
applied  
sciences

Article

An Intelligent Cluster-Based Routing Scheme in 5G Flying Ad
Hoc Networks

Muhammad Fahad Khan 1, Kok-Lim Alvin Yau 1,2 , Mee Hong Ling 1,*, Muhammad Ali Imran 3

and Yung-Wey Chong 4

����������
�������

Citation: Khan, M.F.; Yau, K.-L.A.;

Ling, M.H.; Imran, M.A.; Chong,

Y.-W. An Intelligent Cluster-Based

Routing Scheme in 5G Flying Ad Hoc

Networks. Appl. Sci. 2022, 12, 3665.

https://doi.org/10.3390/

app12073665

Academic Editors: Francesco Guidi,

Barbara Mavì Masini, Davide Dardari

and Anna Guerra

Received: 20 October 2021

Accepted: 9 February 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computing and Information Systems, School of Engineering and Technology,
Sunway University, Petaling Jaya 47500, Malaysia; muhamma.f11@imail.sunway.edu.my (M.F.K.);
yaukl@utar.edu.my (K.-L.A.Y.)

2 Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR),
Kajang 43200, Malaysia

3 School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; muhammad.imran@glasgow.ac.uk
4 National Advanced IPv6 Centre, Universiti Sains Malaysia, USM, Gelugor 11800, Malaysia; chong@usm.my
* Correspondence: mhling@sunway.edu.my

Abstract: Flying ad hoc network (FANET) is an application of 5G access network, which consists
of unmanned aerial vehicles or flying nodes with scarce resources and high mobility rates. This
paper proposes a deep Q-network (DQN)-based vertical routing scheme to select routes with higher
residual energy levels and lower mobility rates across network planes (i.e., macro-plane, pico-plane,
and femto-plane), which has not been investigated in the literature. The main motivation behind this
work is to address frequent link disconnections and network partitions in order to enhance network
performance. The 5G access network has a central controller (CC) and distributed controllers (DCs)
in different network planes. The proposed scheme is a hybrid approach that allows CC and DCs to
exchange information among themselves, and handle global and local information, respectively. The
proposed scheme is suitable for highly dynamic ad hoc FANETs, and it enables data communication
between UAVs in various applications, such as monitoring and performing surveillance of borders,
and targeted-based operations (e.g., object tracking). Vertical routing is performed over a clustered
network, in which clusters are formed across different network planes to provide inter-plane and
inter-cluster communications. This helps to offload data traffic across different network planes
to enhance network lifetime. Compared to the traditional reinforcement learning approach, the
proposed DQN-based vertical routing scheme has shown to increase network lifetime by up to 60%,
reduce energy consumption by up to 20%, and reduce the rate of link breakages by up to 50%.

Keywords: flying ad hoc network; deep Q-network; reinforcement learning; 5G; QoS

1. Introduction

During the past decade, the internet has revolutionized almost all fields and has
boosted the tremendous growth of user equipment (UE) and bandwidth-starving appli-
cations. By end of 2021, data traffic is expected to increase by eight-fold [1] with the
introduction of next-generation bandwidth-starving applications (e.g., augmented real-
ity, virtual reality, and driver-less vehicle), and new services (e.g., smart home, smart
healthcare, and smart city).

Therefore, there is a colossal demand for significantly higher network capacity and
lower delay to support higher mobility of UEs, leading to the need of the next-generation
mobile wireless network, namely, fifth generation (5G). Flying ad hoc network (FANET) is
one of the new applications supported by 5G.

5G incorporates new technologies, including massive multiple-input and multiple-
output (MIMO), device-to-device (D2D) communication, coordinated multi-point (CoMP),
and beamforming, providing new features, such as exploring and exploiting mmWave
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and underutilized spectrum. These features help to achieve improved spectral efficiency,
coordinate different kinds of network cells (e.g., macrocells and small cells (SCs), including
picocells and femtocells) for achieving reduced interference, and achieve network virtu-
alization for sharing network-wide resources. These features cater for next-generation
network scenarios characterized by ultra-densification, heterogeneous, and high variability,
in order to achieve a better quality of service (QoS) of up to 10× higher data rate, up
to 1000× lower delay, up to 99.999% higher reliability and availability, up to 100× larger
network coverage, and up to 10× longer battery lifetime [2]. As an example of the new
technologies, D2D enables neighboring nodes to perform direct communication among
themselves without passing through a base station (BS), which can offload traffic from the
BS to reduce network congestion while reducing delay and energy consumption.

The rest of this section presents an overview of FANET, 5G, vertical clustering, as well
as our contributions and the paper organization. Table 1 presents general notations, and
Table 2 presents notations related to routing.

1.1. FANET

In FANETs, a large number of unmanned aerial vehicles (UAVs), which are au-
tonomous, small-sized, and lightweight flying nodes, move at high speed at low or high
altitudes in a three-dimensional space. Communication in FANETs is characterized by
(a) a large transmission range due to the elevated look angle of UAVs, providing long-
range connectivity with UAVs and base stations (BSs), and (b) frequent link disconnections
and network partitions due to the high-speed and three-dimensional movement [3]. We
consider that all nodes in FANETs are UAVs with different characteristics and different
roles, namely, cluster member (CM), cluster head (CH), cluster gateway (CG), and vertical
cluster gateway (VCG). UAVs have become increasingly important to support resource
starving applications of FANETs in 5G and beyond 5G mobile networks [4]. Examples of
use cases are advanced mapping and aerial photography, in which UAVs must satisfy the
ever-increasing demands for mobile data communication and ubiquitous connectivity to
different kinds of wireless devices [4].

Table 1. General notations.

Notation Description

ni Node i ∈ N.
θi Direction of node ni where, i ∈ N.
vi Velocity of node ni where, i ∈ N.
T Transmission range.
tp Data lifetime.
τ Data lifetime threshold.
xi, yi, zi Coordinates of node ni in three dimensions, where i ∈ N.
t Time
Di,j Distance between two nodes ni and nj, where i ,j ∈ N.

As UAVs are battery-powered with limited residual energy, frequent link disconnec-
tions and network partitions cannot be addressed by further increasing the transmission
range, which can drain out residual energy. Consequently, network performance degrades,
including higher overheads (e.g., clustering and routing overheads, and handover) and
lower quality of service (QoS) (e.g., lower throughput and higher end-to-end delay). There-
fore, efficient vertical routing is performed over a clustered network to increase network
stability. One of the most critical issues of UAVs is how to consume the limited residual en-
ergy efficiently. The lifetime of the whole UAV network is highly dependent on the energy
consumption of UAVs, which is related to their mobility patterns and data transmission.
Although UAVs can be equipped with rechargeable batteries powered by solar energy,
fuels, and other sources of energy, UAVs should not frequently return to ground stations
to charge their batteries frequently, which can reduce their hovering time considerably.
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Therefore, efficient routing should be performed to enhance network lifetime [5]. In [6], the
challenges of data transmission in FANETs, especially reducing its energy consumption,
have been addressed. Nevertheless, the proposed approach focuses on increasing network
lifetime, reducing energy consumption, and reducing the rate of link breakages for 5G
or beyond.

Table 2. Routing notations.

Notation Description

i Number of agents, where i = 1, 2, 3 . . . ,N.
si

t State of an agent i at time t.
mi

t Mobility of an agent i at time t.
ei

t Residual energy of an agent i at time t.
Er Residual energy of an agent.
ai

t Action of an agent i at time t.
A Set of possible actions.

xh
m,Er

Action (i.e., a selected next-hop node xh) taken based on mobility m and
residual energy Er.

rt(si
t, ai

t, si
t+1) Delayed reward received by an agent i at time t.

Q(si
t, ai

t) State-action pair or Output Q-value.
µθ(si

t, ai
t) Policy for the selection of state-action pair Q-value Q(si

t, ai
t).

Rmem Memory for storing the experiences used for training deep neural network.
(sk

t , ak
i , rk

t , sk
t+1) kth experiences stored in reply memory Rmem.

α Learning rate.
γ Discount factor.
ε Exploration rate.
εmax Maximum exploration rate.
εmin Minimum exploration rate.

εdecay
Decaying variable of exploration. ε from maximum exploration rate εmax to
minimum exploration rate εmin.

yi Desired target function.
θ Network parameters of the main network.
θ̄ Network parameters of the target network.
∇θi Li(θi) Gradient descent based on a loss function for network parameters θ.

In FANETs, multiple UAVs cooperate and establish an ad hoc network in a multi-UAV
scenario. The presence of a large swarm of UAVs is called a multi-UAV swarm. Using
5G to support a multi-UAV swarm provides three main advantages: network scalability,
network stability, and load distribution, for achieving improved QoS. As an example,
device-to-device (D2D) communication allows neighboring UAVs to communicate with
each other without passing through a BS, which can reduce control message exchange
and enable traffic offload from the BS, leading to an increased bandwidth availability at
BS [7]. As another example, small cells (SCs) are deployed to cater for local traffic in order
to reduce energy consumption [8,9]. The BSs provide backhaul access, and they have
the privilege to interact with central controllers (CCs). The CCs are responsible for (a)
managing network-wide traffic and changes in network topology due to node mobility
and dead nodes as a result of battery drainage, and (b) making intelligent routing decisions
based on network-wide policies. Network-wide policies deal with vertical routing (i.e.,
selecting the most favorable route across different network planes efficiently), whereas
local policies deal with vertical clustering across different network planes.

1.2. 5G

5G is the next-generation wireless network (see Figure 1) that provides mobile internet
connectivity with promising download and upload speeds, wider coverage, and higher sta-
bility. 5G incorporates various types of new technologies (e.g., D2D communication), and
coordinates different kinds of network cells (e.g., macrocells and SCs, including picocells
and femtocells) to reduce interference [10–13]. The network is generally segregated into
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different network planes comprised of different network cells; for instance, a macro-plane
consists of macrocells. 5G caters for next-generation network scenarios characterized by
ultra-densification whereby there is a large number of active UAVs per unit area gener-
ating a massive amount of data, and high heterogeneity whereby there is a diverse range
of transmission capabilities among UAVs distributed in different network planes (see
Section 3).

One of the key features of 5G is the presence of a CC and distributed controllers (DCs)
to support the hybrid approach. The CC manages global information (e.g., the residual
energy of a UAV and the network plane in which a UAV resides), and allocates network-
wide resources (e.g., channels with spatial reuse). The DC manages local information (e.g.,
the geographical location, node degree, and relative speed, of a UAV), and allocates local
resources (e.g., bandwidth and buffer space). This hybrid approach allows the CC and DCs
to exchange the global and local information with each other. The presence of DCs allows
control functions to be brought closer to UAVs and local infrastructure, particularly the
BSs, leading to a reduced interaction time between UAVs and controllers, and increased
throughput performance with higher bandwidth availability at the CC.

Using the new technologies of 5G, particularly D2D, across different kinds of network
cells in FANETs reduces congestion level and increases throughput. D2D increases band-
width availability at BS and can support the deployment of different network cells through
spatial reuse of frequency bands.

Our proposed framework enables CC and DCs to manage long-lifetime (i.e., with
long expiry due to low dynamicity) and short-lifetime data (i.e., with short expiry due to
high dynamicity) in order to reduce end-to-end delay under ultra-densified and highly
heterogeneous network scenarios. Frequent link disconnections and network partitions
are commonplace in highly dynamic FANETs. The scheme consists of vertical routing
over a clustered network. By vertical, we refer to mechanisms that involve different
network cells (or network planes). While existing routing schemes for FANETs are only
horizontal-based and mainly reduce the average number of hops between the source
and destination UAVs [14,15], our proposed framework focuses on vertical routing and
supports horizontal routing.

Table 3 presents the brief functions of various network elements, and we explain the
detailed working of each network element based on the use-case scenario in Figure 1.

Table 3. The functions of various network entities are shown in Figure 1.

Terminologies Abbreviations Functions

Unmanned aerial
vehicle UAV UAVs are autonomous, small-sized, lightweight flying nodes moving at high speed at

low or high altitudes in a three-dimensional space.

Central controller CC CC makes decisions and manages global tasks (i.e., vertical routing).

Distributed controller DC DC makes decisions and manages local tasks (e.g., vertical clustering) in a particular
network plane.

Cluster head CH CH, which serves as the cluster leader, manages and handles cluster-level operations
(e.g., routing), and performs intra- and inter-cluster communications.

Cluster member CM CM, which is associated with a CH, performs intra-cluster communication.

Cluster gateway CG CG, which is associated with a CH, interacts with neighboring clusters through
inter-cluster communication.

Vertical cluster
gateway VCG VCG enables interactions among UAVs in different clusters across different network

planes, which is conveniently known as inter-plane communication.
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Figure 1. Our framework consists of DQN-based vertical routing over a clustered FANET in a 5G
network. Cluster C1,1 is in the macro-plane, clusters C2,1 and C2,2 are in the pico-plane, and cluster
C3,1 is in the femto-plane. Gray-shaded area represents a cluster boundary (i.e., the transmission
range of a CH) across different network planes. CG1,1,1 and CG3,2,1 are not connected with CGs of
other clusters. Explanation of the function of the network entities is presented in Table 3.

1.3. Vertical Clustering

Vertical clustering segregates UAVs with similar nature or behavior into logical groups
across different network cells in order to improve network scalability and cluster stabil-
ity. While ultra-densification and large transmission range increase network connectivity
among UAVs in a cluster, network connectivity among UAVs are affected by high hetero-
geneity and dynamicity. Traditionally, a cluster is comprised of cluster head (CH), cluster
member (CM), and cluster gateway (CG) as explained in Table 3. The CH, which serves
as the cluster leader, manages and handles cluster-level operations (e.g., routing), and
performs intra- and inter-cluster communications. The CM, which is associated with a
CH, performs intra-cluster communication. The CG, which is associated with a CH, in-
teracts with neighboring clusters in inter-cluster communication. In vertical clustering,
vertical cluster gateway (VCG) is introduced to enable interaction among UAVs in differ-
ent clusters across different network planes, which is conveniently known as inter-plane
communication. In Figure 1, a cluster C1,1 is formed across different network planes (i.e.,
macro-plane and pico-plane). In this paper, DCs use long-lifetime (e.g., transmission range)
and short-lifetime (e.g., geographical location) data to perform vertical clustering, which is
a local task to form inter-plane clusters, in order to enhance cluster stability and network
scalability. Meanwhile, existing clustering schemes improve cluster stability, which helps
in enhancing load balancing, social awareness, fairness, and QoS over a single network
plane in 5G networks [2].

Vertical routing enables UAVs to collaborate and coordinate among themselves to es-
tablish routes across different network planes, which helps to offload traffic from macrocell
to SCs, including picocell and femtocell. In this paper, the CC uses long-lifetime (i.e., resid-
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ual energy) and short-lifetime (i.e., mobility) data received from DCs to perform vertical
routing by selecting next-hop UAVs with lower mobility and higher residual energy in
order to increase the network lifetime.

1.4. Our Contributions

Our contributions are as follows:

• A hybrid framework that enables CC and DCs to handles long- and short-lifetime
data, which represents the freshness (or recency) of data, in order to ensure the
availability of unexpired data for the local task (i.e., vertical clustering) and the global
task (i.e., vertical routing performed over a clustered network) in FANETs under 5G
network scenarios.

• A DQN-based vertical routing over a clustered FANET that selects routes across differ-
ent network planes (or network cells) to enable inter- and intra-plane communications
while improving network lifetime, as well as reducing energy consumption and link
breakages. Our proposed scheme focuses on route selection, rather than signaling
protocol and message structure, in 5G access networks.

1.5. Paper Organization

Table 4 summarizes the organization of this paper. Section 1 presents the introduction
of FANETs, the 5G access network, and the structure of vertical clustering in 5G-based
FANET. Furthermore, this section contains the distinguishing aspects of our research and
contributions. Section 2 presents the core elements of the 5G access network (i.e., network
planes and controllers) and their functions, and the hybrid framework and its advantages.
This section also explains the categories of data based on their lifetime, and the significance
of fresh data. Section 3 presents the traditional clustering scheme, DQN-based vertical
routing, cluster maintenance, the three main components of DQN, the DQN algorithm,
and the reinforcement learning algorithm. Section 4 presents research implementation,
baseline approaches, ranges of important parameters, energy models, the selection of
various performance measures, the analysis of RL and DQN approaches based on learning
rate, convergence, simulation results, and complexity analysis. Section 5 presents the
significant research outcomes. Section 6 presents future research directions.

Table 4. Organization of this paper.

Section Detail

Introduction
Section 1 presents the introduction of FANETs, 5G access network, and the structure of
vertical clustering in 5G-based FANET. Furthermore, this section contains the
distinguishing aspects of our research, contributions, and organizational structure of paper.

Network Architecture

Section 2 presents the discussion about core elements of 5G access network (i.e., network
planes and controllers). It also presents the discussion on the hybrid framework, functions
of controllers, and advantages. It defines the categories of data based on their lifetime, and
the significance of fresh data.

System Model and Functions

Section 3 presents the traditional clustering approach, routing mechanism, and cluster
maintenance. It presents a detailed discussion of vertical routing based on a use case
scenario as shown in Figure 1. Furthermore, it presents DQN-based vertical routing, the
three main components of DQN, and the DQN algorithm as shown in Algorithm 1. It also
presents the discussion and algorithm of reinforcement learning as shown in Algorithm 2.

Performance Evaluation, Results
and Discussion

Section 4 presents a detailed discussion of the implementation of research, baseline
approaches, ranges of important parameters, energy models, the selection of various
performance measures, the analysis of RL and DQN approaches based on learning rate, the
convergence of proposed schemes, and a comprehensive discussion of simulation results.
Furthermore, it presents a complexity analysis including its parameters.

Conclusion and Future Work Section 5 presents the significant research outcomes and the future research direction.
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2. Related Work

The diverse range of FANET applications has prompted the need to investigate clus-
tering and routing schemes under different mobility models [16], particularly collective
motion [17] and random distributive motion [18]. The collective motion enables surveil-
lance [19] in search and rescue missions [20], whereby a group of UAVs gather at a target
location [21]. The random distributive motion models a multi-UAV swarm in an area
for different purposes, such as collecting data from cellular users, transferring images
and videos from a post-disaster area to BSs [22], and deploying an emergency network
for recovering communication rapidly in a catastrophic area [23]. Meanwhile, the three-
dimensional predictable distributive motion, which is investigated in this paper, is another
mobility model in which UAVs move in randomly and uniformly distributed directions
and velocities.

Investigations have been made to investigate clustering and routing in FANETs.
Clustering algorithms have been proposed to facilitate collaboration among UAVs and
network stability, and an extensive survey of clustering, covering features, characteristics,
competitive advantages, and limitations, can be found in [24]. Various routing algorithms
have been proposed to increase network lifetime, and reduce energy consumption and
the rate of link breakages. The routing algorithms can be classified into topology-based,
position-based, hierarchical, deterministic, stochastic, and social network-based routing
schemes [25].

Clustering and routing in FANETs must address the challenges of high mobility and
limited residual energy while providing real-time communication between UAVs and
ground control stations. Various tools have been applied to address the challenges of
FANETs. In a network with high mobility, ensuring the link stability of a route helps to
achieve network-wide stability, leading to improved network performances, such as a
higher packet delivery ratio and a lower end-to-end delay. Game theory has been proposed
for modeling and analyzing network problems [26]. Machine learning approaches have
been proposed. In [27], dueling DQN is applied for managing the mobility of UAVs
and planning flight path in a real-time manner while considering both delay and energy
consumption requirements in dynamic Internet of things (IoT) sensor networks [28]. In [29],
particle swarm optimization (PSO) is applied, and it is based on (a) the bounding box
method to address the limited boundary of an area of investigation, and (b) the particle
fitness function that takes account of inter-cluster distance, intra-cluster distance, residual
energy, and geographic location when selecting CHs while achieving energy efficiency.
In [30–32], swarm intelligence is used in clustering to achieve scalability.
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Algorithm 1: The DQN algorithm.

Complexity

Computational Message Storage

Input: Sequence of state si
1 = {mi

1, ei
1}

Output: Action ai
t

1: procedure
2: Initialize experience replay memory Rmem
3: Initialize main network parameter θ
4: for episode = 1 : Z do
5: Initialize a sequence of state si

1 = {mi
1, ei

1}
6: for t = 1 : T do
7: Select action ai

t ={
random, if ε

ai,∗
t = maxa Q∗(si

t, ai
t; θ), if otherwise

O|C|

8: Execute action at by using the policy µθ(st, at) O(|S||A|)
9: Observe state si

t+1 and delayed reward
rt(si

t, ai
t, si

t+1)

≤ |J|

10: Store experience (si
t, ai

t, ri
t, si

t+1) in Rmem O(|S||A||Hn|)
11: Randomly select mini batch of N experiences

from Rmem
12: for j = 1 : N do
13: Set target yj ={

rj, if terminal sj+1
rj + γ maxa(sj+1, aj; θ̄), if otherwise

14: Update θ via gradient descent on loss func-

tion (yj −Q(sj, a
′
; θ))

2
,

15 Differentiate the loss function with respect to
θi

16 ∇θi Li(θi) = [(yi −
Q(st

i , at
i ; θi))∇θi Q(st

i , at
i ; θi)]

17: Update θ̄ = θ after C steps O(|S||A||C|)
18: end for
19: end for
20: end for
21: end procedure

In [30], the gray wolf optimization-based algorithm is applied to reduce localization
errors in routing while achieving higher energy efficiency and localization accuracy, and
minimizing flip ambiguity in the measurement errors of bounded distance. In [33], genetic
algorithm with improved selection, crossover, and variation operators takes account of
the bandwidth and stability of links and the residual energy of UAVs, leading to higher
throughput and network stability, and a lower delay. In [34], fuzzy logic performs routing
in two phases. First, in route discovery, the score of each UAV is calculated based on
mobility, residual energy, and stability to (a) select routes with a higher fitness, and lower
hops and delay, and (b) prevent the broadcast storm problem in which the flood of control
messages to discover new routes is limited. Second, route maintenance. The second
minimizes route failure and reconstructs broken routes.
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Algorithm 2: The RL algorithm.

Complexity

Computational Message Storage

Input: State si
t

Output: Action ai
t

1: procedure
2: Observe current state si

t ≤ |J|
3: if exploration then
4: Select a random action ai

t
5: else
6: Select an action ai,∗

t = argmaxa∈A Qi
t(s

i
t, a)

7: end if
8: Receive delayed reward ri

t+1(s
i
t+1, ai

t+1)

9: Update Q-value Qi
t+1(s

i
t, ai

t) using Equation (2) O(|S||A|) 1
10: end procedure

Q-learning has been proposed to improve various aspects of routing, including select-
ing next-hop UAVs and routes, estimating link duration, and adjusting the Hello message
interval and link holding time, contributing to improved efficiency and reliability in a
highly dynamic FANETs [31]. In [35], Q-learning reduces network delay in network scenar-
ios with high mobility, and it has shown to achieve better routing performance compared
to other reinforcement learning approaches. The [36] literature extends routing with collab-
orative data forwarding for improved link stability. The [37] literature extends routing with
the Boltzmann machine, which considers bandwidth, residual energy, and link stability in
its routing metric. Nevertheless, Q-learning suffers from the curse of dimensionality, and
so deep reinforcement learning (DRL) is investigated in this paper.

Compared to existing schemes [18], this paper uses a DRL approaches called DQN
due to its fast learning speed in solving complex problems with high dynamicity and
dimensionality (or a large state space). Below is a list of distinguishing and important
aspects of this work.

• We consider a DQN-based vertical routing over a clustered FANET that selects routes
across different network planes (or network cells) to enable inter- and intra-plane
communications while improving network lifetime, as well as reducing energy con-
sumption and link breakages. Our proposed scheme focuses on route selection in 5G
access networks, rather than signaling protocol and message structure which have
been investigated in the literature [18]. To the best of our knowledge, in the literature,
existing routing schemes for FANETs considers the dynamicity of UAVs only [29], and
there is lack of investigation in the context of 5G access networks.

• We consider inter- and intra-plane communications. Different network planes have
different characteristics, and this has not been considered in route selection. Specif-
ically, in 5G access networks, each network plane consists of UAVs and BSs with
different characteristics. For instance, macrocells, picocells, and femtocells have large,
medium, and small transmission ranges, so they have high, medium, and low node
densities of UAVs, respectively. UAVs can switch from one network plane to another
(e.g., from the macro-plane to the pico-plane) based on the relative speed of UAVs and
the number of handovers across different network planes. The presence of different
network cells is unique as compared to traditional access networks which have a
single type of network cell. Therefore, the proposed vertical routing scheme over the
clustered network involves different network cells (or network planes), while existing
routing schemes for FANETs are only horizontal-based and mainly reduce the average
number of hops between the source and destination UAVs [14,15]. By considering
different network planes, our proposed framework considers both vertical routing
across different network planes and horizontal routing within a network plane. To the
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best of our knowledge, the effect of different network planes to routing has not been
considered in the literature.

• We consider two types of data. Higher dynamicity reduces data lifetime (or freshness)
and increases the need to update both CC and DC controllers with new data. Highly
dynamic data, such as geographical location, and the moving speed and direction,
are generated by UAVs and BSs in FANETs. First, DCs handle the short-lifetime data,
which has short expiry due to high dynamicity (i.e., the mobility of UAVs). This data
is used for the local task, particularly vertical clustering. Second, CC handles the
long-lifetime data has long expiry due to low dynamicity (i.e., residual energy). These
data are used for the global task, particularly vertical routing over a clustered network.
To the best of our knowledge, the freshness of the data has not been considered in
the literature.

• We use DQN-based routing scheme over a clustered network to manage the highly
dynamic network in order to ensure scalability. The main research focus of routing
schemes in FANETs is to cater for the dynamicity of UAVs, which causes frequent vari-
ations in the network topology. The DQN agent is trained to gain the comprehensive
knowledge of the environment in order to improve network lifetime.

3. Network Architecture

Figure 1 shows a 5G network characterized by ultra-densification and heterogeneity.
Our investigation focuses on the access network, rather than the network core (or back-
bone), in which the FANETs and UAVs operate as seen in [2,18]. Due to ultra-densification,
a massive amount of data is generated, and due to heterogeneity, UAVs have different
transmission capabilities. A 5G network can be segregated into different network planes
comprised of different network cells (i.e., macrocell, picocell, and femtocell). There are
a CC and DCs. The CC handles the global context, and it (a) gathers global informa-
tion (i.e., residual energy) and local information (i.e., geographical location) from DCs to
provide network-wide information, and (b) sends routing decisions to the DCs, which
form routes accordingly. Meanwhile, a DC handles the local context in a network plane,
and it (a) gathers global information (i.e., residual energy) from CC, and (b) sends local
information and clustering decisions to the CC so that VCGs can be selected for inter- and
intra-plane communications.

Network planes. A 5G network consists of three network planes, namely, macrocell,
picocell, and femtocell. Each network plane consists of UAVs and BSs with different charac-
teristics as shown in Table 5. In general, the macrocell, picocell, and femtocell have large,
medium, and small transmission ranges (or coverage), and so they have high, medium, and
low node densities of UAVs, respectively. According to the authors of [38], the macrocell
has a coverage of a 1000 m, pico has a coverage up to 100 m, while femto has a coverage of
a few meters [38]. UAVs can move from one network plane to another (i.e., either to an
upper plane or to a lower plane) based on the relative speed and the number of handovers
across different network planes. In order to mitigate the effect of high node mobility, UAVs
with high, medium, and low node mobilities connect to macrocell, picocell, and femtocell,
in order to reduce handovers among BSs, respectively.

Table 5. Characteristics of network planes.

Network Plane

Characteristics

Node Density (Percentage
of UAVs)

Node Mobility (Meters
per Second)

Transmission Range
(Meters)

Macrocell 45% 66.7–100 10–500
Picocell 35% 33.4–66.6 10–300

Femtocell 20% 0–33.3 10–100
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Central controller (CC) makes decisions and manages the global task (i.e., vertical
routing). There are three main disadvantages. First, CC causes a lower network scalability.
Second, CC causes a lower network reliability due to a single point of failure. Third, CC
causes a reduced network performance (e.g., lower throughput and higher end-to-end delay)
due to a higher congestion level at the CC [39,40] because it (a) handles a massive amount
of data and (b) is updated with highly dynamic data. Therefore, CC may not be suitable to
handle FANETs with high node mobility [41]. Distributed controllers (DCs) make decisions
and manage local tasks (e.g., in the network plane). Each network plane has a DC that
handles UAVs and BSs in the respective plane, and connects the UAVs and BSs to the
CC. The DCs handle highly dynamic data, which addresses the disadvantages of the CC.
However, the DC has the main disadvantage in which its decisions and management are
limited to the local context (i.e., clustering and cluster maintenance).

3.1. Data Lifetime

In FANETs, UAVs and BSs generate highly dynamic data, such as geographical lo-
cation, and moving speed and direction. Higher dynamicity reduces data lifetime and
increases the need to update controllers (i.e., CC and DCs) with the data. Data have either
short-lifetime (i.e., with short expiry due to high dynamicity) or long-lifetime (i.e., with
long expiry due to low dynamicity) as follows:

tp =

{
long-lifetime data, if tp ≥ τ
short-lifetime data, otherwise

where tp and τ represent data lifetime and its threshold, respectively.
Long-lifetime data have a lifetime greater than a predefined threshold tp ≥ τ. Therefore,

it does not vary frequently and can be updated at least or more than every τ time period.
The long-lifetime data resides in the CC; thus, it is also known as the global data available
to other UAVs and BSs in the network. In this work, the long-lifetime data is the residual
energy of a UAV and the network plane in which a UAV resides.

Short-lifetime data has a lifetime shorter than a predefined threshold tp < τ. So, it
varies frequently and changes within every time period τ. The short-lifetime data resides
in the DCs in each network plane; therefore, it is also known as the local data available to
other UAVs and BSs in the same network plane only. In this work, the short-lifetime data is
the mobility rate of UAVs.

3.2. Hybrid Framework

We propose a hybrid framework comprised of CC and DCs. The CC has three main
functions. It (a) gathers long-lifetime data and serves as a central data repository to provide
a global view of the network, (b) processes global data with high processing capability, and
(c) determines network-wide policies and decisions (e.g., policies related to the initialization
of the clustering process and vertical routing). The CC provides these functions even when
network partitions occur. The DC has three main functions. It (a) gathers short-lifetime
data and serves as a local data repository to provide a local view of the network, as well as
sends long-lifetime data to the CC; (b) processes local data; and (c) manages the underlying
cluster structure. The DCs provide these functions even when CC failure occurs.

The hybrid framework provides three main advantages according to the CAP theorem
of distributed computing [42], which is important due to the highly dynamic FANET. First,
consistency in which the same short-lifetime data is available to all UAVs and BSs in each
network plane, and the same long-lifetime data is available to all UAVs and BSs in the
network. Second, availability in which both CC and DCs provide unexpired data to UAVs
and BSs in the network. Third, partition tolerance in which the network continues to operate
despite the failure of some of the controllers, namely CC and DCs.

In addition, load distribution can be achieved by offloading traffic from CC to DCs,
which helps to reduce congestion level at the CC, hence reducing end-to-end delay.
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4. System Model and Functions

This section presents the system model and functions, which are based on the tradi-
tional clustering and routing mechanisms. Traditional clustering schemes are implemented
in a single network plane only without communication across different network planes,
and there is lack of a framework to handle long- and short-lifetime data while ensuring
the availability of fresh data. However, the vertical clustering scheme forms inter-plane
clusters, which are local tasks performed by DCs. DCs use long-lifetime (i.e., transmission
range) and short-lifetime (i.e., geographical location) data for vertical clustering in order to
enhance cluster stability and network scalability.

Clusters are formed by segregating nodes in the network into groups of nodes with
similar nature. For simplicity, only two clusters are shown in Figure 2. Cluster C1 has a
cluster head CH1, two cluster members CM1,1 and CM1,2, and a cluster gateway CG1,1, and
cluster C2 has a cluster head CH2, two cluster members CM2,1 and CM2,2, and a cluster
gateway CG2,1. Cluster heads CH1 and CH2 can communicate with each other in three hops
using a route CH1 − CG1,1 − CG2,1 − CH2, whereby links CH1 − CG1,1 and CG2,1 − CH2
are intra-cluster communications and link CG1,1 − CG2,1 is an inter-cluster communication.
The CHs can also interact with BS. The CM of a cluster cannot communicate with the CG of
another cluster directly; and it must communicate via CGs in inter-cluster communication
or VCGs in inter-plane communication.

CM1,1

CM1,2

CH1

CG1,1

CG2,1

CM2,1

CM2,2

CH2

C1
C2

BS

Figure 2. An example of a cluster structure in a traditional clustered network. Solid line represents
the connectivity between a node pair, and dash line represents the connectivity between a CH and
a BS.

Based on the traditional clustering schemes [2], the underlying clustering scheme in
our framework enables the DC of a network plane to gather messages from UAVs periodi-
cally in order to form clusters with increased cluster lifetime for ensuring cluster stability.
The message contains the three dimensional geographical location, node degree (i.e., the
number of neighbors), and mobility metrics of a UAV. The DC selects a UAV with a higher
node degree as a CH to increase the CH lifetime. A node with a higher node degree indi-
cates that (a) the mobility of the node and its neighboring nodes is approximately similar,
and so it increases connectivity and (b) the node has a larger transmission range. Therefore,
the node with a higher node degree is selected as the CH. Using D2D communication,
UAVs can communicate with each other in the same cluster, so UAVs can bypass the CHs
of their respective clusters via intra-cluster communication. However, D2D communication
with nodes from other clusters via inter-cluster communication cannot bypass CHs, which
increases the energy consumption of CHs. The DC selects non-clustered UAVs, which are
geographically closer to a CH, as the CMs of the CH. The DC selects CGs, which are the
CMs with the minimum number of intermediate nodes between two CHs. The DC also
selects VCGs, which are the CMs with the highest link expiration time (LET) among the
CMs of a cluster, to maintain inter-plane communication.
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Cluster maintenance is performed because UAVs have (a) high node mobility with
changing coordinates and the relative speed with neighboring UAVs as time passes, (b) high
node density (or ultra-densification), and (c) high heterogeneity with different transmission
ranges that may overlap. UAVs can switch between network planes (i.e., switches to
either an upper or a lower network plane) based on the relative speed and the number
of handovers across different network planes. A handover from one network plane to
another can increase clustering overhead in both network planes, and so frequent handover
is unfavorable. There are two cluster maintenance mechanisms. First, cluster merging
combines two clusters to increase the number of CMs in a cluster (or reduce the number
of clusters in a network), contributing to a lower number of handovers across different
network planes, a lower interference level among the clusters and network planes, and a
higher network scalability. Second, cluster splitting divides a single cluster to reduce the
number of CMs in a cluster (or increase the number of clusters in a network), contributing
to a higher cluster stability.

4.1. Vertical Routing

Vertical routing selects routes with lower mobility in order to prolong route lifetime
for improved QoS as network planes have different mobility levels. Network planes with
higher mobility levels have lower stability. The UAVs, which have different characteristics
(e.g., the coordinates and relative speed vary with time), require vertical routing to (a) coor-
dinate the UAVs in different network planes whereby UAVs have higher mobility levels in
macro-plane, followed by pico-plane and femto-plane, and so the femto-plane provides
a higher stability, (b) offload data traffic from macro-plane to pico- or femto-plane, and
(c) establish routes with higher stability in the network plane. Vertical routing uses VCG,
which are selected using LET for increased stability and inter-plane communication.

We present a use case scenario and show how the network entities presented in
Table 3 operate. Consider a cluster member CM2,1,1 in cluster C2,1 establishes a route to
cluster member CM2,2,1 in cluster C2,2 in Figure 1. Both UAVs are from the same network
plane i = 2. There are three possible routes: (a) a seven-hop route CM2,1,1 − CH2,1 −
VCG2,1,1 −VCG1,1,2 − CH1,1 −VCG1,1,1 −VCG2,2,1 − CM2,2,1 with inter-plane communi-
cation between network planes i = 2 (i.e., more stable) and i = 1 (i.e., less stable); (b) a
five-hop route CM2,1,1−CH2,1−CG2,1,1−CG2,2,1−CH2,2−CM2,2,1 with intra-plane com-
munication in network plane i = 2; and (c) a five-hop route CM2,1,1 − CH2,1 −VCG2,1,1 −
VCG3,1,1 −VCG2,2,1 − CM2,2,1 with inter-plane communication between network planes
i = 2 (i.e., less stable) and i = 3 (i.e., more stable). As the third route has lower mobility,
it is selected to prolong the route lifetime in order to ensure route stability. As an added
advantage, the third route provides traffic offload from the macro-plane and pico-plane,
which generally have higher congestion level, to femto-plane, which generally has lower
congestion level. Nevertheless, the first route may still be chosen to ensure successful data
transmission when the rest of the routes have higher mobility rates and lower residual
energy levels. In the proposed approach, the UAV with a higher residual energy level and
a lower mobility rate is selected as the next-hop node, therefore it is not mandatory to use
a route in femto-plane. Nevertheless, the route in femto-plane is preferred as it provides
UAVs with lower mobility. Additionally, it helps to off-load data traffic from an upper
plane with a higher congestion level to a lower plane with a lower congestion level. There
are trade-offs between various network parameters. For example, femto-plane UAVs have
comparatively lower residual energy yet offer a higher stability (i.e., a lower mobility rate).
On the other hand, femto-plane is less congested which also helps to increase throughput
and reduces packet loss.

In our proposed scheme, the decisions of next-hop selection are made in the CC using
DQN. There are five reasons in which real-time decisions can be made by nodes, including
those carrying real-time data packets, in FANETs with high dynamicity. We segregate these
five reasons into two categories, namely the networking aspect and the learning aspect.
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The networking aspect improves network stability to reduce negative effects to real-time
applications as follows:

• The next-hop selection is performed over a clustered network, which has improved
network stability. This is because our proposed vertical clustering scheme selects
nodes with higher LET to serve as VCGs for communication among different clusters
across different network planes.

• CHs, which are the distributed entities, make intra-plane decisions to select the next-
hop when the source and the destination nodes are from the same network plane.
Decisions are made based on the knowledge of the DQN agent. Meanwhile, the DQN
agent in CC makes inter-plane decisions to select the next-hop node when the source
and the destination nodes are from different network planes. Decisions are based
on long-lifetime data (i.e., predictable mobility pattern). Therefore, nodes carrying
data can receive forwarding decisions from CHs and CC, while avoiding the delay
incurred in receiving forwarding decisions from the CC.

• UAV nodes increase connectivity among clusters. This is because they UAV nodes
have a large transmission range due to their elevated lookup angle.

The learning aspects are as follows:

• The DQN agent embedded in the CC makes decisions based on state-action values,
which represents the long-term reward. Specifically, the action with the highest state-
action value is selected. By considering the long-term reward, DQN may not change
its selection of actions (or policy) after every single variation in the network. This is
because the best possible action may remain optimal from the long-term perspective;
specifically, it continues to achieve the highest state-action value compared to the
rest of the potential actions. Therefore, nodes carrying real-time data can still select
optimal action, which is the forwarding decision, based on its state-action values
while avoiding the delay incurred in receiving forwarding decisions from the CC.

• The DQN agent represents two aspects of mobility, namely speed (which is the short-
lifetime data) and direction or predictable mobility paths (which is the long-lifetime
data), as the state, and so it learns the predictable mobility patterns of UAV nodes.
This helps to reduce the rate of link breakages (i.e., disconnectivity) between nodes.

4.2. DQN-Based Vertical Routing Scheme

DQN is embedded in CC (or agent). The CC contains global information and selects
a favorable route from a source UAV to a destination UAV based on routing metrics,
including the mobility and residual energy of UAVs, in order to prolong route lifetime.
Figure 1 depicts the access network. The entities that an agent interacts with are external to
the agent, and they are conveniently called the operating environment. In Figure 3, DQN,
which is embedded in CC, is applied to the operating environment for improving network
lifetime, as well as reducing energy consumption and link breakages.

There are three main representations in an agent. First, state represents the decision
making factors. The state of an agent i at time t is si

t = (mi
t, ei

t) ∈ S, where mi
t ∈ M

represents mobility, and ei
t ∈ Er represents the residual energy level. Second, action affects

the reward under the state. The action of an agent i at time t is ai
t ∈ A = {xh

M,Er
∈ X},

which represents the selection of a next-hop node out of a set of available next-hops nodes
X towards the destination node. The next-hop node can be a CH, CM, CG, VCG, or BS.
A route cannot be established when there is a lack of an available next-hop, which is
considered a link breakage. Third, delay reward represents the performance measures. The
delayed reward received by an agent i at time t is rt(si

t, ai
t, si

t+1) = w(ri,j
t ) + (1− w)(ci,j

t ),

where the weight factor is 0 ≤ w ≤ 1, and both ri,j
t and ci,j

t are normalized to [0, 1]. Therefore,
the delayed reward has two components: (a) ri,j

t represents the successful transmission rate
of packets towards the destination from node i to node j at time t when both nodes are
moving; and (b) ci,j

t represents the network congestion level between nodes i and j. The
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delayed reward helps a node i to find a stable route to increase the route lifetime and data
traffic offload from macro-plane to pico- or femto-plane.

Operating Environmentsi
t

si
t+1

ai
t

Q(si
t ,a

i
t)

Replay Memory

Mini batch

Main network

ri
t

(s1
t,a
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t+1)

(sk
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Policy
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i
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t+1

Parameter 

Agent 

Δθi

Figure 3. An overview of DQN. Main network, characterized by main network parameters θi,
provides Q-value Q(st

i , at
i ; θi) that defines the behavior policy. Target Q-network, characterized by

target network parameters θ̄i, generates target Q-value Q(st
i , at

i ; θ̄i). Both Q(st
i , at

i ; θi) and Q(st
i , at

i ; θ̄i)

are used to calculate a loss function Li(θi) minimized using the gradient descent approach during
training. Experiences (sk

t , ak
t , rk

t , sk
t+1) are stored in the replay memory and they are used during

training. A mini batch of random experiences from the replay memory are fed into the main and
target networks. The DQN agent is incorporated in CC as shown in Figure 1.

Figure 3 presents an overview of DQN and its composition. DQN is a value function-
based approach that estimates the Q-value of its possible actions. A DQN uses a deep
neural network (DNN), which is characterized by network parameter (or weight) θ, to
approximate an action-value function (or Q function) [43]. In our proposed solution,
DQN is embedded in the CC. In addition, DQN has another three important components.
First, replay memory is used to store experiences for training DNN. Second, the main
network, which is characterized by the main network parameter (or weight) θ, provides
Q-values Q(st

i , at
i ; θi) that defines the agent’s policy. Third, the target Q-network, which is

characterized by target Q-network parameter (or weight) θ̄, provides the target Q-values
Q(st

i , at
i ; θ̄i) used to establish a predefine estimated value for updating network parameter

θ while minimizing a loss function.
Algorithm 1 shows the DQN algorithm. At each episode z, an agent i ∈ N observes

state si
t = (mi

t, ei
t) and feeds it into its DNN (Step 5). The agent i selects either an ex-

ploitation or an exploration action using the ε-greedy approach (Step 7). The decaying
variable εdecay helps to tend towards exploitation from exploration as episode increases.
During exploitation, the agent selects a next-hop node based on the state si

t. During
exploration, the agent explores the possible actions. The output Q-value Q(si

t, ai
t; θi) is

selected based on policy µθ(si
t, ai

t) (Step 8). At the next time instant t + 1, the agent i in
CC observes the next state si

t+1, which includes information from DCs, and receives a
reward rt(si

t, ai
t, si

t+1) (Step 9). The agent i stores this experience, and so it has experiences
{(s1

t , a1
t , r1

t , s1
t+1), . . . , (sk

t , ak
t , rk

t , sk
t+1)} up to this time instant stored in the replay memory

Rmem (Step 10).
A mini batch of experience samples (sl

t, al
t, rt, sl

t+1) are selected randomly from the
replay memory Rmem to train the DNN (Step 11). The mini batch of samples has two
characteristics: (a) independent because the samples are selected randomly to calculate a
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desired target function yj (i.e., pre-estimated value for training) (Step 13), which is then
used to update the network parameter θ using gradient descent based on a loss function
yj−Q(st

i , at′
i ; θ) (Step 14), and (b) stable because real experiences are used to update network

parameters. In the gradient descent approach, the loss function is differentiated with respect
to θi using∇θi Li(θi) = [(yi −Q(st

i , at
i ; θi))∇θi Q(st

i , at
i ; θi)], and this process is repeated until

it reaches the minimum value of the loss function (Steps 15 and 16). The target network
parameters θ̄ is copied from the main network parameters θ every C steps, specifically
θ̄ = θ (Step 17).

The CC receives short-lifetime data (i.e., neighboring nodes of the source and destina-
tion UAVs) from DCs regularly to form a global NS, and establishes a route, which consists
of intra- and inter-cluster, as well as intra- and inter-plane communications, between a
source UAV and a destination UAV.

4.3. Reinforcement Learning

Reinforcement learning (RL), as shown in Algorithm 2, is also embedded in CC for
comparison. At time t, an agent i in CC observes state si

t, which includes information from
DCs, and selects a random action ai

t (during exploration) or an optimal action ai,∗
t (during

exploitation) as follows (Step 6):

ai,∗
t = argmax

a∈A
Qi

t(s
i
t, a) (1)

The agent i receives a positive or negative delayed reward ri
t+1(s

i
t+1, ai

t+1) from the
operating environment at the next time instant t + 1 (Step 8). The agent i explores each
possible combination of state-action pair to update its Q-values with respect to time
t = 1, 2, . . . using Equation (2) as follows (Step 9):

Qi
t+1(s

i
t, ai

t) = (1− α)Qt(si
t, ai

t) + α[rt+1(st+1)

+γ argmax
a

Qt(si
t+1, a)] (2)

where learning rate is 0 ≤ α ≤ 1 and discount factor is 0 ≤ γ ≤ 1.

5. Performance Evaluation, Results, and Discussion

DQN-based vertical routing scheme, which is embedded in the CC, selects a route with
low energy consumption and mobility rate from a source node to a destination node. The
proposed scheme reduces energy consumption and the rate of link breakages, and increases
network lifetime. Ultimately, it contributes to a higher network stability. The main focus of
research on routing schemes in FANETs has been focusing on catering to the dynamicity of
UAVs [29]. Swarm intelligence based algorithms have been used for clustering to ensure
scalability [30,31]. To the best of our knowledge, there is no routing scheme designed
for FANETs in the context of 5G access networks in the literature. 5G access networks
contain controllers (i.e., CC and DCs) and network planes (i.e., macro-, pico-, and femto-
planes), which are unique compared to traditional access networks. Moreover, the proposed
vertical routing approach for multiple network planes in 5G access networks is first of
its kind. As there is lack of state-of-the-art vertical routing schemes for comparison with
our proposed scheme, the traditional RL, random, and optimal approaches are selected.
These approaches are chosen because the optimal approach provides the best possible
results, and the random approach provides the worst possible results. The DQN approach
is compared with its predecessor, namely, RL, and it is investigated with different learning
rates. The learning rate of RL is a hyperparameter that controls how quickly the RL
approach adapts to the dynamicity of the operating environment. DQN has shown to
outperform RL. Similar to [44], UAVs are deployed following the distributive motion, so
we consider three-dimensional predictable motions with uniformly distributed directions
and random velocity that after an iteration. The source and destination UAVs are selected
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randomly [45]. The rest of this section explains our simulation platforms, baseline and
optimal approaches, simulation parameters, performance measures, analysis, simulation
results and discussions , and complexity analysis.

5.1. Simulation Platforms

Simulation is performed using MATLAB (i.e., version 2019b) [46] and Python (i.e., ver-
sion 3.6) [47], which are the preferred tools for similar investigations in the literature [48,49].
MATLAB (or matrix laboratory) uses mathematical modeling to develop algorithms, com-
pute large arrays and matrices, as well as accumulate and record statistics. In Python, deep
learning is implemented using the Keras library [50] in the TensorFlow framework (i.e.,
version 1.1). RL algorithms are implemented and compared using the Gym toolkit [47],
and the network topology that consists of flying nodes are implemented using the Nx
toolkit [51].

5.2. Baseline and Optimal Approaches

Our proposed scheme is compared with two approaches. First, in the random approach,
which serves as the baseline approach, an agent i ∈ N selects and takes a random action
from a set of potential actions (i.e., a set of available next-hop nodes) at all times. The
performance of the random approach reduces as network density increases as shown in
Section 5.7 when the possibility of selecting the best possible action reduces when more
options are available with increased network density. Second, in the optimal approach, an
agent i selects and takes the optimal action, which is the UAV with lower mobility (or higher
stability) and higher residual energy, at all times. This establishes an optimal path from the
source UAV to its destination UAV. The optimal path is selected by considering the node
conditions, whereby nodes with higher residual energy and lower mobility are selected as
next-hop nodes, contributing to improved network lifetime and stability performances.

5.3. Simulation Parameters

Table 6 shows the simulation parameters and values. The units for performance
measures are (a) energy consumption is measured in joule, (b) rate of link breakage is
measured in percentage, (c) network lifetime is measured in mili-seconds, (d) node mobility
is measured in meter per second, and (e) network density is measured in number of nodes.
The values are chosen as they provide the best possible results based on our analysis in
Section 5.6.

Network planes are characterized by node density, node mobility, and transmission
range. UAVs with different mobile characteristics are associated with different network
plane: (a) low-altitude (i.e., ≤400 m) and slow-speed (i.e., 0–33.3 m/s) UAVs are associated
with the femto plane; (b) medium-altitude (i.e., 401–1100 m) and medium-speed (i.e.,
33.4–67.3 m/s) are associated with the pico-plane; and (c) high-altitude (i.e., 1100–2000 m)
and high-speed (i.e., 67.4–100 m/s) are associated with the macro-plane. The transmission
ranges of UAVs are 10–100 m in femto-plane, 10–300 m in pico-plane, and 10–500 m in
macro-plane.

The size of a batch is 32 and the replay memory is 2000. Only 32 experiences are taken
from the replay memory to train DNN in each episode. When the number of entries in
the replay memory reaches its capacity of 2000, the de-queue operation is used to remove
the earliest experience from the replay memory, and recent experiences are added. The
reason for choosing small values of the batch size and the replay memory is to (a) handle a
highly dynamic environment because earlier experiences may not be useful as compared
to recent experiences, (b) use recent experiences in the replay memory for learning, and (c)
use recent experiences to expedite the learning process in run-time training for DNN in a
highly dynamic environment.
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Table 6. Simulation parameters for the RL and DQN agent.

Parameters RL DQN

Batch size - 32
Episodes z 1001 1001
Transmission Range (m) 500 500
Grid size (km3) 1 1
Energy for transmission
(joule) 2 2

Energy for reception (joule) 1 1
Speed (m/s) 10–100 10–100
Network density 100–1000 100–1000
Replay memory size - 2000
Discount factor γ 0.95 0.95
Learning rate α 0.1–1.0 0.0001–0.001
Exploration rate ε 1.0 1.0
Minimum exploration rate
εmin

- 0.001

Maximum exploration rate
εmax

- 1.0

Decaying variable εdecay - 0.995
Data lifetime threshold τ z z

Each simulation run is performed for 100 iterations, and each iteration has 1000 episodes.
After each iteration, the position of UAVs is updated based on mobility. The range of values
for network density, node mobility, transmission range, and their distributions in different
network planes are shown in Table 5. However, the transmission range is from 10 m to
500 m because some UAVs can transmit data to the entire simulation area, particularly
the UAVs in the macro-plane. Our research focuses on vertical clustering and routing. A
UAV may send data from a macro-plane to a femto-plane and vice-versa, and intermediate
UAVs forward data towards a destination UAV. Similarly, the size of the simulation area is
2 km3.

In this research, the τ is set to a single episode z, and so the long-lifetime data does
not change within an episode z.

5.4. Energy Model

In UAVs, energy consumption is caused by three mechanisms: (a) the actuating of
motor control of a UAV when flying in the air, Emotor; (b) communication between sensors
Esensor; (c) communication among UAVs, and between UAVs and BS, Ecom, which is the
major cause of energy consumption in UAVs. The equations for the various kinds of energy
consumption are as follows [52–55].

E = Ecom + Emotor + Esensor (3)

Ecom = ETx + ERx (4)

ETx = Eelect × L + Eamp × L× d2 (5)

ERx = Eelect × L (6)

where ETx and ERx are energy consumption during the transmission and reception of data
packets, respectively. Eelect is the energy consumed by the transmitter and receiver circuitry,
Eamp is the energy consumed by transmit amplifier, L is the number of bits transmitted,
and d is the distance between transmitting and receiving nodes.
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5.5. Performance Measures

There are three performance measures. Energy consumption represents the average
number of energy units (i.e., joule) consumed for a successful transmission of a data packet
from a source node to a destination node. Lower energy consumption improves the energy
efficiency of a network. Rate of link breakages represents the average percentage of link
breakages (out of all link breakages) caused by the drainage of residual energy and UAV
movements. Lower number of link breakages indicates a lower route maintenance and a
higher cluster stability, leading to lower packet loss and delay. Network lifetime represents
the average network failure time when 3

4 of the UAVs in the network run out of residual
energy. Higher network lifetime improves throughput. Our simulation is investigated with
respect to two aspects: Network density represents the number of nodes in a fixed-size area.
Node mobility represents the speed of a node (m/s) ranging from 10 m/s to 100 m/s. In the
experiments, the lower limit of 10 m/s is fixed, while the upper limit of 100 m/s may be
changed. Our proposed scheme selects routes across different network planes (or network
cells) to enable inter- and intra-plane communications while improving network lifetime,
as well as reducing energy consumption and link breakages. Our proposed scheme focuses
on route selection, rather than signaling protocol and message structure, in 5G access
networks. Similar to the investigations in [55,56], packet-based network performance,
such as end-to-end packet delivery ratio, are not selected. Our proposed scheme aims to
(a) reduce energy consumption which increases the availability of residual energy and (b)
reduce the rate of link breakages which reduces the packet drop ratio. Improving these
performance measures has shown to increase the end-to-end packet delivery ratio [55,57].

There is a correlation between the performance measures. As node mobility increases,
the rate of link breakages increases exponentially as shown in Section 5.7.5. This increases
network lifetime as shown in Section 5.7.6 due to the lack of data transmission when new
routes are being established and stored in DCs.

In general, DQN provides the best results as compared to the traditional RL and
random approaches. Our proposed scheme focuses on route selection choosing the most
favorable route with a higher residual energy and a lower mobility, rather than signaling
protocols and message structures, in 5G access networks. Therefore, we have chosen to
improve performance metrics, including energy consumption, rate of link breakages, and
network lifetime. Enhancing these performance metrics improves QoS, such as packet loss
rate, throughput, and end-to-end delay as shown in [58,59]. For instance, a lower rate of
link breakages improves network stability and lifetime because UAVs can transmit data
over their respective routes for a longer time duration without incurring clustering and
routing overheads, leading to a lower packet loss rate, a higher throughput and a lower
end-to-end delay.

5.6. Analysis

This section presents an analysis of the two main approaches, namely, RL and DQN,
via simulation. The analytical outcomes presented in this section help to analyze the
effects of various parameters (i.e., learning rate α, exploration rate ε, and decaying variable
εdecay) to the learning capability of RL and DQN [60–62]. The best possible parameters
are identified, and simulations are performed based on these parameters for performance
comparison between RL and DQN. In this research, the τ value is set to a single episode z,
and so long-lifetime data does not change within episode z.

5.6.1. RL

Figures 4 and 5 present the analytical results of the RL approach based on the state,
action, and reward representations of our model (see Section 4.2).

As the learning rate increases from α = 0.1 to α = 1.0, energy consumption reduces
(see Figure 4a), the rate of link breakages reduces (see Figure 4b), and the network lifetime
increases (see Figure 4c) with network density. At learning rate α = 1.0, energy consump-
tion and the rate of link breakages are the lowest, and the network lifetime is the highest.
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This is because a higher learning rate enables UAVs to (a) use delayed reward based on
recent geographical location of UAVs, which helps to form links between UAVs in a highly
dynamic environment in which UAVs are moving at high speed, and (b) select routes with
higher residual energy and lower mobility in order to enhance network lifetime.

Similar trend is observed in our investigation with respect to mobility as shown in
Figure 5. In Figure 5a, energy consumption increases significantly due to an increased
packet re-transmission as a result of packet loss when mobility reaches 80 m/s .

(a) Energy consumption versus network density

(b) Rate of link breakage versus network density

Figure 4. Cont.
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(c) Network lifetime versus network density

Figure 4. Graphical results for the effects of network density on RL. Learning rate α = 1.0 achieves
the lowest energy consumption and rate of link breakages, as well as the highest network lifetime.

(a) Energy consumption versus mobility

(b) Rate of link breakage versus mobility

Figure 5. Cont.



Appl. Sci. 2022, 12, 3665 22 of 35

(c) Network lifetime versus mobility

Figure 5. Graphical results for the effects of mobility on RL. Learning rate α = 1.0 achieves the lowest
energy consumption and rate of link breakages, as well as the highest network lifetime.

5.6.2. DQN

Figures 6 and 7 present the analytical results of DQN. The state, action, and reward
representations of our model are presented in Section 4.2. As the learning rate increases
from α = 0.0001 to α = 0.001, energy consumption reduces (see Figure 6a), the rate of
link breakages reduces (see Figure 6b), and the network lifetime increases (see Figure 6c)
with network density. At learning rate α = 0.001, energy consumption and the rate of link
breakages are the lowest, and the network lifetime is the highest. This is because a higher
learning rate enables UAVs to (a) use delayed reward based on experiences from replay
memory Rmem. These experiences (si

t, ai
t, ri

t, si
t+1) contain current state values and next

state values, which are important to select a favorable route in a dynamic environment.
Experiences generated using higher learning rates provide better learning for DNN as
compared to experiences generated using lower learning rates because these experiences
contain more recent and fresher experiences; (b) use decaying exploration rate εdecay that
tends towards exploitation from exploration as the number of episodes increases; and (c)
represent the recent angle of arrival as state, which is trained using mini batches from replay
memory Rmem, which helps in convergence towards the most favorable route (i.e., the route
with a higher residual energy and a lower mobility) in order to enhance network lifetime.

(a) Energy consumption versus network density

Figure 6. Cont.
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(b) Rate of link breakage versus network density

(c) Network lifetime versus network density

Figure 6. Graphical results for the effects of network density on DQN. Learning rate α = 0.001
achieves the lowest energy consumption and rate of link breakages, as well as the highest net-
work lifetime.

The number of link breakages increases with an increasing network density. A higher
network density increases the number of hops, and so it increases the energy consumption
of data transmission and reception along a route from a source node to a destination node,
resulting in a higher number of link breakages. The number of link breakages decreases
with increasing learning rate, which helps to select a route with a higher residual energy
and stability. When the learning rate is low, the number of link breakages is high because
selected routes have UAVs with low residual energy. For the effects of network density
on DQN, the learning rate α = 0.001 achieves the lowest link breakages. Lower link
breakages improve the stability and lifetime of a network. There is a correlation between
different performance measures. While an increase in network density improves network
lifetime exponentially, it degrades network performance due to an increase in the rate
of link breakages and energy consumption. This is because a higher network density
increases the number of nodes in a route (or the length of a route), which increases the
number of possible actions (i.e., the potential next-hop or intermediate nodes), resulting in
an increased energy consumption for data transmission and reception.

Similar trend is observed in our investigation with respect to mobility as shown in
Figure 7. In Figure 7a, the network lifetime increases because the energy consumption



Appl. Sci. 2022, 12, 3665 24 of 35

incurred by data transmission and reception reduces due to increased link breakages as the
mobility rate increases.

(a) Energy consumption versus mobility

(b) Rate of link breakage versus mobility

(c) Network lifetime versus mobility

Figure 7. Graphical results for the effects of mobility on DQN. Learning rate α = 0.001 achieves the
lowest energy consumption and rate of link breakages, as well as the highest network lifetime.
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5.6.3. Convergence of DQN Algorithm

Figure 8 shows the delayed reward of DQN. It shows that the delayed reward con-
verges at approximately 12 after almost 60 episodes when the learning rate is α = 0.001,
and the delayed reward converges at approximately 8 after almost 100 episodes when the
learning rate is α = 0.0001. It is worth highlighting that the learning rate α value may
vary based on the underlying application scenarios. At the initial episodes, the delayed
reward for both learning rates α of DQN is unstable; however, as the episode advances, the
delayed reward becomes stable. A higher learning rate α enables an agent i to converge
faster. On the other hand, a smaller learning rate α can cause a slower convergence (or a
longer training time).

Figure 8. Convergence of the DQN algorithm with different learning rates. A higher learning rate α

shows a faster convergence as compare to a lower learning rate α.

5.7. Simulation Results and Discussions

The simulation results and discussions are as follows.

5.7.1. Effects of Network Density to Energy Consumption

The energy consumption of a route (i.e., data transmission from a source UAV to a
destination UAV) increases gradually as network density increases as shown in Figure 9.

Energy consumption is based on the energy consumed by an end-to-end route (i.e.,
from a source node to a destination node). Based on Table 5, there are three assumptions
Table 5): (a) the size of data packets is similar, (b) the transmission of a single data packet
in each hop consumes two energy units (i.e., joule), and (c) the reception of a single
data packet consumes one energy unit. The energy consumption of a route is caused by
data transmission from a source UAV to a destination UAV, which increases gradually as
network density increases as shown in Figure 9. DQN outperforms RL with at least 20
units lower energy consumption when network density is lower (i.e., 100 UAVs), and at
least 15 units lower energy consumption when network density is higher (i.e., 1000 UAVs).
For instance, in DQN, the energy consumption of 100 nodes is 15 units, which means
there are 5 transmissions and receptions from source to destination UAVs. Similarly, the
energy consumption of 1000 nodes is 40 units, which means there are 20 transmissions and
receptions of data packet from source to destination UAVs.

DQN outperforms RL with at least 20 units lower energy consumption for lower
network density (i.e., 100 UAVs), and at least 15 units lower energy consumption for higher
network density (i.e., 1000 UAVs). Therefore, DQN increases network lifetime and network
stability. This improvement is attributed to the use of DQN at CC to predict the state-action
value of a route based on the availability of residual energy and mobility with respect to
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the proximity of a destination UAV. Subsequently, DQN converge to the most favorable
route, which has a lower energy consumption as time goes by, across various network
planes (i.e., macro-, pico-, and femto-planes). Meanwhile, the random approach has higher
energy consumption (i.e., more than 200 units) due to its randomness, while the energy
consumption of the DQN, RL, and optimal approaches does not vary considerably for most
network densities, particularly from 700–1000 nodes.

Figure 9. Energy consumption increases with respect to network density. DQN achieves lower
values as compared to RL and random approaches. Lower energy consumption improves the energy
efficiency of a network.

5.7.2. Effects of Network Density to Link Breakages

The link breakage of a route increases gradually as network density increases as shown
in Figure 10.

DQN outperforms RL with at least 50% lower link breakages at lower network density
(i.e., 100 UAVs), and at least 45% lower link breakages at higher network density (i.e.,
1000 UAVs). Therefore, DQN increases successful data transmission, contributing to higher
network stability and throughput. This improvement is attributed to DNN that learns the
mobility pattern of UAVs and uses the action-value function to choose the most favorable
route with a longer lifetime based on the movement of UAVs. Meanwhile, the random
approach has the highest number of link breakages (i.e., up to 80%) due to higher energy
consumption that causes a higher number of dead nodes which increases the rate of link
breakages. In contrast, the optimal approach has the lowest number of link breakages (i.e.,
from 2% to 10% as network density increases) due to the selected route comprised of nodes
with lowest mobility.



Appl. Sci. 2022, 12, 3665 27 of 35

Figure 10. Rate of link breakages increases with respect to network density. DQN achieves lower
values as compared to RL and random approaches. Lower rate of link breakages improves QoS and
network lifetime.

5.7.3. Effects of Network Density to Network Lifetime

The network lifetime of a network increases gradually as network density increases as
shown in Figure 11.

Figure 11. Network lifetime increases with respect to network density. DQN achieves higher
values as compared to RL and random approaches. Higher network lifetime improves QoS and
network stability.

DQN and RL performances share almost similar network lifetime at lower network
density (i.e., 100 UAVs), and DQN achieves at least 5000 s longer network lifetime at higher
network density (i.e., 1000 UAVs). This improvement is attributed to DNN that learns and
uses the action-value function to choose the most favorable route with higher residual
energy and lower mobility based on node lifetime in order to reduce the overall number of
dead nodes. This helps UAVs to perform data transmission over their respective routes for
a longer time duration, contributing to higher network lifetime and QoS.

Longer network lifetime (i.e., more than 9000 units) can be seen in Figure 11. This is
because DQN agents learn and converge to their respective favorable route, which increases
network lifetime. The network lifetime of the random approach is significantly lower as
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compared to DQN and optimal approaches due to its randomness. The network lifetime of
the optimal approach remains constant since the optimal route is selected in each iteration.
A higher network lifetime provides stability, contributing to a higher throughput and a
reduced signaling overhead caused by route formation.

DQN improves network lifetime by up to 120% compared to RL, and so it increases
network stability.

5.7.4. Effects of Node Mobility to Energy Consumption

The energy consumption caused by data transmission from a source UAV to a destina-
tion UAV increases gradually as mobility rate increases as shown in Figure 12.

DQN outperforms RL with at least 10 units lower energy consumption at lower
mobility rate (i.e., 10 m/s), and at least 40 units lower energy consumption at higher
mobility rate (i.e., 100 m/s). Therefore, DQN increases network lifetime and network
stability. This improvement is attributed to the use of DQN at CC to predict the state-action
value of a route based on the residual energy and mobility of intermediate UAVs with
respect to the proximity of a destination UAV. Subsequently, DQN converges to the most
favorable route , which has a lower energy consumption as time goes by, across various
network planes (i.e., macro-, pico-, and femto-planes). The energy consumption of the
DQN and optimal approaches does not vary considerably for most mobility rates upon
convergence to the most favorable route It should be noted that (a) the random approach
has a higher energy consumption (i.e., more than 95 units) due to its random nature, and
(b) the RL approach has a higher energy consumption (i.e., more than 75 units) when the
mobility rate is greater than 80 m/s.

Figure 12. Energy consumption increases with respect to mobility rate. DQN achieves lower values as
compared to RL and random approaches. Lower energy consumption improves the energy efficiency
of a network.

5.7.5. Effects of Node Mobility to Rate of Link Breakages

The link breakage between UAVs of a route increases gradually as node mobility
increases as shown in Figure 13.

DQN outperforms RL with at least 60% lower link breakages at lower node mobility
(i.e., 10 m/s), and at least 45% lower link breakages at higher node mobility (i.e., 100 m/s).
Therefore, DQN increases successful data transmission, contributing to higher network
stability and throughput. This improvement is attributed to DNN that learns the mobility
pattern of UAVs and provides state-action values that help to choose the most favorable
route with a lower mobility rate. Meanwhile, the random approach has at least 40% of the
links are broken at lower node mobility (i.e., 10 m/s) and up to 80% of the links are broken
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at higher node mobility (i.e., 100 m/s). In contrast, the optimal approach has the lowest
number of link breakages from 7% to 20% as node mobility increases. It selects a route
comprised of nodes with lower mobility and higher residual energy.

Figure 13. Rate of link breakages increases with respect to node mobility. DQN achieves lower values
as compared to RL and random approaches. Lower rate of link breakages improves QoS and network
lifetime.

5.7.6. Effects of Node Mobility to Network Lifetime

The network lifetime of a network increases gradually as the mobility rate increases
as shown in Figure 14. Note that network lifetime increases with the mobility rate. This is
because the number of link breakages increases the need to form new routes. Therefore,
energy consumption incurred by data transmission and reception reduces, leading to a
longer network lifetime.

DQN outperforms RL with at least three times longer network lifetime at lower
mobility rate (i.e., 10 m/s), and DQN achieves at least 5000 s longer network lifetime at
higher mobility rate (i.e., 100 m/s). This improvement is attributed to DNN that learns
about the states of nodes and predicts the best state-action value to choose the most
favorable node with a higher residual energy and a lower mobility rate in order to minimize
link disconnection and dead nodes. This helps UAVs to perform data transmission over
their respective routes for a longer time duration, contributing to higher network lifetime
and QoS.

Longer network lifetime (i.e., more than 16,000 units) can be seen for the optimal
approach at higher mobility rate in Figure 14. This is because DQN agents learn and
converge to their respective favorable routes, which increases network lifetime. The
network lifetime of the random approach is significantly lower as compared to DQN,
RL, and optimal approaches due to its randomness. A higher network lifetime provides
stability, contributing to a higher throughput and a reduced signaling overhead caused by
route formation.

DQN improves network lifetime by up to 60% and 120% compared to RL and random
approaches, respectively, and so it increases network stability.
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Figure 14. Network lifetime increases with respect to mobility rate. DQN achieves higher values
as compared to RL and random approaches. Higher network lifetime improves QoS and network
stability.

5.8. Complexity Analysis

We investigate the computational, message and storage complexities of the DQN
algorithm. We have taken the inspiration from [60] for complexity analysis. The complexity
has different levels: (a) algorithm-wise for a single iteration in the execution of the DQN
algorithm, (b) agent-wise all possible state-action pairs at the agent level, and (c) network-
wide at the network level. The parameters for complexity analysis are shown in Table 7.

Table 7. Parameters for complexity analysis.

Parameter Description

|S| Number of states.
|A| Number of actions for each state.
|R| Number of rewards for each state-action pair (st, at).
|I| Number of agents in a network.
|J| Number of neighboring agents of an agent in a network.
|C| Training complexity.
|H| Hidden layer complexity.

Computational complexity defines the number of execution cycles required to predict the
state-action value for all state-action pairs of the DQN agents. In DQN (see Algorithm 1),
the computational complexity of training is O|Ct| = O(∑X

t=2 Ct), where O(Ct) represents
the complexity of a single iteration of training at time t ∈ {1, 2 . . . , X} (see steps 6 to 16
in Algorithm 1). The algorithm-wise computational complexity is O(|A||Ct|), which is
incurred whenever an agent i updates network parameters to achieve the desired target
function upon receiving a state-action value , and each state has |A| actions (see step 14 in
Algorithm 1). The agent-wise complexity is O(|S||A||C|) since an agent i updates its net-
work parameters all the state-action pairs. The network-wide complexity is O(|I||S||A||C|)
in a network with |I| agents.

Meanwhile, in the traditional RL approach (see Algorithm 2), the algorithm-wise
complexity is O(|A|), which is incurred when an agent i updates its Q-value upon receiving
a delayed reward and each state has |A| actions (see step 9 in Algorithm 2) The agent-wise
complexity is O(|S||A|) since an agent i updates its Q-value for all state-action pairs. The
network-wide complexity is O(|I||S||A|) in a network with |I| agents.

Message complexity defines the number of messages exchanged among the agents
to update a state-action value. In DQN (see Algorithm 1), the algorithm-wise message
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complexity is ≤ |J| (see step 16 in Algorithm 1), which is incurred whenever an agent i
exchanges shared local and global information with CC and DCs. Similarly, the agent-wise
complexity is ≤ |J|. The network-wide complexity is ≤ |I||J| in a network with |I| agents.
Meanwhile, the traditional RL approach and DQN have similar algorithm-wise, agent-wise,
and network-wise message complexities (see step 10 in Algorithm 2).

Storage complexity defines the number of connections between a pair of neurons in
DNN used for calculating the state-action values. In DQN (see Figure 3), the number
of neurons in the nth layer is Hn, and the number of layers is N. Therefore, the storage
complexity of the nth layer is O(Hn−1Hn + HnHn+1 + Hn+1Hn+2 + · · ·+ HN−1HN), which
represents the storage required for connections between layers (i.e., input, hidden, and
output layers), and so the storage complexity is O(∑N

n=2(Hn−1Hn)) can be denoted as |H|
for simplicity (see steps 10 and 11 in Algorithm 1). The agent-wise storage complexity is
O(|S||A||H|). Thus, the network-wide storage complexity is O(|I||S||A||H|) in a network
with |I| agents.

Meanwhile, in the traditional RL approach (see Algorithm 2), the algorithm-wise
complexity is 1 whenever an agent i stores the Q-value of a state-action pair (see step 9
in Algorithm 2). The agent-wise complexity is ≤(|S||A|) whenever an agent i updates its
Q-values for all the state-action pairs. The network-wide complexity is O(|I||S||A|) in a
network with |I| agents.

6. Conclusions

Deep Q-network (DQN), which is based on reinforcement learning (i.e., Q-learning)
and deep learning (i.e., deep neural network (DNN)), enables an agent to select the best
possible action under a particular state. This article presents an intelligent cluster-based
routing scheme to improve network stability, network lifetime, and energy efficiency in
5G-based flying ad hoc networks. Our proposed scheme ensures the recency of data among
central controller (CC) and distributed controller (DC) in order to achieve a balanced
enhancement between global and local network performances. DNN enables agents to
learn about states (i.e., residual energy and the mobility rate) of agents to predict state-
action values. Mini batches of experiences are used for the run-time learning of DNN.
There are three features that help to achieve a higher convergence rate towards the most
favorable route with higher residual energy and lower mobility. First, the delayed reward,
which is part of an experience from the replay memory is used to perform training in
order to improve the prediction of state-action values in a dynamic environment. Second,
the decaying variable εdecay is used to tend towards exploitation from exploration as the
number of episodes increases. Thirdly, mini batches of run-time values of states from the
replay memory are used to training and minimizing a loss function. Our proposed scheme
is compared with the traditional reinforcement learning and the random approaches and
has shown to improve energy efficiency by up to 20% and 100% and network lifetime
by up to 60% and 120%, and to reduce the rate of link breakages by up to 50% and 80%,
respectively.

7. Future Work

Further research can be pursued to investigate the following open issues. First,
vertical routing can be further enhanced to reduce routing overhead incurred to establish
and maintain inter- and intra-cluster, and inter- and intra-plane, routes by enabling clusters
to adjust their cluster sizes for achieving the optimal number of nodes in a cluster (or the
optimal cluster size). This helps the clusters to prolong the cluster lifetime for providing
robust data transmission, as well as self-organize traffic load for achieving load balancing
among themselves. With improved cluster stability and scalability, vertical routing is
expected to improve its route stability. Second, other variants of DQN [63] can be adopted:
(a) deep deterministic policy gradient (DDPG) [64] is an actor–critic approach that improves
the stability of learning in continuous action space, which is preferred for our vertical
routing approach with continuous action space. DDPG aims to achieve the optimal policy
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which has the highest accumulated reward, rather than the highest Q-value in each state,
which may not be optimal; and (b) double DQN [27,65] uses two identical neural networks,
whereby one learns during experience replay, just like DQN does, and the other one is a
copy of the last episode of the first network. It solves the overestimation of Q-value caused
by selecting actions with the highest Q-values at all times. Addressing overestimation
helps double DQN to converge to the most favorable route with reduced computational
complexity. Third, a mini-batch from the replay memory consists of experiences with
higher occurrences rather than distinctive experiences. This can cause overfitting in which
DNN fits “too well" to the limited set of the training data, causing sub-optimal actions to
be selected. Redundant experiences in a mini batch can be removed to address this so that
distinctive experiences can be selected with equal chances. Fourth, further investigation
can be carried out in different scenarios with different amounts of white spaces, types of
terrain typologies, and types of obstacles (e.g., natural and human-made).
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Abbreviations
The following abbreviations are used in this manuscript:

5G Fifth generation.
CC Centralized controller.
CG Cluster gateway.
CH Cluster head.
CM Cluster member.
D2D Device-to-device.
DC Distributed controller.
DNN Deep neural network.
DQN Deep Q-network.
DRL Deep reinforcement learning.
FANETs Flying ad hoc networks.
LET Link expiration time.
QoS Quality of service.
RL Reinforcement learning.
UAVs Unmanned aerial vehicles.
UE User equipment.
VCG Vertical cluster gateway.
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