycles of analysis from the mass
of the tibial insert before performing the wear analysis. As shown in Table 2, the wear
rate (8.26 mg/MC) of the finite element analysis performed in this study and the wear rate
(8.66 mg/MC) of the finite element analysis performed in the previous study [15] show
similar results. Therefore, it can be judged that the reliability of the model proposed in
this study has been verified. However, this wear rate is larger than the experimental wear
rate (2.96~7.32 mg/MC) of the previous study. This difference can be explained by not
considering the viscoelastic effect in the material model used in this study. Considering the
viscoelastic effect of a knee artificial joint using UHMWPE (ultra high molecular weight
polyethylene) material, it was found that the contact pressure decreased by more than
10% when the compressive force was continued [32]. Since the wear depth is proportional
to the contact pressure, considering the viscoelastic effect of the UHMWPE material, the
wear rate will decrease as the wear depth decreases. However, since the purpose of this
study is to analyze the difference in wear trends according to other gait characteristics
rather than to derive an accurate wear rate, the viscoelastic effect was not considered for
the simplification of the analysis model and faster analysis time.

Table 2. Comparison of wear rate of FE analysis and actual experiments.

FE Analysis Wear Experiment
in Previous Study [15]

FE Analysis
in Previous Study [15]

Wear rate
(mg/million cycle) 8.26 2.96~7.32 8.66

Additionally, in order to verify the finite element model, the graph of maximum
contact pressure during one gait cycle was compared with the graph of the results of a
previous study [11,16,33]. The axial force applied to the presented FE model was used the
modified ISO 14243-3 [14] (see Figure 5b). As shown in Figure 10, the maximum contact
pressure tendency in the previous study showed that the peak value appeared twice before
the gait cycle of 20%. Next, the peak value appeared immediately after the gait cycle of
40%. Finally, decreases and the low value were maintained after the gait cycle of 60%. The
maximum contact pressure graph during one gait cycle obtained as the analysis results
of this study coincided with the position of the pressure peak points and the position
where the value decreased compared to the graph of the maximum contact pressure of the
previous study. Above all, in the graph of the previous study, the section where the value
decreased significantly after 60% of the gait cycle was also well shown in the graph of the
analysis result of this study. This study does not aim to verify whether the finite element
model can replace the experimental model, but to compare the wear characteristics of knee
artificial joints in normal and flatback gait mechanisms. Therefore, it is judged that the
finite element model proposed in this study is reliable in comparing the wear characteristics
of the knee artificial joint according to the gait mechanism.
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Figure 10. Tendency of maximum contact pressure: (a) present study; (b) Abdelgaied et al. (reprinted
with permission from ref. [11]. Copyright 2011 Elsevier); (c) Willing et al. (reprinted with permission
from ref. [16]. Copyright 2008 Springer Nature); (d) Halloran et al. (reprinted with permission from
ref. [33]. Copyright 2011 Elsevier).

3.2. Comparison of Contact Pressure of Normal Gait Mechanism and Flatback Gait Mechanism

Figure 11 shows the graph of the maximum contact pressure in one gait cycle for the
normal gait mechanism and flatback gait mechanism. The major difference between the
two gait mechanisms was that in the section after 20% of the gait cycle, there was a section
in which the maximum contact pressure decreased in the normal gait mechanism, but
the flatback gait mechanism did not exist. In addition, the magnitude of the maximum
contact pressure at the start of the gait cycle had a value of 15.89 MPa for the normal gait
mechanism, while 23.80 MPa for the flatback gait mechanism was higher than that of the
normal gait mechanism. Therefore, during one gait cycle, flatback patients are expected to
have a greater depth of wear because they receive higher contact pressure than normal.
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Figure 12 shows the contact pressure distribution of the tibial insert in one gait cycle
for the normal gait mechanism and flatback gait mechanism. The contact point was
similar in both gait mechanisms, but the contact area showed a difference between the
two mechanisms. Until the 60% gait cycle, the contact area of the flatback gait mechanism
was 10–20% greater than that of the normal gait mechanism. However, after the 60% gait
cycle, on the contrary, the normal gait showed slightly larger values than the flatback gait.
This phenomenon can be inferred that the gait mechanism with a greater magnitude of the
maximum contact pressure in each phase of the compared gait cycle presses the contact
surface with a greater force, which resulted in a greater contact area.

Figure 12. Contact pressure distribution of tibial insert for normal and flatback gait mechanism.

In the wear simulation, the contact surface shape of the tibial insert is updated at
intervals of 500,000 gait cycles. The maximum contact pressure variation during one gait
cycle due to the contact surface shape updated every 500,000 cycles is shown in Figure 13.
Overall, as the gait cycle increases, the contact area increases due to wear in both the normal
gait mechanism and the flatback gait mechanism, and the maximum contact pressure tends
to decrease. However, in the 25–50% gait cycle, the two gait mechanisms show different
aspects. In this section, the maximum contact pressure in the normal gait mechanism did
not decrease significantly even when the number of gait cycles increased, whereas in the
flatback gait mechanism, the maximum contact pressure decreased remarkably as the gait
cycles increased. This phenomenon can be predicted that more wear occurs on the contact
surface of the knee artificial joint in the case of flatback patients in the 25–50% gait cycle.
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In order to confirm the wear depth in one gait cycle, the graph of the maximum wear
depth after 5,000,000 cycles was compared. As shown in Figure 14, the peak value of
the maximum wear depth was greater in the normal gait mechanism, but the tendency
to maintain the maximum wear depth during the gait cycle was greater in the flatback
gait mechanism. The average value of the maximum wear depth during one gait cycle
was 1.7953 × 10−9 mm for the normal gait mechanism and 1.8146 × 10−9 mm for the
flatback gait mechanism, and there was no significant difference. However, this graph
can find meaning in predicting the wear volume for each gait cycle section. The peak
value of the maximum wear depth appeared just before 60% of the gait cycle for both
gait mechanisms, and generally maintained a large value after 50% of the gait cycle. In
the case of the normal gait mechanism, the maximum wear depth was greater than that
of the flatback gait mechanism in the 0–20% gait cycle. Furthermore, in the case of the
flatback gait mechanism, the maximum wear depth was greater than that of the normal
gait mechanism in the 20–40% gait cycle.
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4. Discussion

The purpose of this study was to compare the maximum contact pressure, distribution
of contact pressure and wear depth from the flatback gait mechanism against the normal
gait mechanism. Unlike the normal gait mechanism, the flatback gait mechanism maintains
the knee flexion and maintains the vertical force applied to the knee, so it can be expected
that the wear characteristics of the two gait mechanisms will be different.

When the finite element analysis was performed for 5,000,000 gait cycles, the maximum
contact pressure of the flatback gait mechanism decreased as the cycles increased in the
25–50% gait cycle section, unlike the normal gait mechanism (see Figure 13). This reduction
in contact pressure causes more contact pressure to be applied to the tibia insert in a specific
gait section, resulting in more wear. It can be inferred that the generated wear increases
the conformity of the shape of the joint contact surface, so the contact area is widened and
the contact pressure is dispersed, resulting in a decrease in the maximum contact pressure.
In the maximum wear depth graph, it was confirmed that the maximum wear depth of
the flatback gait mechanism was generally greater than the wear depth of the normal gait
mechanism in the 25–50% gait cycle section (see Figure 14).

For the contact pressure distribution, it is important to analyze the difference in the
contact area rather than the contact pressure distribution point. The contact pressure
distribution area was larger in the case of the flatback gait mechanism, and it can be seen
that the contact pressure was also greater in this gait cycle. From this result, we can infer
that the increase in the contact pressure region is not the effect of distributing the load, but
is due to the increase in the applied contact pressure. Since the simultaneous increase of the
contact pressure and the contact area can be judged as an increase in the wear volume, it can
be predicted that the wear volume will be greater in the flatback gait mechanism. In relation
to this, as shown in Figure 13, the large decrease of the maximum contact pressure in the
case of flatback gait mechanism in the 25–45% gait cycle can be analyzed as a phenomenon
in which the load is distributed because the contact area is widened due to wear even when
the same load is applied.

The maximum wear depth showed a generally great value after 50% of the gait cycle,
just before the swing phase for both gait mechanisms (see Figure 14). This can be thought
of as a large increase in the maximum wear depth because the sliding distance increases
when the foot is off the ground and the joint rotates freely. In addition, as the maximum
wear depth is greater in the 20–40% gait cycle for the flatback gait mechanism, the fact that
the maximum wear depth, which is directly related to the wear volume, shows different
trends in the two gait mechanisms can be considered as different wear points. Due to this,
it can be expected that the shape of the deformed tibial insert and the femoral component
will appear differently for the two gait mechanisms. One of the ways to reduce the wear
of the knee artificial joint is to increase the conformity of the tibial insert and the femoral
component [34,35]. Therefore, if you increase the conformity of the knee joint artificial joint,
for this reason, the contact pressure can be reduced, so it can be inferred that the wear depth
and the wear volume will decrease. In conclusion, it is necessary to predict wear patterns
in consideration of gait characteristics different from those of normal persons in order to
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improve the conformity of the femur and bearing during TKR (total knee arthroplasty) in
the case of flatback patients.

5. Conclusions

In this study, using the finite element method, the wear phenomenon of a knee artificial
joint was compared with the flatback gait mechanism and the normal gait mechanism
and analyzed according to the gait cycle. For the load and boundary conditions applied
to the finite element analysis, the data of ISO 14243-3:2004 were used for the normal
gait mechanism, and the kinematic data of the flatback patient obtained through the
experiment [15] were used for the flatback gait mechanism. As a result of the finite element
analysis, the maximum contact pressure and the sliding distance of the wear surface during
one gait cycle were derived, and the wear depth was calculated using these results and
Archard’s law. The flatback gait mechanism and the normal gait mechanism showed
differences in the magnitude and distribution of the maximum contact pressure. During
one gait cycle, a zone in which the maximum contact pressure decreased is observed in the
normal gait mechanism but in the flatback gait mechanism, no zone of decreasing maximum
contact pressure appeared and a tendency to maintain a high value was observed. The
difference in these results could be predicted to have a greater effect of wear on the knee
artificial joint in the flatback gait mechanism than in the normal gait mechanism. Therefore,
more research is needed on the wear of the knee artificial joint using the gait mechanism of
flatback patients with an inequality that is different from the normal gait mechanism.

This paper has a limitation in that the wear analysis was performed by applying
the anterior–posterior displacement and adduction–abduction angular displacement of
the flatback patients identically to the normal gait data. Therefore, in a future study, the
anterior–posterior displacement and adduction–abduction angular displacement of flatback
gait mechanism be obtained for the experiment, and, if this result is applied to the results
of flatback patients, it is thought that it will be possible to identify the difference in wear
characteristics more accurately.
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