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Abstract: To ensure smooth robot operations, parameters of its kinematic model and a registration
transformation between robot base and world coordinate frame must be determined. Both tasks
require data acquired by external sensors that can measure either 3D locations or full 6D poses.
We show that use of full pose measurements leads to much smaller robot orientation errors when
compared with the outcome of calibration and registration procedures based on 3D data only. Robot
position errors are comparable for both types of data. The conclusion is based on extensive simulations
of 7 degrees of freedom robot arm and different levels of pseudo-noise perturbing both positional
and rotational components of pose.

Keywords: robot calibration; robot remastering; calibration uncertainty; part probing; uncertainty
reduction; sensor feedback

1. Introduction

The topic of robot calibration is well-established, yet it is still a significant factor
identified by end-users as being negatively impactful for robot usability and utility [1].
Calibration is followed by registration of robot frame to world frame so the accurate
encoder angles can be obtained from inverse kinematic and fed to the robot’s controller.
Both procedures have a profound impact on robot performance and, as pointed out in [2],
“it is impossible to distinguish the end-effector error contributed either by” incorrect model
parameters or by inaccurate registration transformation.

Various methods of calibrating a robot’s kinematic chain have been developed (e.g., [3–5]).
Many of these methods rely on intrinsic kinematic models (e.g., [6–9]), which minimize
complicated, nonlinear error functions (unless only linearized error models are considered,
which may exchange uncertainty for mathematical simplicity) in at least N-dimensional
space, where N is the number of controllable joints in the serial kinematic chain. Calibra-
tions based on extended modeling (i.e., beyond rigid kinematics) include compensating for
thermal effects [10], and elastostatic [11] and higher order errors [12]. Likewise, examples
of non-kinematics-based calibrations can be seen in [13,14]. There are also compensation
techniques that can handle both kinematic and non-kinematic errors, but they require
steady calculations and application of corrections during on-line operations [15–17], or
dynamically selected pre-calculated, hand–eye calibrations from a table [18].

Robot calibration procedures depend on theoretical models of the mechanical system’s
forward kinematic. For a serial open chain robot, the Product of Exponentials (POE)—
based on screw theory—is thought to be one of the most versatile models that can handle
singularities in the popular Denavit–Hartenberg (DH) parameter model [19]. For robots
with revolute joints only, each joint is parametrized by a three-dimensional (3D) unit vector
indicating axis of rotation, and a 3D vector of any point on the axis line. Calibration
procedures for such models rely on Circle Point Analysis (CPA) applied to 3D data acquired
with laser tracker or other sensor: positioning the robot into a zero-reference configuration
(i.e., where all joint angles are set to zero), and then rotating each joint one by one while
keeping all other joints fixed at zero [20,21]. Unfortunately, POE-based models do not
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explicitly include zero offsets of encoder angles. Accurate estimating of zero offsets is
critical because the largest contribution to the robot positioning error (97%) comes from
incorrect zero offsets [22]. Performing the zero offsets calibration in CPA causes that errors
in registration transformation and in the individual offsets accumulate. This may lead to
inconsistent calibration results. For some poses, the calibration process reduced robot pose
error seven-fold; for others, it actually increased error twofold [23].

A desired outcome of calibration is the error reduction in full pose of robot end-
effector, i.e., in its position and orientation. However, both components belong to two
different spaces: position is a vector in 3D space and its components have length units,
like millimeters, while orientation matrix is parameterized by three angles in degrees. This
causes a fundamental scaling problem when a full pose error is minimized (as discussed
in [24], ad hoc introduced scaling factors put more weight either on linear or angular part
of pose error and push optimizer towards different solutions). This may become a problem
in commercial applications where not only position but also orientation of end-effector is
important. For example, in automated drilling, a parallelism between the spindle axis and
the normal axis of the drilling plate surface should be below 0.2◦ [25]. Small orientation
error 0.05◦ required for automated riveting, drilling and spot welding was demonstrated
by applying online pose corrections in [26]. Automated fiber placement is another example
of industrial application where the orientation of robot end-effector is important [27].

The approach that we introduce in this paper avoids the pitfall of minimization of
unbalanced 6D error. First, link twists are determined in the CPA-like procedure from 3D
data. Then, using full 6D poses measured by sensors, encoder zero offsets are determined
in a separate minimization. The error function used in this minimization does not depend
on linear DH parameters (link lengths and linear offsets) nor on the position components
of noisy 6D poses acquired by sensors. Once twists and zero offsets are known, they are
inserted into another error function, which depends only on position components of sensor
data. The remaining linear DH parameters are determined by minimizing this second error
function. For comparison, robot calibration based on only 3D sensor data is also performed.
Obtained results clearly show that orientation errors of end-effector are smaller when
orientation part of 6D data is used. At the same time, the position errors are comparable
for both methods.

2. Background

The frame FTCP associated with the robot’s Tool Center Point (TCP) coordinate system
can be expressed as a 4 × 4 homogeneous transformation consisting of a 3 × 3 rotation
matrix R and a 3 × 1 translation vector t:

FTCP =

[
R3×3 t3×1
01×3 1

]
(1)

For a serial, open-chain collaborative robot arm with N revolute joints, the frame FTCP
in the robot’s base coordinate system can be determined using a forward kinematic model:

FTCP(θk) = F1F2 . . . FN FT (2)

where

θk = [θ1,k, θ2,k, . . . , θn,k, . . . , θN,k] (3)

and θn,k is the encoder angle of the n-th revolute joint for the k-th robot configuration, Fn is
the homogeneous transformation associated with the n-th joint, n = 1, . . . , N, and FT is a
transformation from the robot’s flange frame to the TCP. Using the nominal DH parameters,
the rotation component of each Fn can be written as

Rn,k(θn,k, εn, αn) = Rz(θn,k + εn)Rx(αn) (4)
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where Rz and Rx are rotations around z and x axis, respectively. Two angular DH param-
eters in (4) are αn (the link twist) and εn (the zero offset angle for the n-th encoder). The
translation component of Fn can be expressed as

tn =
[

rn cos(θn,k + εn) rn sin(θn,k + εn) dn
]T , (5)

where rn and dn are two linear DH parameters (link length and offset), and [. . .]T denotes
the vector transpose.

From (2) and (4) it can be seen that the rotation part RTCP of the FTCP frame depends
only on the rotation components

RTCP(θk) = R1,kR2,k . . . RN,kRT . (6)

This is a general property of serial chain manipulators with revolute joints, and is not
dependent on a particular kinematic model (here, we use the DH model for illustration
purposes only). In the remainder of this paper, we use the notation

Rk = RTCP(θk, α, ε) (7)

where α = [α1, α2, . . . , αN ] and ε = [ε1, ε2, . . . , εN ] are the vectors of the DH angular
parameters. Note that the positional component tk of the FTCP(θk) frame depends on joint
angles and all four vectors of the DH parameters:

tk = tTCP(θk, α, ε, r, d). (8)

3. Determination of Link Twist

To ensure that forward kinematics correctly predict the tool pose in the robot coor-
dinate frame, the DH parameters must be determined first during the robot calibration
process. Once calibrated, they remain fixed during robot on-line operations. Calibration
may be performed by installing a spherically-mounted retro-reflector (SMR) at the robot’s
TCP, and tracking it with a laser tracker. From four vectors of DH parameters (α, ε, r, d),
the twist angles α can be determined independently of other DH parameters by using 3D
data acquired for CPA procedure. The twist angle αn is defined as the angle between two
consecutive joint axes of rotation, un and un+1 (the last twist αN is, by definition, set to zero).
If Cn,K denotes a set of K 3D points tk calculated in (8) and acquired for n-th joint in CPA
procedure, then these points are distributed along an arch (section of a circle) on a plane in
3D space. Thus, for each joint n = 1, ..., N, a unit vector cn normal to the fitted plane can be
calculated. While the exact locations of Cn,K points depend on all DH parameters (ε, α, r, d),
vector cn is parallel to the axis of rotation un and, therefore, αn can be determined from
the scalar product of two consecutive axes, αn = arccos (cn · cn+1). If Bn,K is the set of 3D
points measured by laser tracker which correspond to Cn,K, then a unit vector bn normal to
the plane fitted to Bn,K can be calculated and the angle between two consecutive bn and
bn+1 is used as the estimate of αn.

To get correctly estimated twist angles αn, two important steps must be followed. First,
since arccos () is an even function, a sign of estimated angle must be equal to the sign of the
default (i.e., theoretical) twist angle, sign(α0,n). Second, plane fitting procedure provides
only a normal to the plane, its particular direction (up or down) depends on a bounding
box containing the points. To remove this ambiguity, fitted normal b̃n must obey the right
hand rule together with acquired 3D points Bn,K, which are located on a section of a circle.
Thus, the estimated corrected twist angle α̃n is determined as

α̃n = sign(α0,n) arccos
(
b̃n · b̃n+1

)
. (9)
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4. Robot Calibration Based on 3D Measurements

Once the twist angles α̃ are estimated, they can be inserted in (4) and the remaining DH
parameters (ε, r, d) can be found in traditional calibration procedure using 3D data. Given
K configurations of the arm (i.e., “poses”) defined by θk (k = 1, . . . , K), the SMR is moved
to K positions gk = [xk, yk, zk] in 3D Cartesian space. Since gk and tk in (8) are determined
in different coordinate frames, the error function Errpos in the calibration process is based
on relative distances between two 3D points to avoid a dependence on a registration. For
convenience, the whole set of K points can be divided in two halves and then

Errpos(α̃, ε, r, d) =
1

K/2

K/2

∑
k=1

(Lk(α̃, ε, r, d)− hk)
2 (10)

where
Lk(α̃, ε, r, d) = ‖tk − tk+K/2‖ (11)

and tk, tk+K/2 are determined in (8), ‖. . .‖ is the Euclidean norm and hk = ‖gk − gk+K/2‖
is a distance between two points measured by laser tracker.

Thus, the fitted DH parameters
(
ε̃, r̃, d̃

)
can be estimated by minimizing Errpos(

ε̃, r̃, d̃
)
= min

ε,r,d
Errpos(α̃, ε, r, d). (12)

providing the vector of link twist angles α̃ is known. The actual dimension of search space
is 3N − 2 since the distance between two points in (11) does not depend on d1 and ε1 (the
two parameters may have arbitrary values which only affect the registration transformation
between robot and sensor). In the remainder of this paper, we call this procedure Method 1.

5. Calibration Based on 6D Measurements

Such data were used for robot calibration using different procedures [14,28,29]. The ap-
proach we propose calculates zero offsets ε̃ in a separate minimization based on orientation
components of 6D poses and determined earlier twist angles α̃.

In the remainder of this paper, we assume that, for each robot configuration defined by
θk, there is a corresponding 3 × 3 rotation matrix Gk provided by an external sensor. Both
Gk and Rk in (7) are determined in different coordinate frames. If Ω denotes the rotation
component of registration matrix then, for each k-th robot orientation Rk in (7) and the
corresponding Gk measured with the external sensor, the following relation holds:

Gk = Nk Ω Rk (13)

whereNk is a small, random rotation accounting for noise in the orientation part of 6D data
acquired by sensors. For a pair of orientations Gk and Gk′ (where k′ = k + K/2), matrix Dk
can be defined as

Dk = GkR−1
k Rk′G

−1
k′ = NkN−1

k′ (14)

and its angle of rotation ψk ∈ [0◦ 180◦] is calculated as

ψk = arccos
(

1
2
(trace(Dk)− 1)

)
. (15)

Matrix Dk and its angle ψk depend on the measured joint angle vectors θk and θk′ ,
the twist angles α̃ estimated earlier, and all zero offsets εn for n = 2, . . . , N, which can be
obtained by minimizing the error function Errrot

(ε̃2, . . . , ε̃N) = min
ε2,...,εN

Errrot(α̃, ε2, . . . , εN), (16)

where

Errrot(α̃, ε2, . . . , εN) =
1

K/2

K/2

∑
k=1

ψk(α̃, ε2, . . . , εN). (17)
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Once the zero offsets ε̃ are estimated, they can be inserted in (12) and the linear DH
parameters r and (d2, . . . , dN) can be found by minimizing Errpos(α̃, ε̃, r, d) in (10). In the
remainder of this paper, we call this procedure Method 2.

To show a scaling problem when both position and rotation errors are simultaneously
minimized, robot calibration was attempted by minimizing the following error function:

Err f ull(α̃, ε, r, d) = Errpos + wErrrot, (18)

where Errpos is defined in (10), Errrot in (17) and positive scaling factor w ensures correct
dimensionality of Err f ull . In the remainder of this paper, we call this procedure Method 3.

6. Registering Robot Frame

When all robot model parameters are known, i.e., estimated ε̃2, . . . , ε̃N , α̃, r̃, d̃2, . . . , d̃N
and arbitrary values are assigned to d1 and ε1, then a registration transformation (rota-
tion Ω and translation τ) between the coordinate systems of robot and laser tracker can
be determined.

There are many registration techniques, one of the commonly used was developed
in [30] and is based on 3D data. For calibration Method 1 described in Section 4, where
only 3D data acquired by sensor are available, there is only one possible registration
transformation (Ω, τ). When 6D data are available, the registration transformation can
be calculated in two ways. In the first (which we name Registration (1)) Ω1 is calculated
using only the 3D positional parts of full poses, as in [30]. In the second (named hereafter
as Registration (2)), the rotation matrix Ω2 is calculated as the mean rotation Ω calculated
properly [31] from the individual matrices GkR−1

k in (13). Once Ω1,2 are known, the
translation vectors τ1,2 can be determined as

τi = gs −Ωi tr , i = 1, 2 (19)

where tr and gs are the centroids of the collected 3D positions in the robot and the external
sensor frame, respectively.

7. Simulation

All calculations were performed in Matlab. Built-in nonlinear least-square (NLS)
optimizer lsqnonlin with default input parameters was used to minimize the error function
Errpos in (10), Errrot in (17) and Err f ull in (18). As a starting point for all optimizations,
default DH parameters were used.

To test the proposed calibration method, a kinematic model of a 7 degrees-of-freedom
(DoF) industrial robot arm KUKA LWR 4+ was used. The robot’s default DH parameters
(ε0, α0, r0, d0) are provided in Table 1 (all angular parameters are in degrees and all linear
in millimeters). Ground truth (GT) parameters used in simulations were defined as a sum
of the defaults and deviations, for example εGT = ε0 + ∆ε. Deviations from the default
DH parameters are provided in Table 2. Two sets of arbitrarily chosen deviations were
used in simulations: small deviations (∆α1, ∆r1, ∆d1) and large deviations (∆α2, ∆r2, ∆d2).
GT parameters were used to generate noisy sensor data Gk from (7) and gk from (8)

Gk = Nk Ω Rk(θk, αGT , εGT) (20)

and

gk = Ωtk(θk, αGT , εGT , rGT , dGT) + τ + ζk (21)

where (Ω, τ) is arbitrarily selected transformation between robot and sensor frame, ζk is
3D positional Gaussian noise with standard deviation σp, and ξk is 3D angular Gaussian
noise with standard deviation σa, which was used to generate small random rotations.

Nk = RZYX(ξk). (22)
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Table 1. Default DH parameters.

1 2 3 4 5 6 7

ε0 180 90 0 0 0 0 0
α0 −90 −90 −90 90 90 −90 0
r0 0 0 0 0 0 0 0
d0 310.5 0 400 0 390 0 78

Table 2. Deviations of DH parameters.

1 2 3 4 5 6 7

∆ε 0 −1.4 0.68 0.24 0.54 1.37 0.85
∆α1 0.15 −0.1 0.07 −0.04 0.02 −0.06 0
∆α2 3.35 −4.1 2.7 −3.4 4.2 −3.6 0
∆r1 0.25 0.4 0.09 0.3 0.28 0.17 0.06
∆r2 0.8 1.3 0.65 1.4 0.86 0.38 0.55
∆d1 0 0.06 −0.14 0.12 0.27 0.08 0.3
∆d2 0 0.27 −1.45 0.4 1.26 0.3 0.35

In Figure 1a, examples of histograms for x component of vectors ξk are shown (his-
tograms for y and z components look similar). In Figure 1b, histograms of corresponding
angles of rotation β of small random rotations Nk are plotted. Note that histograms of
ξk are well approximated by a Gaussian distribution while non-symmetric histograms
of β are well approximated by a Fisher–Bingham–Kent (FBK) distribution [32]. Similar
histograms of angles were observed for experimental data acquired with a marker-based
pose measuring system, see Figures 1 and 3 in [33].

Tool transformation FT needed in (7) and (8) was arbitrarily chosen with the caveat
that the TCP center is not located on the last axis of rotation so that 3D data acquired for
CPA procedure are located on a circle.

For each n-th join, Kα = 40 vectors of encoder angles θn,k were created such that their
components were all zero except θn,k

θn,k = θmin,n + kδθ , k = 1, . . . , Kα (23)

where θmin,n and δθ were such that all θn,k were within a valid range of n-th encoder angles.
These angles were then inserted in (21) to generate 3D sensor data from which the twist
angles α̃ were estimated as described in Section 3. In order to estimate the remaining DH
parameters

(
ε̃, r̃, d̃

)
and calculate registration transformation (Ω, τ), another set of K = 100

joint angle vectors θk was selected in such a way that corresponding poses FTCP(θk) in (1)
were randomly scattered in the workspace that is accessible to the robot arm. In computer
simulations, this is the only restriction for selection of tool poses, but additional limitations
may arise in lab experiments due to a use of a line-of-sight sensor for pose acquisition.

In addition, a separate batch of J = 50 joint angles θj was selected for evaluation of
calibration and registration procedures. These test poses were used neither in calibration
nor registration. To test the performance of all three procedures, the robot kinematic model
FTCP

(
θj
)

in (1) was used with the parameters
(
ε̃, α̃, r̃, d̃

)
estimated by Method 1, 2 and 3.

For Method 1, the registration transformation (Ω, τ) was calculated using 3D data. For
Method 2 and 3, both registrations (Ω1, τ1) and (Ω2, τ2) were calculated, as described in
Section 6. For each tested arm configuration θj and selected m-th noise levels

(
σa, σp

)
m, the

corresponding rotation Gj and position g j were calculated in (20) and (21) to simulate noisy
6D measurements acquired by sensor. Then, the mean of J angles 〈ηj〉 of rotations Qj and
the mean of J relative distances 〈qj〉 were calculated, where

Qj
(
ηj
)
= G−1

j ΩRj, qj = ‖Ωt j + τ − g j‖ , (24)
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and the transformation (Ω, τ) was appropriate for each of the three calibration procedures
and (for Method 2 and 3) the appropriate Registration 1 or 2. Both calculated means 〈ηj〉
and 〈qj〉 were used as metrics to gauge a performance of tested procedures.

These steps were repeated for each of the selected noise level m = 1, . . . , Mn and
both sets of GT parameters corresponding to two deviation vectors: small (∆α1, ∆r1, ∆d1)
and large (∆α2, ∆r2, ∆d2), as shown in Table 2. Mn = 16 noise levels were equally spaced
between zero and 0.15 (degrees for σa and millimeters for σp). In order to estimate a
variability of the calculated metrics, all the above calculations were repeated for Nrep = 25
different realizations of noise (different sequences of pseudo-numbers). Thus, for each i-th
instance of noise and each m-th pair of noise levels

(
σa, σp

)
m, the end-effector errors were

calculated: vm,i = 〈qj〉 for positional error and ρm,i = 〈ηj〉 for angular error. As the final
results, the averages and standard deviations from all repeats Nrep were stored for each
m-th noise level:

ρm =
1

Nrep

Nrep

∑
i=1

ρm,i, δρ2
m =

1
Nrep

Nrep

∑
i=1

(ρm,i − ρm)
2 (25)

and similarly for positional errors vm and δv2
m .

To test a performance of the three error functions Errpos, Errrot and Err f ull used in
calibration, for a few randomly selected noise repeats and strengths, minimization was
restarted from 300 randomly scattered initial points (i.e., starting DH parameters) and the
final optimized parameters were analyzed. In addition, for Method 3, minimization of
Err f ull was repeated for a few scaling factors w in (18).

In all simulations performed in this study, the distal variant of DH parameters was
used [34]. Alternatively, the proximal variant could be used, which would affect derived
from it homogeneous matrix FTCP. However, not every kinematic model is suitable for
describing any robot: a well-known example is a robot with two consecutive joint axes
that are parallel to each other. In such a case, the DH model is not continuous and must
be replaced by another model, e.g., POE [20], and parameters specific for a given model
must be determined. Whichever kinematic model is selected, it is important to consistently
use it in a calibration process along with other basic definitions (like use of a right-hand or
left-hand coordinate system). With all procedural steps clearly defined and consistently
followed, there is no ambiguity in the calibration process.
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Figure 1. Characteristics of simulated small random rotations Nk in (22): (a) histograms of x com-
ponent of angle vectors ξk; (b) histograms of angle of rotation β of rotation matrix Nk. Blue lines
correspond to weak noise with σa = 0.05◦ and black lines correspond to strong noise with σa = 0.15◦.

8. Results

Fitted DH parameters revealed different amounts of variations for different simulated
conditions. The twist angles α̃ estimated from 3D data generated for the CPA procedure
showed moderate variations. The largest absolute deviation δαmax from the GT value
over all N joints and all simulated conditions (Mn noise levels, Nrep repeats and both
deviations ∆α1,2 from the default values α0) was 0.3◦. Zero offsets ε̃ revealed larger
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deviations: the largest absolute deviation δεmax = 1.18◦. The largest link length deviation
was δdmax = 4.7 mm and the largest link offset deviation was δrmax = 4.2 mm. Such large
differences between the fitted and the GT parameters were observed mostly for large noise
levels σp and σa.

Figure 2 shows an example of robot end-effector errors at J = 50 test poses. Position
errors qj and orientation errors ηj were calculated in (24) for robot DH parameters calibrated
with Method 1 and Method 2. Presented errors were calculated for simulated sensor poses
perturbed by i = 14 noise realization (selected arbitrary from Nrep repeats) and m = 7 noise
levels

(
σa, σp

)
m. These

(
qj, ηj

)
m,i errors were then used to calculate (vm,i, ρm,i) and then,

mean errors vm and ρm in (25) and the corresponding standard deviations δvm and δρm for
each m-th noise level. These means and standard deviations were then used to create the
plots in the remaining Figures 3–6.
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Method 1

Method 2
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j  
[d

e
g
]

b)

Figure 2. Robot end-effector errors calculated at J = 50 test poses for fixed sensor noise σp = 0.055 mm,
σa = 0.055◦ and one, arbitrary selected noise realization: (a) positional errors qj; (b) orientation errors
ηj. Robot was calibrated with Method 1 (black lines) and Method 2 (blue lines).

Figure 3 shows the outcomes of two registration transformations (Ω1, τ1) and (Ω2, τ2)
described in Section 6. In both cases, robot was calibrated with Method 2. GT parameters
used in simulation of 6D data, i.e., end-effector poses and noisy poses as measured by
sensor, were obtained by modifying the default DH parameters with deviations shown in
Table 2. For both registrations, mean errors were calculated at the same values of sensor
noise (σp in Figure 3a,c and σa in Figure 3b,d). In each subplot, two graphs are slightly
shifted horizontally only for better visualization. Error bars δvm in Figure 3a,c and δρm in
Figure 3b,d are the corresponding standard deviations calculated in (25) from Nrep repeated
simulations of noisy sensor data.

Figure 4 shows the outcomes of two registration procedures applied after robot was
calibrated using Method 3 and the error function Err f ull defined in (18) with the scaling
factor w = 1. Presented results were obtained for 6D data generated with GT values of DH
parameters deviating from their default values by (∆α2, ∆r2, ∆d2) shown in Table 2.
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Figure 3. Comparison of two registration procedures for robot calibrated with Method 2 and data
generated using: (a,b)—small deviations from the default DH parameters (∆α1, ∆r1, ∆d1); (c,d)—
large deviations (∆α2, ∆r2, ∆d2). Dependence of the mean positional error v of robot end-effector on
positional noise σp in sensor 6D data in (a,d); dependence of the mean orientation error ρ of robot
end-effector on angular noise σa in sensor 6D data in (b,d).
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Figure 4. Comparison of two registration procedures for robot calibrated with Method 3 and data
generated using large deviations from the default DH parameters: (a) dependence of the mean
positional error v of robot end-effector on positional noise σp in sensor 6D data; (b) dependence of
the mean orientation error ρ of robot end-effector on angular noise σa in sensor 6D data.
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Figure 5. Comparison of three calibration methods: (a) dependence of the mean positional error
v of robot end-effector on positional noise σp —Registration 1 was used in Method 2 (blue line);
(b) dependence of the mean orientation error ρ of robot end-effector on noise (σ = σp for Method 1
and σ = σa for Method 2)—Registration 2 was used in Method 2 (red line); (c) dependence of error v
on positional noise σp—Registration 1 was used in both methods; (d) dependence of error ρ on noise
σa—Registration 2 was used in both methods.

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5
a)

w=1

w=5

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4
b)

w=1

w=5

Figure 6. Comparison of robot calibrations using two different scaling factors w in error function
Err f ull in Method 3: (a) dependence of the mean positional error v of robot end-effector on positional
noise σp in sensor 6D data—Registration 1 was used; (b) dependence of the mean orientation error ρ

of robot end-effector on angular noise σa in sensor 6D data—Registration 2 was used. Data generated
using large deviations from the default DH parameters.

Figure 5 shows the outcomes of three calibration procedures: Method 1 based on 3D
sensor data, and Method 2 and 3 based on 6D sensor data (in Figure 5b,d noise σ = σp in
mm for Method 1 and σ = σa in degrees for Method 2 and 3). Two different registration
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procedures were used in robot calibration with Method 2 and 3: for positional error v,
Registration 1 was used (blue line in Figure 5a,c, the same as in Figure 3c for Method 2
and the blue line with triangle markers in Figure 5c, the same as blue line in Figure 4a
for Method 3). For angular error ρ, Registration 2 was used (red line in Figure 5b,d, the
same as in Figure 3d for Method 2 and the red line with triangle markers in Figure 5d, the
same as red line in Figure 4b). Error bars δvm in Figure 5a,c and δρm in Figure 5b,d are the
corresponding standard deviations calculated in (25) from Nrep repeated simulations of
noisy sensor data. On each subplot, the two graphs are slightly shifted horizontally for
a visualisation effect. Robot GT parameters used in simulation of 6D data were obtained
by modifying the default DH parameters with large deviations (∆α2, ∆r2, ∆d2) shown in
Table 2. Similar results for v and ρ were obtained when small deviations (∆α1, ∆r1, ∆d1)
were used in simulations.

Figure 6 shows outcome of robot calibration for Method 3 with two different values of
the scaling factor w in Err f ull in (18). Results for Method 3 presented in Figures 4 and 5c,d
were obtained for w = 1.

For each of the selected cases where the minimization of the error function was
repeated from 300 different starting points, all initial DH parameters led to the same
solution. Fitted DH parameters depended on noise strengths, choice of error function and
GT values of DH parameters.

9. Discussion

In this study, an open-chain robotic manipulator with N revolute joints was calibrated
using three different methods and two different sets of data: 3D positions only, and full
6D poses. All three methods share the same strategy for determining link twists α̃. Then,
in Method 1, the error function Errpos in (10) was minimized, and the remaining DH
parameters

(
ε̃, r̃, d̃

)
were found by using 3D data only. In Method 2, a search for the zero

offsets ε̃ was performed separately by minimizing Errrot in (17), which depends only on
the orientation part of full 6D data. Once the zero offsets were known, the remaining DH
parameters

(
r̃, d̃

)
were found by minimizing Errpos(r, d) in (10) using only the positional

part of 6D data. Such an approach reduces the dimensionality of the search space when
compared with minimization of Errpos in Method 1. In addition, by using angles ψk of
relative rotations Dk in error function Errrot in (17) and relative distances Lk between
pairs of 3D points in error function Errpos in (10), the proposed strategy decouples robot
calibration from registration of the robot frame to the world frame. Different calibration
strategies yielded different sets of fitted DH parameters which, in turn, led to different
end-effector errors. This is expected, as the optimizer which uses different error functions
and different sensor data usually converges to different solutions for the same kinematic
model. It should be noted that both Methods 1 and 2 are equally valid and it is a matter of
practicality which one is more useful.

In Method 2, two different approaches to registration were used. Rotation Ω1 from
the first approach minimizes distances between the sensor’s 3D positions and robot’s TCP
points for K robot arm configurations [30]. Rotation Ω2 is calculated as the mean rotation Ω

of K relative rotations GkR−1
k and, thus, minimizes angular distances between orientations

of TCP frame and orientations provided by sensor. Therefore, one may expect that Ω2 is
better than Ω1 in aligning robot orientations with sensor orientations. Indeed, end-effector
angular errors ρ shown in Figure 3b,d are smaller for Ω2 in Registration 2 (red line) than
for Ω1 in Registration 1 (blue line).

When it comes to the positional errors v, the situation is exactly opposite. Both transla-
tion vectors τ1 and τ2 are calculated in (19). Since Ω2 does not depend on positional data,
the transformation (Ω2, τ2, ) does not minimize (in the least-square sense) the distances
between sensor 3D positions and robot TCP points for K robot arm configurations. Trans-
formation (Ω1, τ1, ) does minimize the distances, and therefore is expected to better align
the sensor 3D positions with the robot TCP. Indeed, end-effector position errors v shown
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in Figure 3a,c are smaller for Ω1 in Registration 1 (blue line) than for Ω2 in Registration 2
(red line).

Analysis of the plots in Figure 3 suggests the optimal strategy: instead of choosing
either the first (Ω1, τ1, ) or the second (Ω2, τ2, ) registration, take the best part from both.
Use Ω2 to transform orientations Rk of robot end-effector and use (Ω1, τ1, ) to transform
robot TCP tk. Outcome of such strategy is displayed in Figure 5a,b: note blue line for
positional errors v and red line for angular error ρ indicating a use of different registrations
in Method 2.

Another advantage of using Ω2 to transform the TCP orientations rather than Ω1 is
that there is a much smaller dispersion of orientation errors ρ for different noise realizations.
The error bars in Figure 5b are much smaller for Method 2 (which leverages Ω2) than for
Method 1. This implies that orientations from the world coordinate system can be fed into
an inverse kinematic solver more consistently and accurately.

It may appear counter intuitive that mean position errors v
(
σp

)
and mean orientation

errors ρ(σa) calculated for the same m-th pair of noise strengths
(
σp, σa

)
m but different GT

values of DH parameters are almost the same, as Figure 3 shows. However, it should not be
a surprise since we used NLS optimizer with exact error function. Scale of deviation from
the default DH parameters may become an issue when the calibration is performed using
approximated, linearlized errors and the Jacobian is calculated at the default DH values.

Results of robot calibration obtained with Method 3 clearly reveal the consequences of
scaling problem when simultaneous minimization of both position and orientation errors
in one optimization is attempted, as demonstrated in Figure 6. While the mean orientation
errors ρ are almost equal for two selected values of w, the corresponding position errors
v differ substantially. This method, similarly as Method 2, uses 6D data and, therefore,
two registration procedures are available. In Method 3, similarly to Method 2, smaller
position errors are obtained when Registration 1 is applied to the position data and smaller
orientations errors are observed when Registration 2 is applied to the orientation data, as
results in Figure 4 clearly indicate. Even as both Method 2 and 3 share a possibility of
using different registrations for position and rotation components of a full pose, a direct
comparison between the two methods clearly points to Method 2 as a better procedure, as
demonstrated by the results shown in Figure 5c,d. Thus, a use of Method 3 is discouraged.

The calibration strategy outlined in this paper was tested on a kinematic model of a
serial open chain robot with revolute joints only. A question can be asked if the strategy can
be applied to a more complex kinematic model when a serial chain has both revolute and
prismatic joints. Acquisition of full 6D poses enables calculation of two registrations defined
in (19): one of them minimizes a position error and the other minimizes an orientation error.
Therefore, as long as full 6D poses are acquired, the outlined calibration strategy could in
principle be used for robots with a mixture of revolute and prismatic joints. However, a
presence of prismatic joints complicates the error function Errpos in (10) by increasing a
number of search variables and it requires further study to verify whether the strategy is
beneficial also for robots with revolute and prismatic joints.

The simulation results presented in this paper raise an important, practical question
about the characteristics of 6D pose measuring sensors which are used for robot calibration.
Commercially available sensors allow quick acquisition of many repeated measurements,
which enables the noise in recorded data to be substantially reduced by calculating mean
poses. The mean position error of robot end-effector v calculated by Method 2 is increasing
with sensor position noise σp, as Figure 5a shows. If the three sigma rule is followed
and approximate relation v ≈ 4σp holds, then the upper bound σ̂p for sensor position
noise should satisfy 12σ̂p < tolp, where tolp is the acceptable robot position tolerance.
For orientation data, due to the strong non-symmetric FBK-like distribution of angles β
(which accounts for deviation of noisy, instantaneous rotations from the mean rotation),
the three sigma rule can be replaced by calculating quantile β̂997 of angles β at 0.997 level.
Assuming the mean orientation error of robot end-effector ρ is four times larger than
sensor’s orientation noise (as shown in Figure 5b for Method 2), the upper bound for sensor
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orientation noise should satisfy 4β̂997 < tola where tola is the acceptable robot orientation
tolerance. For different robot, the dependence of end-effector error on sensor noise may be
different from that shown in Figure 5a,b. Then, the estimates for upper bounds of position
noise σ̂p and orientation noise β̂997 need to be updated.

The proposed calibration strategy reduces both the position and orientation errors of
the robot end-effector. Recommended procedure for serial robot calibration consists of: (1)
acquiring the full 6D poses; (2) getting link twists in CPA-like procedure; (3) getting encoder
zero offsets using orientation data only; (4) getting link lengths and offsets using position
data only. Then, use two separate registrations to transform position and orientation
component of a pose from a world to the robot frame. In summary, the dilemma of
having only the position or the orientation error of the robot’s end-effector minimized
can be avoided and a pose with both optimized components can be fed into inverse
kinematic solver.
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