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Abstract: This paper investigates the effects of disc deformation on the tilting-induced vibration of a
splined spinning disc with axial-fixed boundaries.The purpose is to provide an intuitive interpretation
of the vibration variance of the wet clutch system with different deformed discs. First, tilting models
of flat and deformed discs are derived by introducing distinctive shape functions. Additionally, the
inner spline interface is chosen as the friction boundary. Then, an impact model between friction
pairs and the rigid boundary is established by adopting Hertz’s contact theory. Finally, the dynamic
equations are solved via numerical methods, and the responses are analyzed in both time and
frequency domains. The deformation can increase the nonlinearity of the dynamic response of the
spinning disc. Moreover, the effects of increasing the impulse force and reducing the boundary
distance are quite similar; they both increase the motion intensity.

Keywords: spinning disc; deformed disc; rigid-body tilting; spline interface

1. Introduction

The dynamic characteristics of spinning spline-guided discs have drawn much atten-
tion in recent years [1]. Understanding the topic is important for improving equipment
reliability in relevant engineering fields, such as the wet clutch [2]. However, during the
operation of such equipment, permanent deformation can occur in some discs. Figure 1
shows two common types of disc buckling; such deformation usually degrades the per-
formance of the equipment [3]. A specific example was presented by Cui et al. [4], who
investigated the oil flow between deformed friction discs in a transmission system and
found that viscous torque increased due to the deformation of the friction pairs. On the
other hand, the clutch disc wobbling occurs during wet clutches [5], and deformation of
those discs could affect the vibration signal of the wet clutch system [6]. In other words, the
dynamic difference between deformed discs and flat discs can be used for fault diagnosis
of the wet clutch, but the underlying mechanism needs to be solved first [7]. Therefore, one
particular interest of this work is to investigate the influence of disc deformation on the
vibration characteristics of the wet clutch, but starting with a single disc with two fixed
boundary rather than multi-disc system.

There have been many studies on the vibration of spline-guided flat discs concerning
rigid body effects. Jeong and Bogy [8] measured the rigid-body displacement and defor-
mation as a spinning disk is loaded by a read–write pin. Chen and Bogy [9] determined
the natural frequency of a spinning disc with a load system. They also [10] analyzed the
effects of rigid-body tilting on the spinning stability. Their work proved the importance
of centrifugal force in stabilizing the system and showed that the system stability could
be improved by allowing the disc to tilt. Pei et al. investigated the dynamic response of a
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rotating disk subjected to a reciprocating angular movement [11] and suspension-moving
load with an initial runout [12]. The response amplitude increases as the spinning speed is
close to the resonance speed of the rotating flexible disk with a stationary loading system,
and parametric instability can be suppressed by operating the system at low-frequency
and small-amplitude reciprocating external forces. Li et al. [13] investigated the vortex-
induced vibration of elastically supported disk, the analysis shows the vibration of the
trajectory mode is related to disc vibration. Findlin et al. [14] developed a wobbling model
of spinning friction discs and pointed out that the threshold of instability is determined by
damping and friction-induced circulation. Yang et al. [15] studied dynamics of rotating
disc and shaft system, by taking into account the shaft deformation, they investigated the
coupling vibration response of the system. Miyasato et al. [16] modeled the rotating and
contact motion of a rigid disc considering the viscous damping on the edge, and the results
indicated that edge friction increased the nonlinearity of the coupling motion between
rotating and moving.

(a) Radial-cone buckling of wet clutch disc (b) Circumferential-wave buckling of wet clutch disc

Figure 1. Common disc deformation types in a wet clutch.

Compared to conventional annular discs, less attention has been given to the dynamics
of deformed discs. Cheng et al. [17] investigated the effects of eccentricity of the central
hole on the frequencies and mode shapes. A similar problem was discussed by Maretic [18],
who examined the impact of angular speed and eccentricity on the transverse vibration
frequencies of the circular plate. Carpino [19] analyzed the effect of initial runout on the
dynamics of spinning disks; he assumed an initial curvature for the spinning disk and
studied its impact on the dynamics of a spinning disk near a rigid surface. Khorasany
and Hutton [20,21] studied the effect of an unsymmetrical initial runout on the oscillation
frequencies and the critical speeds of the spinning disks, and the results showed that the
natural frequencies of the disks with runout increase in the rotating frame.

The discs driven by the spline shaft have different characteristics from those of free and
clamped boundaries. Olver et al. [22] investigated the contact mechanics of a spline cou-
pling, and their work showed that during shaft rotation, most friction regimes encountered
gross slip, and only two out of nine cases were stick–slip regimes. Ahmad and Hutton [23]
analyzed the critical speed for a spinning disc subjected to an external force with spline
constraints, and the spline force was modeled as an elastic spring force. They [24] also
analyzed the effect of in-plane edge load on spinning discs and found that spline-guided
discs did not undergo merge-type effects or flutter and therefore were more stable than
clamped discs at a minor critical speed. In addition, this study requires knowledge to
model the impact force between the tilting disc and the boundary. Zhang et al. [25] estab-
lished a rubbing-impact model between clutch discs, adopted the Hertz contact model and
successfully predicted the experimental drag torque of a wet clutch. The contact model and
coefficients of the present work simply refer to the preceding works [26,27].

The rest of the paper is arranged as follows: Section 2 starts with the coordinate
definition of the spinning discs. Then, Section 2.1 analyzes the tilting moment of the flat
disc due to centrifugal force. On this basis, Section 2.2 derives the centrifugal moment of
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the deformed disc by introducing shape functions. The boundary impact and spline friction
are introduced in Sections 2.3 and 2.4, respectively. In Section 3, the nonlinear responses
are simulated via the state space method, and the dynamic characteristics of the discs with
different deformation angles are compared. Moreover, the impacts of the impulse force,
boundary distance and rotation speed are also analyzed. The conclusions are drawn in
Section 4. One approximation is to treat the inner teeth as a smooth edge, thus simplifying
the effect due to the teeth geometry.

2. Model and Formulation

Compared to the clamped boundary, the spline interface allows the disc to move
laterally along the shaft and tilt around the disc diameter [2]. Therefore, the spinning plane
of the spline-guided disc can be flexible. Figure 2 shows the tilting behavior of a single
spinning disc driven by a splined hub. Normally, when there is no continuous external
excitation, the disc tilts shortly and aligns vertically. However, a few reasons could cause
disc tilting: the disc has an initial angle when the machine starts to rotate, or the spinning
disc is subjected to irregular external forces, such as mechanical contact between the parts
or nonlinear oil flow in the wet clutch [28].

(a) Disc tilting when starting the machine (b) Disc tilting at higher rotation speed

Figure 2. Rigid-body tilting of the spinning disc.

Figure 3 shows a schematic of a spinning disc with an inner radius a and outer
radius b splined to an arbor at an angular velocity of ω. Now, the coordinates include
the following: (1) the local coordinate (o− zrθ) is set at the middle surface of the disc and
rotates along with the disc, and its z-axis is always perpendicular to the middle plane
of the disc; (2) (O− XYZ) is a rotating intermediate frame that represents the rotation
field of the spline shaft, and its Z-axis coincides with the rotating center of the shaft; and
the (3) space-fixed coordinate system (X f Y f Z f ). One advantage is that, instead of being
expressed by two angles between the X-axis and Y-axis, the tilting angle can be expressed by
θZ, which is the angle between the two vertical axes of coordinate system (1) and coordinate
system (2). From the perspective of the local coordinate, the disc exhibits the sole motion of
tilting around the θ = 0(π) axis due to external forces and moments.
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Figure 3. Coordinates of the spline-guided disc.

As the disc rotates, the tilting angle θZ changes due to external forces and moments.
Then, the motion in the fixed coordinate system can be determined by coupling the rotation
and local tilting. By setting the disc at the origin of the space-fixed coordinate system, a
random point p(r cos θ, r sin θ, z) on the disc frame can be transferred into the space-fixed
coordinate system by introducing Euler rotation matrices: X f

Y f

Z f

 = RrRt

 r cos θ
r sin θ

z

 (1)

where Rt and Rr are the rotation matrices due to tilting and shaft spinning, respectively.
They are written as:

Rr =

 cos ωt − sin ωt 0
sin ωt cos ωt 0

0 0 1

, Rt =

 1 0 0
0 cos θZ − sin θZ
0 sin θZ cos θZ

 (2)

As the disc rotates, the angle that rotates around the shaft is ωt, and the space-fixed
coordinates of any point during the rotation can be expressed as: X f

Y f

Z f

 =

 cos ωt − sin ωt cos θZ sin ωt sin θZ
sin ωt cos ωt cos θZ − cos ωt sin θZ

0 sin θZ cos θZ

 r cos θ
r sin θ

z

 (3)

Knowing the space-fixed coordinates of the disc is necessary for model development and is
important for calculating the impact force and axial displacement of the disc.

2.1. Flat Spinning Disc

A force analysis is illustrated in Figure 4. The mass of the object is considered, and
other forces include the supporting force, spline friction, centrifugal force and external
force. As mentioned before, the spline allows the disc to move axially and tilt. Taking
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the movement of the center point to represent the axial movement of the disc body, the
governing equation of the axial displacement can be expressed as:

Z̈ f = F− fs (4)

where F is the external force and fs is the friction force. To analyze the tilting response,
the centrifugal force is considered. This force can be split into two parts, as plotted in red,
and both parts tend to align the disc into the vertical position. Each spline tooth exerts an
in-plane tangential force, and the overall force can be unified as a torque at the inner edge
that drives the disc to rotate. Since the discs studied in this paper are rotating at a constant
speed, the influence of the spline torque is neglected. Therefore, the governing equation of
the tilting response can be written as:

Iθ θ̈Z = M−Mt −MN −M f (5)

where M is the external moment, Mt is the centrifugal moment, MN is the impact moment
and M f is the spline friction moment. Each moment is discussed in later sections.

Centrifugal Force

Spline Friction force

Spline Torque

Gravity

Supporting Force

External Force

Centrifugal Force

Spline Friction force

Spline Torque

Gravity

Supporting Force

External Force

Tilting 

Figure 4. Force analysis of the spline-guided disc.

2.1.1. Rotation-Induced Alignment Moment

Considering the annular disc shown in Figure 4, as defined earlier, (r, θ, z) is the local
cylindrical coordinate rotating along the middle plane of the disc. The disc is driven by the
spline shaft (Z-axis) at a speed of ω with an inclined angle of θZ. Neglecting the influence
of the thickness, the corresponding centrifugal force of one point can be expressed as [25]:

Fi = ρh︸︷︷︸
m

r sin θ cos θZ︸ ︷︷ ︸
ri

ω2 (6)

where ω is the rotating speed of the angular velocity of the point with respect to the rotating
axial, which equals the rotating speed of the spline shaft. In addition, ri is the distance
between the mass point and the rotating axial. The total force can be integrated into a
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moment that tilts back the inclined angle with respect to the θ = 0 axis. This centrifugal
moment of the disc can be written as:

Mt =
∫ b

a

∫ 2π

0
ρhr sin θ cos θZω2︸ ︷︷ ︸

Fi

r sin θ︸ ︷︷ ︸
li

sin θZr dr dθ

=
π

8
(b4 − a4)ρhω2 sin 2θZ

(7)

where li is the arm of the centrifugal force of the point with respect to the rotating axial and
where θZ is the angle between the arm and the centrifugal force.

2.1.2. Moment of Inertia

First, it is important to recall the definition of the moment inertia for further comparison:

dIθ = r2
i dm (8)

where ri is the distance of the mass to the axis, and the moment of inertia with respect to
the θ = 0 axis is:

Iθ =
∫ b

a

∫ 2π

0
(r sin θ)2ρhr dr dθ

=
π

4
(b4 − a4)ρh

(9)

2.2. Formulation of the Deformed Plate

For many spinning discs in transmission systems, especially friction discs, deformation
is inevitable and most cases are cone deformation [29]. Therefore, this article only studies
the cone deformation. Figure 5 shows the deformed discs, assume that the thickness and the
middle plane of the deformed discs are retained as flat discs, and the positive direction of
the Z-axis was set at the deformed side of the discs, the deformation function of deformed
discs can be expressed as:

w(r, θ) = (r− a) tan α, a <= r <= (b− a) cos α + a (10)

α is the first-order deformation angle.

Deflection(w)

Deflection Angle

Outer reference point

Deflection(w)

Deflection Angle

Outer reference point

Figure 5. Deformation of spinning discs.
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2.2.1. Centrifugal Moment of the Deformed Disc

Before calculating the centrifugal force and moment, the deformation-induced angle
is defined as:

θp = arctan
w

r sin θ
(11)

Here, θp is defined as the angle between the point mass and the tilting axis generated from
the deformation. This angle differs from the deformed disc to the flat discs. As explained in
Figure 6, the deformation of the disc generates an angle between the selected points and the
tilting axis. For instance, when the tilting angle θZ of the deformed disc is 0, the deformed
points still hold an angle to the axis so that the actual is nonzero. Moreover, as the disc
tilts, this angle has different impacts on the absolute value of tilting angles: it decreases the
tilting angle of upper parts while increasing the value of lower parts. This angle thus causes
asymmetry of the centrifugal force of the upper and lower parts. The deformation-induced
angle is expressed as a function of local variables and the shape function:

0°

270°

90°

180° 0°

270°

90°

180°

Front view Side view

Figure 6. Deformation-induced inclined angle.

The corresponding centrifugal force of one point of the deformed disc can be
expressed as:

F̃i = ρh︸︷︷︸
m

√
(r sin θ)2 + w2 cos (θZ + θP)︸ ︷︷ ︸

r̃i

ω2 (12)

This formula has the same mass and angular velocity terms as the flat discs. The new
distance between the mass point and the rotating axis is defined as r̃i, which accounts for
the effect of the deformation. Then, the centrifugal moment of the disc can be written as:

M̃t =
∫ (b−a) cos α+a

a

∫ 2π

0
ρh︸︷︷︸
m

√
(r sin θ)2 + w2 cos (θZ + θP)ω

2︸ ︷︷ ︸
F̃i

√
(r sin θ)2 + w2︸ ︷︷ ︸

li

sin (θZ + θP)r dr dθ

=
1
2

ρhω2 sin (2θZ)
∫ (b−a) cos α+a

a

∫ 2π

0
[(r sin θ)2 + w2] cos (2θP)r dr dθ

+
1
2

ρhω2 cos (2θZ)
∫ (b−a) cos α+a

a

∫ 2π

0
[(r sin θ)2 + w2] sin (2θP)r dr dθ

(13)

The centrifugal moment after deformation is written in the above form. Since θP is a
function of θ and can be integrated numerically, θZ can be extracted, so the final form of
the centrifugal moment is still a function of the tilting angle θZ. Note that the upper limit
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of the integration varies due to deformation. The same change can apply to the moment
of inertia.

2.2.2. Moment of Inertia of the Deformed Disc

Taking into account the deformation, the distance between any point of the disc and
the rotating axis is now:

r̃ =
√
(r sin θ)2 + w2 (14)

Thus, the moment inertia of the deformed disc with respect to its tilting axis can be
determined as:

Ĩθ = r̃i
2dm

=
∫ (b−a) cos α+a

a

∫ 2π

0
[(r sin θ)2 + w2]ρhr dr dθ

(15)

Unlike the case of flat discs, the deformed disc’s moment inertia and centrifugal moment
must be integrated numerically.

2.3. Boundary Impact Model of the Flat Disc

The boundary impact force occurs when the disc hits the boundary. Figure 7 shows
the impact situations of deformed discs. On the right boundary, as shown in Figure 7b, the
contact point of the deformed disc is always at the outer edge. However, the contact points
on the left boundary are not certain. To explain this, the side views of the left boundary
contact of both flat and deformed discs are drawn in Figure 8:

(a) Left boundary contact (b) Right boundary contact

Figure 7. Boundary impact of deformed discs.
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Left boundaryLeft boundary

(a) Left boundary contact

Left boundary Left boundary

(b) Right boundary contact

Figure 8. Left boundary impact of deformed discs.

It can be easily inferred that the contact point of the flat disc always lies at the outer
edge. However, the contact point of the deformed disc on the left boundary depends on
the position and the tilting angle. In other words, any point across the axial coordinate Zb
is the contact point. Assuming that the disc and boundary remain rigid in the process of
impact, that the contact type of two curved surfaces is point contact, and that the contact
pressure is perpendicular to the common tangent of the two surfaces, the boundary impact
force of the disc can be written as [27]:

FN =

{
0 Zb ≥ Z f

i ≥ −Zb
−kδn else

(16)

where δ = Z f
i − Zb represents the amount of contact deformation. Zb is the boundary

coordinate, n is the variable determined by the contact surface geometry, and k represents
the generalized stiffness. For a contact between a sphere and a plane surface, n is taken as
1.5, and k can be calculated as [26]:

k = 4
3π(σ1+σ2)

√
R1

σj =
1−v2

πEj
j = 1, 2

R1 =
√

w2
i + r2

i

(17)
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where R1 is the contact radius and σj is the contact stress, which is determined by Young’s
modulus Ej and Poisson’s ratio v of the contact bodies. Once the impact force is obtained,
the impact moment can be written as:

MN = sgn(θi)FN R1 cos (θZ + θP)︸ ︷︷ ︸
lm

(18)

where lm is the arm of the impact force and θi is the local coordinate of the impact point.

2.4. Spline Force Characteristics

The boundary Condition of the inner spline interface needs to be derived for numerical
analysis. Compared to the free and clamped interface, the spline boundary generates a
friction force, which is opposite to the axial movement of the disc. Taking the displacement
of the center point as the reference, the total spline force for the axial movement is [30]:

fs = −sgn(Ż f )µmg (19)

In this case, the coefficient of the spline friction is assumed to be 0.1 [31]. Similarly, the sign
of the friction moment is related to the sign of the tilting velocity, which can be obtained by
multiplying Equation (19) by the inner radius, so the spline friction moment is:

M f = −sgn( ˙θZ)µmga (20)

3. Numerical Analysis

The paper aims to provide intuition into the tilting; analytical calculations are post-
poned to future work, so only the Matlab/Simulink simulation is carried on with a 5e− 6 s-
time-step ode8 solver.The simulated responses are the tilting and axial movement of the
spinning discs subjected to an impulse force at their outer edges and the influence of
the deformation angle, impulse force, and boundary distance on rigid-body tilting under
different rotation speeds is discussed. The disc parameters are ρ = 7800 kg/m3, inner
radius a = 0.010 m, outer radius b = 0.015 m, thickness h = 0.001 m, Young’s modulus
E = 206 GPa and Poisson’s ratio v = 0.3, referring to the scaled down disc used in the wet
clutch [29]. The tested coefficients are the 1st-order deformation angle, angular velocity,
impulse force and boundary distance as listed in Table 1. The rotation speeds are 40 rad/s
(≈400 rpm), 120 rad/s (≈1200 rpm) and 200 rad/s (≈2000 rpm) to simulate low speed,
medium speed and high speed, respectively. Group 1 is the reference group. The total
simulation time was set to 2 s and the impulse force was applied at 0.2 s.

Table 1. Simulation parameters.

Group Impulse Force Boundary Distance

Condition 1 (reference group) 5 N 7 mm
Condition 2 7 N 7 mm
Condition 3 5 N 6 mm

Deformation angle [◦] 0 (flat), 5, 10, 15
Angular velocity [rad/s] 40, 120, 200

3.1. Time Response Analysis

The time histories of all working Conditions are obtained, and the tilting (orange
line) and center point movement (blue line) of four discs at three Conditions are drawn in
Figures 9–11. In each figure, the deformation of the spinning discs are increased from (a) to
(d), and sub-figures (i) to (iii) show the responses at different rotation speeds.

There are a few general observations from the 3 Conditions. First, the process of tilting
and axial movement can be very short after the impulsion. Generally less than 1 s, take
Figure 10d as an example, the motion of 15◦-deformed disc under Condition 2 lasts the
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longest time, and the movements still ends within a second. Secondly, the tilting and
axial movement of the disc are strongly correlated. In most cases they are hard to describe
when two motions exist simultaneously such as Figure 10, which indicates that the discs
constantly hit the boundary so the impact force keeps exerting on the discs. And once one
movement stops, the other stops soon after. Additionally, the axial movement usually are
very nonlinear, but when there is only tilting while the axial movement stops, as shown in
Figure 10a(iii),b(iii), the tilting amplitude shows linear decay until to zero, which suggests
if there is no boundary as well as the external force, free tilting motion is a decay motion,
and the disc always aligns back to the vertical position.

Figures 9 and 10 show the time responses with different impulse forces. The increase
in impact force makes the motions of all discs more intense and longer lasting. For example,
in Figure 9a, the tilting and axial translation of the flat disc stops at an instant, meaning that
no impact occurs between the flat disc and boundary at Condition 1. When the impulse
force increases from 5 N to 7 N in Figure 10a, the flat disc has a chance to impact the
boundary so the motion becomes chaotic and last longer than Condition 1. In addition,
comparing Figures 9 and 11 show the influences of narrowing the boundary distance,
somehow the effect is similar as to increase the impulsion, the motions of the four discs
become more chaotic in Condition 3 (Figure 11) than in Condition 1 Figure 9. The reason is
that the impact probability increases as the boundary distance decreases. Another influence
is the boundary distance restrict the tilting angle. so in Figure 11, the amplitudes of the
tilting angle of all discs are below 15◦, smaller than those in Condition 1 and 2. Notably,
the final axial position of the discs is difficult to predict. It is not always at the middle of
two boundaries; it varies with the rotation speed, deformation of the discs, impulse force
and boundary distance. For instance, 5◦-deformed disc stops very close to the middle of
the boundary in Figure 9b, while in Figure 10b it stops at 2 mm, 3 mm and −1 mm with
different rotation speeds, and stops at 2 mm, −0.5 mm and −0.5 mm in Figure 11b. So the
final steady displacement quite random which applies to all discs.

As for the influence of the deformation, one observation from Figures 9–11 is that
the discs with larger deformation angle has more intense and complex motions. Take
5◦-deformed disc and 10◦-deformed disc for comparison, in Condition 1 (Figure 9), the
5◦-deformed disc return to the axial equilibrium position immediately after the impulsion,
while the 10◦-deformed disc tilts for 0.2 s at 40 rad/s and tilts even longer as angular
velocity increases, and motions of 15◦-deformed disc are more chaotic than 10◦-deformed
disc. To explain it, the deformation enlarges the axial displacement of the outer edge, so
the deformed disc requires less tilting angle to reach the boundary, therefore deforma-
tion increase the possibility of the contact between the disc and the boundary. Another
observation is the response of 5◦-deformed disc are quite similar to the flat disc, both
stops instantly in Condition 1 while tilts longer in Condition 2 and 3. So 5◦ deformation is
significant enough.

3.2. Frequency Analysis of Tilting Response

Since the tilting and the axial movement are correlated in a certain level, this section
only analyzes the tilting responses by transferring the time domain signal into frequency
domain. In this paper, the wavelet transform is selected as suitable for nonstationary
signals [32]. Time-frequency scalogram plots of the tilting response are obtained and
shown in Figures 12–14 in accordance with Figures 9–11. The X-axis represents time,
the Y-axis represents the frequency on a logarithmic scale, and the color represents the
power amplitude.

Some conclusions in the frequency domain are quite similar to those in the time
domain. In all three Conditions, the frequency plots of the 5◦-deformed disc and flat disc
are quite similar, and both responses are almost invisible in Condition 1 (Figure 12) while
becoming more intense with a larger impulse force or shorter boundary distance. Also,
increasing the impulse force and reducing the boundary distance both enhance the power
density of the tilting response. The power amplitude of the four discs in Figure 12 is less
than those in the other two Conditions. Besides, impulse action could boost the magnitude
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level of the tilting frequency. In Figure 13, the initial tilting frequencies of four discs are up
to 500 Hz, while the maximum frequencies in Condition 1 are about 100 Hz.

(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(a) Flat disc

i) 40 rad/s ii) 120 rad/s iii) 200 rad/s

(b) Disc with 5◦ deformation angle

i) 40 rad/s ii) 120 rad/s iii) 200 rad/s

(c) Disc with 10◦ deformation angle

(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(d) Disc with 15◦ deformation angle

Figure 9. Time response: BC = 7 mm, initial force = 5 N.
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(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(a) Flat disc

(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(b) Disc with 5◦ deformation angle

(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(c) Disc with 10◦ deformation angle

(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(d) Disc with 15◦ deformation angle

Figure 10. Time response: BC = 7 mm, initial force = 7 N.
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(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(a) Flat disc

(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(b) Disc with 5◦ deformation angle

(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(c) Disc with 10◦ deformation angle

(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s

(d) Disc with 15◦ deformation angle

Figure 11. Time response: BC = 6 mm, initial force = 5 N.
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(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(a) Flat disc

(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(b) Disc with 5◦ deformation angle

(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(c) Disc with 10◦ deformation angle

(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(d) Disc with 15◦ deformation angle

Figure 12. Scalogram: BC = 7 mm, initial force = 5 N.
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iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(a) Flat disc

(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(b) Disc with 5◦ deformation angle

(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(c) Disc with 10◦ deformation angle

(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(d) Disc with 15◦ deformation angle

Figure 13. Scalogram: BC = 7 mm, initial force = 7 N.
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(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(a) Flat disc

(iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s (iii) 200 rad/s(i) 40 rad/s (ii) 120 rad/s

(b) Disc with 5◦ deformation angle

(iii) 200 rad/si) 40 rad/s ii) 120 rad/s (iii) 200 rad/si) 40 rad/s ii) 120 rad/s (iii) 200 rad/si) 40 rad/s ii) 120 rad/s

(c) Disc with 10◦ deformation angle

(iii) 200 rad/si) 40 rad/s ii) 120 rad/s (iii) 200 rad/si) 40 rad/s ii) 120 rad/s

(d) Disc with 15◦ deformation angle

Figure 14. Scalogram: BC = 6 mm, initial force = 5 N.

Additionally, the rotation speed can increase the power intensity of the tilting. Basically,
all the response amplitudes at 200 rad/s are higher than those at 40 rad/s. Examples can
be seen in Figure 13, the response of the 5◦-deformed disc at 200 rad/s is much brighter
and last longer than it is at 40 and 120 rad/s, as well as the 10◦-deformed disc. Another
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phenomenon is that after the impulsion, the frequencies in all figures start to decline until
fade away, which means the tilting is a decay process as concluded in time-domain analysis.

In the scalograms, less-deformed discs have quite clear shapes while larger deformed
discs have rather distributed spectrum; for example, in Figures 13a and 14a, the responses
of the flat disc are clear curves, which means that the frequency bandwidth of the flat disc
tilting is concentrated during the process. However, the nonlinearity of the tilting increases
with progressive deformation (taking the 15◦-deformed disc in Figures 13d and 14d as
examples), and the responses are distributed within a relatively large bandwidth, which
means that the tilting is more chaotic and does not maintain at any specific frequency.

4. Conclusions

This paper presents a model governing the tilting and impact dynamics of a spinning
splined disc with axial-fixed boundaries. The tilting and axial movement of different
deformed discs are simulated via the state-space model in Simulink. Both time domain
and frequency domain results are analyzed, and the results show the importance of disc
deformation on the dynamic behaviors of spline-guided spinning discs. The analysis also
considers cofactors such as boundary distance, initial impulse force and rotation speed.
Several conclusions are drawn based on the results and analyses:

1. Regardless of the deformation, the disc tilting and axial motion are highly correlated.
Both motions either show strong nonlinearity or stop immediately after the impulse,
and when one motion stops the other stops soon. Also the final position of axial
displacement is hard to predict, it varies as long as the condition changes.

2. The deformation of the disc increases the complexity of the tilting and axial motion of
spinning discs. The dynamic responses of discs with larger deformation angles are
more dramatic and longer than those of less-deformed discs, because the deformation
of the disc increases the possibility of impact between the disc and boundary.

3. The effect of increasing the impulse force is similar to reducing the boundary distance;
they both increase the intensity of the motions. The difference is that, narrowing the
boundary distance could restrict the maximum tilting angle, and larger impulsion
increase the tilting frequency. In addition, the rotation speed can also extend the time
of tilting.

Further planned investigations will focus on the response of various types of excitation
force, as well as developing multi-disc model to simulate the wet clutch system.
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