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Abstract: Peptide nucleic acid (PNA) is an analog of natural nucleic acids, where the sugar-phosphate
backbone of DNA is replaced by an electrostatically neutral N-(2-aminoethyl)glycine backbone. This
unique peptide-based backbone enables PNAs to form a very stable duplex with the complementary
nucleic acids via Watson–Crick base pairing since there is no electrostatic repulsion between PNA and
DNA·RNA. With this high nucleic acid affinity, PNAs have been used in a wide range of fields, from
biological applications such as gene targeting, to engineering applications such as probe and sensor
developments. In addition to single-stranded DNA, PNA can also recognize double-stranded DNA
(dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion
is hard to achieve with other artificial nucleic acids and is expected to be a promising method to
recognize dsDNA in cellula or in vivo since the invasion does not require the prior denaturation of
dsDNA. In this paper, we provide basic knowledge of PNA and mainly focus on the research of
PNA invasion.

Keywords: PNA; DNA; artificial nucleic acids; invasion

1. Introduction

The “central dogma” is the continuous flow of genetic information from DNA to
proteins via mRNA [1]. Since DNA is in its most upstream, the regulation of the DNA func-
tion can lead to the specific control of subsequent gene expression. From this perspective,
genome editing technology, which replaces genomic DNA with the desired sequence, has
been intensively investigated. With the CRISPR-Cas9 system awarded the Nobel Prize in
Chemistry in 2020, the understanding of gene function is accelerating [2–4]. In addition to
research into DNA-binding proteins, including ZF [5–9], TALE [10,11], as well as CRISPR-
Cas9 [2–4], various small molecules which target DNA have also been investigated. For
the selective recognition of DNA, minor groove binders (Py-Im polyamides) [12–15] and
various artificial nucleic acids have been developed [16–29]. With their high selectivity,
artificial nucleic acids, in which a part of the nucleic acid is chemically modified, have been
attracting attention as nucleic acid medicines in recent years. Unlike conventional small-
molecule drugs that target proteins, nucleic acid drugs are expected to offer completely
different selectivity and potency by targeting nucleic acids. However, artificial nucleic
acids other than triplex-forming oligonucleotides (TFOs) [30–32] can only target nucleic
acids in single-stranded form and have difficulty directly recognizing double-stranded
DNA (dsDNA). This is because the recognition of artificial nucleic acids is based on com-
plementarity via Watson–Crick base pairing, and the process of base–pair formation is
essential for their recognition. Therefore, artificial nucleic acids are usually utilized to target
single-stranded DNA denatured by heat or alkaline conditions from dsDNA. While single-
strand recognition is sufficient for the antisense methodology targeting mRNA, artificial
nucleic acids recognizing dsDNA are essential for the direct recognition of the genomic
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DNA. Human genomic DNA consists of about 3 billion base pairs, and a variety of genes
have been identified, including those related to phenotypes and diseases. Developing a
technology that can freely recognize such a huge genomic DNA is expected to have a very
wide range of applications in the field of biology as well as medicine.

In this review, we focus on the peptide nucleic acid (PNA) that enables the direct
recognition of dsDNA, which is difficult to achieve with conventional artificial nucleic
acids, and describe its characteristic dsDNA recognition mode (“invasion”), from basic
information to applications.

2. Double-Stranded DNA Recognition by Peptide Nucleic Acid (PNA)
2.1. Peptide Nucleic Acid (PNA)

In 1991, Prof. Nielsen and co-workers developed peptide nucleic acid (PNA;
Figure 1) [16,33–41]. PNA not only forms stable duplexes with single-stranded nucleic acids
via Watson–Crick base pairing but also can directly recognize sequences in dsDNA through
a unique DNA recognition called “Invasion” [42] (Figure 2). PNA is a synthetic DNA
analog, and its backbone, N-(2-aminoethyl)glycine, consists of six atoms in the monomer
unit like DNA. In PNA, the negatively charged sugar-phosphate backbone of DNA was
substituted with an electrostatically neutral pseudo-peptide backbone. Consequently, the
electrostatic repulsion between PNA and DNA is absent, and PNA/DNA duplexes are
much more stable than those between negatively charged DNA strands [43]. In addition,
the binding strength of PNAs to mismatched sequences is much lower than that to comple-
mentary strands, and PNAs have a higher sequence discrimination ability than DNA [44].
Furthermore, PNA is highly resistant to nucleases and proteases since PNA consists of an
unnatural backbone different from DNA and peptide [45]. These characteristics make PNA
promising for in-cell and in vivo applications targeting genomic DNA. Although there
have been many reports of PNA analogs with modified backbones [40,46–51] (Figure 3),
this review focuses on N-(2-aminoethyl)glycine PNA (aegPNA), with an overview of its
dsDNA recognition mode, invasion.
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2.2. Invasion Complex Formation by PNA

The invasion of PNA is achieved by its high DNA-binding affinity mentioned above.
In other words, the energy loss of dissociating the DNA duplex is compensated by more
stable PNA/DNA duplex formation. Consequently, by using PNAs with complementary
sequences, the sequences in dsDNA can be directly and selectively recognized without a
denaturing treatment, which is generally not possible with other artificial nucleic acids.
The invasion complex shown in Figure 2 is more correctly called double-duplex inva-
sion complex [42], and the following other invasion complexes have also been reported
(Figure 4).
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In the triplex invasion complex [52] (Figure 4a), two PNAs are bound to one strand of
a dsDNA by both Watson-Crick and Hoogsteen base pairing, forming a triplex. The DNA
recognized by this triplex invasion must be a homopyrimidine/homopurine sequence,
which limits the target sequence. Homopyrimidine PNAs are commonly used for triplex
invasion, which requires protonation of the PNA nucleobases to form Hoogsteen base pairs.
Therefore, the complex is stabilized under acidic conditions. To stabilize the triplex invasion
complex, bis-PNA, in which two PNAs are linked by a linker, has been developed [53,54].
Recently, tail-cramp PNAs (tcPNAs), asymmetric bis-PNAs in which the PNA strand for
the Watson–Crick side is designed to recognize mix sequences, have been developed and
reported for intracellular applications [38,55–58].

The duplex invasion complex (Figure 4b) is formed when one complementary PNA
forms a PNA/DNA duplex in a dsDNA by Watson–Crick base pairing [59]. The formation
of this invasion complex was first reported for specific sequences with homopyrimidine-
homopurine sequences, but it differs from the triplex invasion in that there is no third
strand to form the Hoogsteen base pair. The recognition sequences of duplex invasion
and triplex invasion are generally restricted to homopyrimidine-homopurine. In 2007,
it was revealed that duplex invasion of PNA occurs even in mixed sequences, and the
invasion complex was first confirmed by electrophoresis [60]. Subsequently, reports of
duplex invasion in mixed sequences have continued with the methodology of enhancing
the binding strength of PNA [61,62].

Double-duplex invasion [42] (Figure 4c), mainly discussed in this paper, is a complex
formation in which two PNAs with complementary sequences form a Watson–Crick base
pair with the target sequences in dsDNA. This complex does not require homopyrimi-
dine/homopurine sequences like triplex and duplex invasion complexes, making it more
suitable for various applications. This invasion is unique because PNAs directly recognize
(invade into) dsDNA, which is not seen in other artificial nucleic acids. Moreover, another
attractive feature is the ability to induce local structural changes in the target DNA during
the formation of the invasion complex.

2.3. Double-Duplex Invasion by Pseudo-Complementary PNAs (pcPNAs)

Double-duplex invasion requires a pair of complementary PNAs. Since PNA/PNA
is more stable than PNA/DNA, duplex formation between these complementary PNAs
preferentially proceeded over invasion complex formation, resulting in lower invasion
efficiency. To suppress the formation of PNA self-duplexes, pseudo-complementary
PNA (pcPNA) has been used [33,42,63] (Figure 5). In pcPNA, conventional adenine (A)
and thymine (T) nucleobases are replaced by the artificial pseudo-complementary nu-
cleobases, 2,6-diaminopurine (D) and 2-thiouracil (Us), respectively (Figure 5a). Though
stable base pairs between D·Us and the natural nucleobases T·A are retained (Figure 5b),
pcPNA/pcPNA duplexes are greatly destabilized through the steric repulsion between the
amino group of D and the thione group of Us (Figure 5c). Consequently, efficient double-
duplex invasion complex formation is achieved by using pcPNAs, as pcPNA/pcPNA
duplex formation is suppressed and PNA/DNA duplex formation is promoted [42].

Thus, the strategy of pcPNA is very effective for invasion. Although a certain amount
of A·T needs to be included for efficient invasion, pcPNA does not have significant se-
quence restrictions like the homopurine/homopyrimidine sequences of triplex or duplex
invasion described above. Therefore, double-duplex invasion is effective for various DNA
recognition applications, especially intracellular and in vivo applications, due to its abil-
ity to recognize dsDNA directly. In this review, we focus on double-duplex invasion,
which has high sequence flexibility among invasion complexes, and the related stud-
ies are summarized below (in the following, unless otherwise stated, invasion refers to
double-duplex invasion).
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destabilizes the duplex between two pcPNAs.

3. Promotion of Double-Duplex Invasion by Modified PNAs

Various in vivo applications based on dsDNA recognition are expected to be developed
by employing invasion with pcPNAs. However, to make such applications successful,
there is a challenge to improve the efficiency of invasion complex formation at high salt
concentrations, like those in the intracellular environment. Under high-salt conditions,
the stability of the DNA/DNA duplex is enhanced, whereas the DNA binding strength
of PNA is slightly reduced, resulting in an overall decrease in the stability of the invasion
complex. Therefore, several methodologies such as the chemical modification of PNAs and
conjugation with functional molecules have been reported to increase invasion efficiency.

3.1. Chiral PNAs

Unlike DNA and other conventional artificial nucleic acids, aegPNA, composed of
an N-(2-aminoethyl)glycine backbone, has an achiral structure. It has been reported that
aegPNA itself has no preference for helicity and its helical structure changes depending on
the chirality of the C-terminal amino acid [64]. The duplex of PNA decamers with L-lysine
at the C-termini gave the CD spectrum similar to that of DNA duplex in the nucleobase
absorption region, and the mirror-image spectrum was obtained when L-lysine was substi-
tuted with D-lysine. On the other hand, since natural DNA is a chiral molecule and forms
a right-handed helical structure, PNAs with chirality introduced into the backbone have
been developed to improve the DNA recognition ability. Looking carefully at the structure
of PNA, we can imagine that the chirality can be easily introduced by replacing glycine in
its backbone with other amino acids. Thus, lysine-incorporated DKα-PNA derived from
N-(2-aminoethyl)-D-lysine was developed in 1996 [65,66] (Figure 6a). This chiral PNA
strongly interacts with DNA, whereas the L-isomer has the opposite effect, suggesting that
D-chirality is very important for high DNA affinity. In addition, the DKα-PNA has an amino
group introduced as a side chain to the PNA backbone, leading to the addition of a positive
charge. The resulting conformational control of PNA and electrostatic attraction of PNA to
negatively charged DNA enhance the DNA recognition ability of PNA (Figure 6b). It has
also been reported that chiral PNAs containing pseudo-complementary nucleobases show
a higher efficiency of invasion complex formation than achiral pcPNA [67]. This result is ex-
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plained by the fact that in addition to improving the DNA binding strength of pcPNAs, the
electrostatic repulsion also causes more significant destabilization of the pcPNA/pcPNA
duplex (Figure 6c). This function of chiral PNA assists the effect of pseudo-complementary
nucleobases D and Us, and even if the percentage of D and Us in PNA strands is low,
high invasion efficiency was maintained by using chiral pcPNAs. Moreover, these chiral
pcPNAs show mismatch discrimination ability, although the modification methods that
introduce positive charges are often accompanied by reduced selectivity to the target due
to nonspecific interactions with negatively charged DNA.
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The backbone-modified PNA introduced so far has a side chain at the α-position
(Figure 6a), and it is categorized as α-PNA. Chiral α-PNAs using other amino acids instead
of lysine have also been reported [48,65]. Furthermore, in addition to these α-PNAs, PNAs
with various functional side chains introduced into the PNA backbone at the γ-position
(γ-PNA) were developed (Figure 6a) and have been widely studied for their high DNA-
binding ability [61,68]. Although γ-PNAs with lysine side chains (LKγ-PNAs) also exhibit
high DNA-binding ability like DKα-PNA, interestingly, the optical isomerism of lysine
suitable for DNA recognition is reversed from that of the aforementioned α-PNAs. When
the D-lysine framework is used for γ-PNA, its DNA binding ability is reduced. γ-PNAs
possessing a methyl group or ethylene glycol have been extensively studied, as they have a
significant effect on preorganizing the structure in favor of double-strand formation with
DNA. Furthermore, the γ-PNA conjugated with an acridine moiety has been reported to
allow duplex invasion (not double-duplex invasion) in a mix sequence, which cannot be
achieved with unmodified aegPNA, and the formation of the invasion complex has been
confirmed by polyacrylamide gel electrophoresis [61].
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3.2. PNA Modified with Nuclear Localization Signal (NLS) Peptide (NLS-PNA)

Although the chiral PNAs have improved invasion efficiency, their effect in high-
salt conditions like in vivo has not been fully investigated. On the other hand, some
modification methods of pcPNA have been reported to improve invasion efficiency at high
salt concentrations, and one of them is PNA modified with a nuclear localization signal
(NLS) peptide (Figure 7a). The NLS peptide is a functional peptide involved in the nuclear
transport of proteins. Since this peptide is rich in basic amino acids (lysine and arginine),
it is positively charged and is expected to interact strongly with DNA under neutral pH
conditions. PNA, which has a peptide-based backbone, is synthesized by the standard
solid-phase peptide synthesis [33], so the modification of peptides to PNAs is much easier
than to other artificial nucleic acids, and the introduction of cell-penetrating peptides (CPPs)
has been reported [69,70]. Moreover, compared to other PNA modification methods, NLS-
PNA is a very simple strategy as it only requires the introduction of additional peptides
into the PNA.
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The paper reported in 2013 suggested that NLS-PNAs showed the formation of duplex
invasion (not double-duplex invasion) [71]. These NLS-PNAs have been applied to dsDNA
recognition because the PNA modified with an NLS peptide has shown antigene effects,
and fluorescence spectroscopic studies have shown complex formation with NLS-PNAs and
plasmid DNA. Given that it is challenging to form duplex invasion with unmodified PNA
in the mix sequence, the contribution of NLS to improved DNA binding is unquestionable.
Interestingly, this NLS-PNA also achieved dsDNA recognition in a consecutive 14 bp GC
sequence, which is difficult to be targeted by unmodified pcPNAs.

Inspired by the work described above, pcPNAs modified with an NLS peptide
(NLS-pcPNAs) were developed in 2015, and high invasion efficiency was reported with
NLS-pcPNAs, enabling the full recognition of target dsDNA with a lower concentration
of PNAs than unmodified pcPNAs [72] (Figure 7b). These NLS-PNAs are effective at
higher salt concentrations and retain the high invasion efficiency even at 100 mM NaCl,
where the invasion efficiency of unmodified pcPNAs is significantly reduced. Furthermore,
NLS-pcPNAs show overwhelmingly high invasion efficiency, even under physiological
conditions where the invasion efficiency is further reduced with unmodified pcPNAs. The
high mismatch discrimination ability was also retained in NLS-pcPNA, despite the fact
that it utilizes electrostatic interactions. More interestingly, the NLS peptide used in this
study shows its biological function even when conjugated with PNAs, and the NLS-PNA
was confirmed to be present in the nucleus upon introduction into the cell [71].

In the NLS-PNAs mentioned above, NLS was introduced at C-termini, but the design
of NLS-PNA was also studied in detail, and the invasion efficiency of N-terminal modified
NLS-PNAs was examined [73]. The results showed no drastic difference between C- and
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N-terminal modified NLS-PNAs, and NLS was effective for invasion in both modifications.
N-terminal modification was shown to be slightly more effective at higher salt concentra-
tions, indicating that the amino acids connecting the NLS to PNA may affect invasion.

3.3. Ruthenium-Complex PNA Conjugate (Ru-PNA)

PNA conjugated with ruthenium (Ru) complex (Ru-PNA) has been reported as a
modified PNA that exhibits high invasion efficiency under physiological conditions [74].
Ru-polypyridyl complexes are known to have high DNA affinity due to hydrophobic and
electrostatic interactions with DNA. Therefore, the DNA binding ability of PNA has been
improved by conjugation with Ru complexes, and an increase in invasion efficiency has
been achieved. Similar to NLS-PNAs, this method only requires the introduction of the
DNA-binding molecule into the PNA, and the preparation of modified PNA is effortless.
The introduction of the Ru complexes into PNA is easily achieved via amide condensation
between the carboxyl group derivatives of the Ru complex and amino acids having an
amino group on the side chain. The synthesis of Ru-PNAs is accomplished by standard
solid-phase peptide synthesis, and the Ru complex was introduced to the PNA via an amino
group on the side chain of the N-terminal L-2,3-diaminopropionic acid (Dap; Figure 8a).
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Ru-PNA exhibited high invasion efficiency even at low PNA concentrations and
100 mM NaCl (Figure 8b), where with unmodified pcPNA, it is difficult to form an inva-
sion complex. Furthermore, even under physiological conditions, the invasion efficiency
was nearly 90% using six equivalents of Ru-PNA. Ru-PNA also showed high sequence-
discrimination ability, and no invasion proceeded with mismatched DNA that differs by
only one base pair. This increase in invasion efficiency is attributed to the high DNA-binding
ability of Ru-PNA, which was confirmed by melting temperature (Tm) measurements. It is
suggested by the Tm measurements that the Ru-complex interacts with DNA outside the tar-
get sequence of the PNA. Interestingly, it has also been reported that the invasion efficiency
of Ru-PNAs varies greatly depending on the introduction manner of the Ru complex. In
addition to PNA conjugated with Ru complexes on the side chain of Dap, the introduction
of Ru complexes on the side chain of Lys and the amino group of the PNA main chain
were also investigated. However, no increase in invasion efficiency was observed with
those Ru-PNAs, suggesting that the Ru complexes could not interact appropriately with
DNA. These results indicate that the introduction mode and spatial arrangement of the Ru
complexes are very important for the appropriate interaction of the Ru complexes with
DNA and the improvement of invasion efficiency.
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3.4. PNA Containing Cationic Guanine (G+-PNA)

In contrast to modified PNAs with chiral backbones or additional functional molecules,
cationic-guanine (G+) PNA (G+-PNA; Figure 9a), in which a nucleobase is modified with
a strategy different from pcPNAs, has been developed and reported to show improved
invasion efficiency [75]. G+ is positively charged by methylation of the N7-nitrogen atom
in a guanine base, resulting in quaternization. Consequently, G+-PNA/DNA duplexes are
stabilized by electrostatic interaction, and G+-PNA/G+-PNA duplexes are destabilized by
electrostatic repulsion (Figure 9b). The DNA-binding affinity of G+-PNAs was evaluated
by Tm measurements with complementary DNAs, and an increase in Tm of up to 11.2 ◦C
(∆Tm = 11.2 ◦C) was observed by simply replacing a single guanine nucleobase in the PNA
with a G+ nucleobase. On the other hand, the Tm values of a duplex between G+-PNAs were
reduced by−4.8 to−8.3 ◦C by introducing G+. These results are equivalent to or better than
pcPNA (stabilization of pcPNA/DNA; +5 to +6 ◦C, destabilization of pcPNA/pcPNA; −4
to −6 ◦C). The relationship between changes in salt concentration and Tm value suggests
that the electrostatic interaction plays an important role in these G+-PNAs.
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Invasion experiments under physiological conditions showed that the introduction
of a single G+ in the PNAs dramatically increased the invasion efficiency, which was
about 20 times higher than that of unmodified pcPNAs. Furthermore, when the number
of introduced G+ was increased to three, the invasion efficiency was further improved,
showing 24-fold higher invasion efficiency than that of unmodified pcPNAs. On the
other hand, when invasion was performed with the target dsDNA containing the single-
base mutation, the invasion complex almost disappeared, indicating the high sequence
selectivity of G+-PNA. G+ is expected to be one of the new pcPNA options because it
can be introduced into GC base pairs, unlike pseudo-complementary nucleobases D and
Us, which can only apply to AT base pairs. In addition, compared to D and Us, G+ has
the advantage that its monomer can be easily synthesized from commercially available
Fmoc-G(Bhoc)-COOH PNA monomers in a single-step methylation reaction (the yield was
98%). Interestingly, although methylation to nucleobases in DNA promotes depurination
and generally reduces the stability of the DNA itself [76], no such destabilization was
observed with G+-PNA, indicating that this nucleobase modification was allowed by using
the PNA backbone.

4. Recent Invasion-Related Research
4.1. Development of New Backbone- or Nucleobase-Modified PNAs for DNA Recognition

In addition to the γPNA mentioned above, there have been significant modifications
of the PNA backbone to enable dsDNA recognition. Prof. Vilaivan et al. synthesized
various pyrrolidinyl PNAs, which have a cyclic structure in the backbone [77–79]. Among
them, a PNA having a (2′R,4′R)-pyrrolidine/(2S)-amino-cyclopentane-(1S)-carboxylic acids
backbone (acpcPNA; Figure 10a) formed a very stable duplex with DNA. On the other hand,
acpcPNAs composed of a bulky backbone cannot form stable acpcPNA/acpcPNA duplexes.
In other words, the acpcPNA backbone is pseudo-complementary, suggesting acpcPNA is
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an alternative candidate to pcPNA for achieving double-duplex invasion. The stability of
each duplex with DNA and acpcPNA is in the following order; PNA/DNA > PNA/PNA,
which is completely opposite to that of aegPNA (PNA/PNA > PNA/DNA). Despite the
absence of pseudo-complementary nucleobases, the fluorescence change indicated that
fluorophore-labeled acpcPNAs recognized the short synthetic dsDNA (30 bp) through
invasion (Figure 10b), and the invasion efficiency was around 15% [80]. In contrast, the
fluorescence emission is negligible for the mismatch sequence, showing the sequence
selectivity of acpcPNA. Furthermore, in polyacrylamide gel electrophoresis, a new band
with slower mobility than dsDNA also appeared, indicating that complementary 10-mer
acpcPNAs form an invasion complex with 30-bp dsDNA.
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Figure 10. (a) Chemical structure of acpcPNA. (b) Invasion complex formation by fluorophore-labeled
acpcPNAs due to steric hindrance between acpcPNAs.

Invasion-like structures in which a single PNA strand recognizes two DNA strands
have also been reported. Prof. Ganesh et al. introduced a second nucleobase into the α-(Cα)
or γ-position (Cγ) of PNA in addition to the original nucleobase [81–83] (Figure 11a). This
new type of PNA termed “bimodal PNA (bm-PNA)” can recognize two DNA strands
simultaneously. Furthermore, by using multiple bimodal PNAs and combining duplex
and triplex formation with complementary DNAs, fused duplexes, triplexes, and extended
PNA/DNA assemblies were created [84] (Figure 11b). Besides, Prof. Ly et al. employed
bifacial nucleobases (namely, Janus nucleobases) and succeeded in recognizing dsDNA
with one strand of PNA based on the γPNA backbone (JBγPNA) [85]. Bifacial nucleobases
can selectively recognize A-T, T-A, G-C, and C-G base pairs by forming new base pairs
on each side of bifacial nucleobases (Figure 12). Molecular dynamics (MD) simulations
demonstrated that DNA/JBγPNA on one side maintained a stable structure in antiparallel
orientation, whereas JBγPNA/DNA on the other side in parallel orientation collapsed its
structure. The weaker parallel JBγPNA/DNA interaction is attributed to less favorable
binding orientation and fewer hydrogen bonds. The structure of JBγPNA/JBγPNA was
collapsed due to the steric collision of its backbone. These results of MD simulations are
consistent with circular dichroism (CD) and UV melting experiments. JBγPNA with six
bifacial nucleobases can invade into not only 6-bp hairpin DNA but also internal binding
sites in a stable 26-bp dsDNA under physiological conditions, and its complex formation
was confirmed by gel electrophoresis.
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hydrogen bonds with canonical nucleobases on the two sides of bifacial nucleobases.
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4.2. Double-Stranded DNA Recognition by Non-PNA-Type Artificial Nucleic Acids

Several artificial nucleic acids targeting dsDNA have been reported in a recent study.
Prof. Hrdlicka et al. designed chemically modified oligonucleotides with intercalator-
conjugated nucleotides (invader probes; Figure 13a) [86–89]. These invader probes form a
stable duplex with DNA owing to stacking interactions between base pairs and intercalators.
In contrast, the intercalator plays a role in inducing local perturbation and destabilizing
the duplex between one probe strand and a complementary probe strand. The stability
difference between target DNA/invader probe and invader probe/invader probe duplex
provides the driving force for dsDNA recognition via double-duplex invasion. The structure
of the invader probe has been optimized, and 2′-O-(pyrene-1-yl)methyl-RNA is mainly
used as the monomer for intercalator introduction. dsDNA-targeting properties of invader
probes were evaluated by using hairpin DNA as a model target, resulting in successful
DNA recognition. In the latest research, the authors have successfully improved dsDNA
recognition of invader probes with unique strategies, including toehold and nicked invader
designs [90,91]. The authors have been using this system to work on FISH for targeting
chromosomal DNA and have detected complex formation between invader probes and
chromosomal DNA by fluorescence microscopy.
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Prof. Asanuma et al. achieved dsDNA recognition and sequence-specific fluorescent
labeling by combining unmodified PNA with a linear probe [92] (Figure 13b). The linear
probe has multiple fluorophores on a D-threoninol scaffold in an oligonucleotide [93,94].
In the single-stranded state, the linear probe does not emit fluorescence due to the self-
quenching of fluorophores, but when the linear probe hybridizes with target single-stranded
DNA, fluorophores intercalate between the base pairs, triggering a strong fluorescence. In
contrast, hybridization between the linear probe and PNA is suppressed since PNA/DNA
duplex is known to be inflexible to accommodate intercalators and the fluorophores in
the linear probe exhibit inhibitory effect for hybridization with the complementary PNA.
Melting temperature analysis demonstrated that the Tm values followed the order of
DNA/PNA > linear probe/DNA >> linear probe/PNA, satisfying the requirements for
effective invasion. An electrophoresis mobility shift assay demonstrated that linear probe
and PNA invaded and fluorescently labeled the target dsDNA. Heat shock treatment
enabled double-duplex invasion in the central region of dsDNA. Even without a heat shock,
an invasion complex was observed at the ends of 50-bp dsDNA at 40 ◦C and 100 mM NaCl.

Cross-linkable artificial nucleic acids have also been developed for the formation
of a double-duplex invasion complex. Prof. Fujimoto et al. succeeded in performing
photo-induced double-duplex invasion using ultrafast photo-cross-linking [95]. Artificial
nucleobase cyanovinylcarbazole (CNVK; Figure 14a) was developed as the class of photore-
active moiety for nucleic acids, enabling covalent bonds between CNVK in oligonucleotide
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and a pyrimidine base at the −1 position in complementary DNA or RNA [96,97]. To
expand this system to invasion, uracil analog 5-cyanouracil (CNU) was also used to inhibit
photo-cross-linking between each invader strand [95,98]. The reactivity of photo-cross-
linking between CNVK and CNU was lower than CNVK and T (Figure 14b,c). A pair of
invader probes containing CNVK and CNU was used for double-duplex invasion at 37 ◦C.
The denaturing PAGE showed two photo-cross-linked products of DNA and invader
probes, indicating thermally irreversible covalent bonds formed between probes and ds-
DNA by photoirradiation. Moreover, the antigene effect of this photo-cross-linked system
was evaluated by in vitro T7 RNA polymerase assay. After photoirradiation, the shorter
RNA products were obtained, suggesting the inhibition of T7 RNA polymerase activity by
the photo-cross-linked double duplex formation.
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5. Application of PNA Invasion to Biological Research

PNA invasion, which can recognize sequences in dsDNA, has been applied in various
biological studies. As mentioned above, the backbone of PNA is different from those of
DNA and peptide, making it highly resistant to nucleases and proteases, and this is a
great advantage in studies including intracellular applications. One example of biolog-
ical applications of PNA invasion is the control of enzyme functions working on DNA
(Figure 15a). Enzymatic functions of restriction enzymes and methylases were successfully
inhibited by double-duplex invasion [99,100]. The control (both inhibition and activation)
of RNA transcription activity using invasion has also been reported [42,56,101,102]. As a
genetic engineering tool, the construction of DNA cutters has been accomplished based
on PNA invasion [103,104] (Figure 15b). In addition, genome editing, which is currently a
key technology in molecular biology research, has been reported to be achieved by PNA
invasion complex formation [38,57,58,105–107].
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Figure 15. Applications of PNA Invasion to (a) functional regulation of enzymes and (b) DNA cleavage.

The above applications are based on the sequence-specific recognition of dsDNA via
invasion complex formation. More interestingly, invasion is accompanied by a significant
change in the local structure of the target dsDNA. This is entirely different from the simple
DNA binding event and makes it possible to develop novel biotechnologies such as enzyme
recognition control and genome editing.

6. Conclusions

In this paper, PNA, which exhibits one of the highest DNA-binding abilities among
various artificial nucleic acids, is reviewed, with a particular spotlight on its characteristic
dsDNA recognition mode, double-duplex invasion. This invasion enables direct and
sequence-specific recognition of sequences in dsDNA, which is difficult with conventional
artificial nucleic acids, and is expected to be applied in a wide variety of applications.
More specifically, if sequence-selective recognition of genomic DNA in cells and in vivo
becomes possible, gene function can be controlled as desired. As PNA and invasion research
continue to expand, it would be also possible to establish new non-protein genome editing
technologies based on PNAs. As described in this review, various PNA invasion research,
including backbone modification and chemical modification, has been intensively studied
in recent years. Further optimization of PNA from a chemical approach is expected to
promote the application of PNA to research in the fields of biochemistry, chemical biology,
and molecular biology.
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