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Abstract: Flocking is one of the swarm tasks inspired by animal behavior. A flock involves multiple
agents aiming to achieve a goal while maintaining certain characteristics of their formation. In
nature, flocks vary in size. Although several studies have focused on the flock controller itself, less
research has focused on how the flock size affects flock formation and performance. In this study,
we address this problem and develop a simple flock controller for goal-zone-reaching tasks. The
developed controller is intended for a two-dimensional environment and can handle obstacles as
well as integrate an additional invented feature, called sensing power, in order to simulate the natural
dynamics of migratory birds. This controller is simulated using the NetLogo simulation tool. Several
experiments were conducted with and without obstacles, accompanied by changes in the flock size.
The simulation results demonstrate that the flock controller is able to successfully deliver the flock to
the goal zone. In addition, changes in the flock size affect multiple metrics, such as the time required
to reach the goal (and, consequently, the time required to complete the flocking task), as well as the
number of collisions that occur.

Keywords: swarm; formation control; goal reach problem; simulation; flocking agents; sensing
power; flocking rules

1. Introduction

Many researchers have focused on robotic swarms—robot groups that co-operate
to achieve a global goal in a complex environment [1]. The flocking problem, inspired
by the behavior of animals (e.g., birds flocking or fish schooling), is a subfield of swarm
robotics [2]. A swarm consists of a set of similar members having the same characteristics
and progressing in an asynchronous manner. There is no leader in the swarm directing other
members to perform the planned tasks. Thus, a swarm operates in a decentralized context,
where complex behavior arises through the labor of autonomous agents that are acting
on local information. An agent cannot conclude the swarm aims without collaborating
with the rest of the group [3]. One of the main components of a swarming system is the
exhibition of cooperative behavior. A flock involves multiple agents that possess real-time
group behavior capabilities that facilitate achieving a common target, such as foraging or
migration [4,5]. The design of swarm robotics systems is guided by swarm intelligence
principles. Brambilla [6] divided the swarm behaviors into four major categories—spatial
organization, navigation, decision making, and miscellaneous—each of which has different
areas of application. Schranz [7] proposed an extension to the categorization of the basic
swarm behaviors. They used this taxonomy to classify a number of existing swarm robotic
applications from research and industrial domains. Several studies were orientated towards
modeling swarm robots to increase the understanding of natural swarm systems [8]. In a
robotic swarm, the collective behavior results from local interactions among the robots and
between the robots and the environment. One area that researchers have investigated is
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the study of the efficiency in self-regulation of swarms of birds, schools of fish, and social
insect colonies, whereas others initiated models to generate and optimize artificial swarm
systems as engineered in the field of swarm robotics [9]. One can notice the importance
of models that suggest novel empirical experiments, as well as the prominence of empiric
experimentation that results in relevant model parameterizations [10]. Dias et al. [8]
published an extensive review presenting a discourse on a large panoply of features,
covering swarm robotics.

The individual elements in such flocks move, while maintaining specific velocities
and distances among each other without splitting. Reynolds [11,12] has specified three
fundamental flocking rules: collision avoidance, flock centering, and velocity matching
(alignment). Animal groups change their structure depending on internal or external
stimuli, thus maximizing the fitness of individuals as circumstances change [13]. The
behavior of these agents, integrated within the structural order, results in changes of
direction and shape without affecting the group’s coherence [13].

Formation control aims to produce control commands that are sufficient to drive
multiple agents to reach their status constraints [4]. To endow self-organization systems
with flexibility and robustness, controllers use decentralized mechanisms [14]. A controller
is an essential structure that is used in the implementation and simulation of swarm
systems [15]. There are three main approaches to formation control systems [4,12,16]:
the leader–follower approach [12,17–19], the virtual structure approach [1,20,21], and the
behavior-based approach [5,14,16,22–26]. Despite the simplicity of the leader–follower
approach, it may suffer from being highly dependent on the leader agent and from
the large amount of information exchange required between the leader and each of the
followers due to being a centralized system [4]. Moreover, virtual structure approaches
lack formation modification when the formation changes due to structural redesign, which
increases the required computation and degrades collision avoidance abilities. On the other
hand, the behavior-based approach allows for the handling of multiple tasks using a single
controller [4]. Notably, in the literature, most researchers have used the behavior approach,
due to the fact that the flocking task is usually directly inspired by natural animal behavior.

The flock size is the number of individuals within the flock. In nature, animals
tend to have higher survival rates when being part of a group. In fact, group size is
one of the primary defense mechanisms that animals adopt in order to limit predation
risks [27,28]. The size of a flock in nature can range from one species to hundreds of
different species. Accordingly, flocking applications use different flock sizes, based on
the application objectives [29]. As the flock size increases, the rate of successful attacks
decreases [30]. Nevertheless, there are several disadvantages to grouping [30], including
greater competition between group members and greater exposure to predators. On the
other hand, some of the advantages of grouping are foraging, defense, alertness, and risk
reduction [27,31].

Indeed, flock size is one of the main behavioral mechanisms used by animals to
manage their vulnerability to predation. Hintz et al. [32] studied the direct effect of flock
size on foraging success with respect to the predation risk. Cresswell [30] investigated how
the flock size risk thresholds differ for attack rate, success rate, or dilution. The optimal flock
size reflects a dynamic interplay between a diverse range of costs (competition, visibility,
etc.) and benefits (defense, vigilance, etc.) associated with joining a group [27].

Most research has focused on constructing new methods or enhancing existing meth-
ods related to flock formation and control. Consequently, fewer efforts have been made
in studying the effects of flocking parameters, such as flock size, on the performance of
the developed systems. Zhang et al. [26] have studied the impact of changing flock size
on reaching the goal in a specific time. They conducted two types of experiments; the
first one was applied to test their work, with the objective of reaching the goal in a fixed
time. For this experiment, they used 30 robots, and found that the flock could converge
within a specific time. The second experiment focused on showing the effect of converging
time when the flock size changed, with experiments using 2, 4, 6, . . . , 40 robots. They con-
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cluded that the convergence time decreases as the number of agents increases. Moreover,
Márquez et al. [14] have used three types of experiments to test (i) the cooperative behavior,
(ii) the optimized control parameters, and (iii) the objective functions, when using 5, 10,
or 20 agents. They found that the number of agents and the existence of obstacles did not
affect the flock’s performance. Moreover, the performance of the flock was improved when
the repulsion zone was small, and the orientation and attraction zones were large. Figure 1
depicts these three different zones. The flock direction in the proposed work was decided
in consensus between the different agents. Therefore, they found that the complexity of the
determined direction increases as the flock size increases. The importance of the orientation
radius also increased as the flock size increased. On the other hand, Olfati [23] has proposed
different algorithms to simulate and study the flock behavior, according to their number
and distribution in free space and with obstacles. However, these works did not study how
the flock size affects the formation, whether the flock size affects the time it takes to reach
the goal, whether all agents successfully reach the goal, how much time the flock takes to
match the velocity, and whether the flock maintains the flocking roles while exploring.

(a) (b)

Figure 1. Sensing zones and view sectors of agents: (a) The three agent perception zones; and (b) the
eight view sectors.

In this paper, we study the relationship between flock size and its effect on the flocking
system’s formation and performance. Inspired by previous works [13,14,16], a flocking
system is constructed. Performance is measured according to a number of factors, including
the flexibility towards reaching the goal (e.g., the time to reach the goal zone, number of
agents within the goal area), time to match the velocity, the number of applied flocking
rules (e.g., separation, cohesion, and alignment), and the number of collisions that occur.
Additional parameters are taken into account, such as the average distance to the center of
mass, goal localization time, and localization window.

2. Materials and Methods

The objective of this study is to evaluate the performance of a flock during a flocking
task with an unknown target zone. The tasks tackled in this paper are similar to those in
the studies [13,14,16]. However, this study is characterized by the objective functions it
defines, along with the various metrics used to analyze and evaluate the performance and
behavior of the controller.

2.1. Assumptions

The controller developed in this paper is based on an existing controller [14]. Some
features are used, such as the repulsion zone, attraction zone, orientation zone, and the
view sectors of the agent, while others are added, such as the sensing power to replicate the
migration of birds in nature. Completion of the task is determined when all agents reach
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the goal zone. First, some assumptions about the controller need to be highlighted—these
assumptions also represent the controller’s boundaries.

• The system is deployed in a two-dimensional geographical region;
• Obstacles in the environment are static obstacles;
• The arena size always fits the agents. It includes the initial zone and the goal zone;
• The environment has a static goal located within the goal zone, which is a circular

region with a center, (gx, gy), and a radius, rg;
• The initial zone is a circular region with a radius, rz;
• Agents are homogeneous;
• The positions of the agents are randomly generated within the initial zone;
• The velocity of each agent is initially random, within a bounded range, (vmin, vmax);
• The direction of each agent is initialized randomly;
• Each agent can sense its neighbors within a maximum distance with radius ∆a, as

shown in Figure 1, from its position;
• There exists a sensing power, which works as a hint towards the goal position (see

Section 2.5).

2.2. Flock Design and Representation

The proposed flock controller’s design is inspired by previous studies [13,14], where
each agent is able to sense other neighbors and obstacles within three zones: the zone of
repulsion, zor, with width ∆r; the zone of orientation, zoo, with width ∆o; and the zone of at-
traction, zoa, with width ∆a (see Figure 1a). Each agent has several view sectors (in this case,
eight sectors), Si = [û1, û2, . . . , û8]

T , where ûk = [cos ((2k− 1)× π
8 ) sin ((2k− 1)× π

8 )], as
shown in Figure 1b. These view sectors are used to locate an agent within (0, 2π) radii.
Agents then behave depending on the surrounding environment and their neighbors.

2.3. Behavior of Agents

Each agent behaves based on its surrounding environment and neighbors within the
perception zones. Each agent, i, has a number of vectors that help to determine its direction.
These vectors are as follows:

• A goal-zone-detection vector, Vgi = [vgi,1, vgi,2, . . . , vgi,8]
T , where each vgi,k is equal

to 1 if a goal is detected in view sector k of agent i, within its perception area (zoa), and
is equal to zero otherwise. The unit vector dgi, which denotes the desired direction of
agent i based on the goal detected, is calculated as follows: d̂gi =

si v̇gi
‖si v̇gi‖

.

• An obstacle-detection vector, Vbi = [vbi,1, vbi,2, . . . , vbi,8]
T , where each vbi,k is equal to

1 if an obstacle is detected in view sector k of agent i within its perception area, and
is equal to zero otherwise. The unit vector dbi, which denotes the desired direction
of agent i based on the opposite net direction of obstacles detected, is calculated as

follows: d̂bi = − si v̇bi
‖si v̇bi‖

.

• An arena-exploration unit vector, ˆdei = [cos (θrand,i) sin (θrand,i)], is required, in order
to help the agent explore the unknown environment. This vector has a single value:
a random angle in the range θrand,i ∈ (0, 2π). In the case where an obstacle has been
detected, the angle is modified to θrand,i ∈ (0, π), such that the agent heads towards a
region in the opposite direction of the observed obstacle.

On the other hand, agents also have to consider their neighbors, in order to avoid
collisions with each other, as well as maintaining the coherence of the flock, to avoid
fragmentation, and to keep the agents aligned. Therefore, agents have another three vectors
defining how they behave, according to their nearby neighbors. These vectors are defined
according to the three zones (zor, zoo, and zoa) for each agent i, as follows:

• A repulsion zone vector Vri = [vri,1, vri,2, . . . , vri,8]
T . This vector allows for the de-

tection of neighbors in the repulsion zone of agent i. The existence of one or more
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neighbors in view sector k of agent i is represented by a 1 in vri,k, whereas their absence
is represented by a 0. The corresponding unit vector is calculated as ˆdri = − si v̇ri

‖si v̇ri‖
.

• For each neighbor, j, detected in zoo of agent i, having a travel direction represented as
θj, the unit vector ˆ(oj) = [cos (θj) sin (θj)] stores the direction of travel of this neighbor.
The unit vector with a size equal to the number of neighbors n0 in zoo, which is

responsible for alignment with other agents in the flock, is given by ˆdoi =
∑

n0
j=1 ôj

‖∑n0
j=1 ôj‖

.

• The attraction zone vector, Vai = [vai,1, vai,2, . . . , vai,8]
T . vai,k, is assigned a value

of 1, based on the existence of one or more neighbors in the view sector k of agent
i, and is assigned as 0 otherwise. The corresponding unit vector is calculated as
ˆdai =

si v̇ai
‖si v̇ai‖

, which determines the direction of far neighbors in the zoa, in order to
avoid fragmentation of the flock.

2.4. Computing the Final Desired Direction

After calculating each vector’s desired direction, each agent must have a single direc-
tion (di) to move towards. The final desired direction is determined according to the sensed
positions of neighboring agents and the current environment status (goal and obstacles).

In the case that neighbors are detected in the repulsion zone, the final desired direction
is computed according to Equation (1) [14]. For example, Equation (1a) indicates that, in the
case that obstacles are detected in addition to the goal zone, then the function computing di
will guide the agent away from neighbors ( ˆdri) and obstacles ( ˆdbi), but also towards the
goal ( ˆdgi). Note that the exploration capability ( ˆdei) is only activated in the absence of goal
detection (Equations (1c,d)). Márquez-Vega et al. [14] have used three weights, w1, w2, and
w3, such that avoiding collisions between neighbors was assigned higher priority than that
of alignment and cohesion. The sensing power feature and conditions (Equation (1e)) are
explained in Section 2.5.

di =


w1 ˆdri + w2 ˆdbi + w3 ˆdgi, goal zone and obstacle detected (a)
w1 ˆdri + (w2 + w3) ˆdgi, goal zone detected (b)
w1 ˆdri + w2 ˆdbi + w3 ˆdei, obstacle detected (c)
w1 ˆdri + (w2 + w3) ˆdei, agents detected in zor. (d)
ˆspi, conditions for sensing power satisfied (e)

(1)

If no neighbors are detected in the repulsion zone, then the final desired direction will
be computed according to Equation (2). Note that the alignment and orientation capabilities
are used only in the absence of neighbors in the repulsion zone [13].

di =



ˆdoi + ˆdai + ˆdbi + ˆdgi, goal zone and obstacle detected (a)
ˆdoi + ˆdai + ˆdgi, goal zone detected (b)
ˆdoi + ˆdai + ˆdbi + ˆdei, obstacle detected (c)
ˆdoi + ˆdai + ˆdei, other agents detected in perception zone (d)
ˆspi, conditions for sensing power satisfied (e)

(2)

2.5. Sensing Power

In nature, members of a flock usually know where they are heading, even if they do
not precisely know their goal location. Therefore, we propose the sensing power, which
acts as the effect of such knowledge on the flock’s heading direction, and which is added
to the flock controller. This sensing power allows the flock to take off better and gives
the controller a more natural flock characteristic. Moreover, it helps lost or late agents to
integrate the flock quickly by assisting them to orient themselves towards the center of
mass of the flock. Indeed, an agent, in their way with the flock, can encounter several
obstacles. By avoiding these obstacles, they can move away from the flock and lose the
flock heading direction; thus, they have to rely on their senses. In this case, the sensing
power is triggered to direct the agent towards the flock. Based on the limitations of the
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simulation arena’s size, we decided to apply this sensing power only in the initial period,
such that it does not cause guided flocking behavior.

The sensing power is represented by a vector comprising two angles of direction
illustrating the fields of attraction of the objective. The objective is a circle with center, C,
and radius, r. This circle may represent either the target zone or the flock. Figure 2 depicts
the principle of the attraction field of the sensing power.

Figure 2. Sensing power and its field of attraction.

Let us consider that an agent is in position, P0. The attraction field of the objective is
then delimited by P0 and two points of tangency (P1, P2 say) in the circle (i.e., the objective)—
where (P0, P1) defines a first line that is tangent to the circle and (P0, P2) defines a second
line that is also tangential to the circle. The agent has the freedom to move inside this field
of attraction. Let us denote:

• θ = ](P2P0P1): the angle in P0, defined by the triplet (P2, P0, P1) (Equation (3)),

θ = 2× tan−1(
r√

d2 − r2
) (3)

• φ = ]((P0, C), X−axis): the angle in P0, defined by the two lines (P0, C) and X−axis
(Equation (4)),

φ = arctan 2(Cy − P0y, Cx − P0x) (4)

• d = ‖−→P0C‖ the Euclidean distance between P0, the location of the agent, and C, the
center of the objective. One can notice that the agent may choose randomly a direction
angle, θrand, so that θrand ∈ [φ− θ/2, φ + θ/2] (Equation (5)).

θrand = random(φ− θ/2, φ + θ/2) (5)

The sensing power is represented as vector of two direction angles spi = [φ, θ]T , where
their combination characterizes the opening angle of the field of attraction sector (blue
sector in Figure 2). Applying this sensing power with a random angle accordingly allows
the agent to proceed towards their objective (Equation (6)).

ˆspi =

{
θrand, if the sensing power is triggered
0, otherwise

(6)

2.6. Flock Controller Algorithm

The proposed flock controller algorithm (Algorithm 1) shows the flock controller’s
basic steps, and illustrates when the sensing power is used.
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Algorithm 1: Flock Controller.
Input: Arena specification, number of agents n
Output: Time to reach the goal zone, the number of agents within the goal area,

time to match the velocity, the number of applied flocking rules
(separation, alignment, and cohesion), the number of collisions accrued,
goal localization time, center of mass, time to complete the flocking task

1 begin
2 Determine goal position (gx, gy) and goal zone with radius rg;
3 Determine initiate zone position with radius rz;
4 Generate n agents with random position, direction and velocity within

(vmin, vmax);
5 while not all agents i within goal zone do
6 foreach agent i in the flock do
7 if (sensing power criteria applied)) then

// apply sensing power
8 Update agent direction using spi (Equation (6));
9 end

10 Update vectors vgi, vei, vbi, vri, vai, voi;
11 Calculate unit vectors ˆdoi, ˆdai, ˆdbi, ˆdei, ˆdgi, ˆdri;
12 Compute di based on Equations (1) and (2) ;
13 end
14 move;
15 end
16 end

The flock controller starts by determining the goal position and its radius, as well as
the initial zone and its radius. After that, n agents are generated, with random position,
direction, and velocity, within the initial zone. Velocities are bounded with minimum and
maximum values (vmin, vmax), thus avoiding high differences between the velocities of
agents, which may cause flock fragmentation. As these agents are generated, each agent
checks whether its randomly selected position is not already taken by another agent, such
that no two agents have the same position. Then, the agents start exploring. If the flock
task has just started, then each agent finds the sensing power angle and determines the
final desired direction. Then, all agents begin to move. Otherwise, they must find the final
desired direction for each agent and then move. Meanwhile, each agent checks whether
it is within the goal zone area or explores the arena. If all agents are within the goal zone
area, the flock controller is terminated.

Moreover, while the flock controller is processing, some outputs are generated, such
as the number of agents within the goal area, the time to match the velocity, the number
of applied flocking rules, the number of occurred collisions, the localization time, and the
distance to the center of mass. When the flock’s task is completed, the flock controller is
terminated and the time to reach the goal zone is determined, as well as the localization
window. These outputs are used to test the model’s performance.

2.7. Performance Metrics

The performance metrics use the time steps taken by the flock as a measurement unit.
To study the effect of the flock size on the flock’s performance, in terms of completing
the task of reaching a goal zone, the algorithm outputs the following metrics. Table 1
summarizes the notation used.
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Table 1. Notation used for the design of the flock controller.

Notation Definition

n Number of agents
T Total number of steps
gi The status of goal detection of agent i

seps The total number of applied separations at step s
als The total number of applied alignments at step s
cos The total number of applied cohesions at step s
si The ith agent’s total steps for the localization of the goal zone
cs The average center of mass of the flock at a specific step s
ri,s The ith agent’s linear position at step s

d(cs, ri,s) The Euclidean distance between points cs, and ri,s

Ds
A matrix with the Euclidean distance between each pair of agents i and j at
step s (Equation (14))

as The number of collisions between agents at step s (Equation (15))
dc The maximum collision distance between agents
oi Obstacles detected by agent i (Equation (16))
os A vector of of all oi, i ∈ n agents at step s (Equation (17))
bs The total number of collisions at step s (Equation (18))

• Number of agents within the goal area. Each agent i has a status variable, gi (Equation (7)),
which checks at every step whether agent i is in the goal zone or not.

gi =

{
1, goal zone detected by agent i
0, otherwise

(7)

• Time to reach the goal zone: This metric provides the minimum number of steps taken
by at least one of the flock agents to reach the goal zone. In other words, the number
of steps for the first agent i to achieve gi = 1.

• Time required to complete the flocking task: This metric provides the actual time (in
minutes) from the start of the simulation until the last agent enters the goal zone.

• Speed matching time: This metric provides the minimum number of steps taken by
the flock to match the speeds of all of its agents.

• Localization window: This metric provides the difference in the number of steps from
the time the first agent enters the goal zone until the last agent does.

• Number of applying flocking rules (collision avoidance “separation”, attraction “cohe-
sion”, and alignment) per agent, as defined in Equations (8)–(10):

separations =
1
n

T

∑
s=1

seps, (8)

alignments =
1
n

T

∑
s=1

als, (9)

cohesions =
1
n

T

∑
s=1

cos. (10)

In addition to these metrics, some objective functions used in ref. [14] are used as well,
as follows:

• Goal zone localization time: The average number of steps to localize the goal zone by
every member of the flock (Equation (11)).

localizationTime =
1
n

n

∑
i=1

si (11)
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• Average distance to the center of mass (Equation (12)), where the average center of
mass of the flock at each step, s, is defined by Equation (13):

distanceToCoM =
1
T

T

∑
s=1

(
1
n

n

∑
i=1

d(cs, ri,s)

)
, (12)

cs =
1
n

n

∑
i=1

ri,s. (13)

• Collisions per member. This metric reports the number of collisions that occurred
between agents and obstacles. The number of collisions as among all flock agents i,
j at step s is computed based on the distances between them in Ds (Equation (14)),
according to Equation (15).

Ds =


0 d12 . . . d1n

d21 0 . . . d2n
...

...
. . .

...
dn1 dn2 . . . 0

, (14)

as =

{
as + 1, dij ≤ dc, dij ∈ Ds, 1 ≤ i < j ≤ n
as, otherwise.

(15)

Then, the collisions between agent i ∈ n and obstacles at step s are computed, as
in Equations (16)–(18). Finally, the average number of collisions among the flock
members and with obstacles is computed, as in Equation (19).

oi =

{
1, obstacle detected within collision distance of agent i
0, otherwise,

(16)

os = [o1, o2, . . . , on], (17)

bs =
s

∑
i=1

oi, oi ∈ os, (18)

collisions =
1
T

T

∑
s=1

(as + bs). (19)

3. Results
3.1. Simulation Environment

The flock controller’s experimental setups consisted of different combinations between
swarm sizes and arena conditions. According to [14], the used arena size should be
50× 50 m for flock sizes between 5 and 20 agents. The initial zone was 10× 10 m, and the
goal zone had a radius of 10 m. However, these specifications were used for a maximum of
20 agents in the flock and may not be suitable when scaling up the flock size. Therefore, we
considered the ratio between these specifications to scale the arena, based on the flock size.
As such, the arena size could be represented as 100% of the space, the initiating zone may be
represented as 4%, and the goal zone about 12.6% of the arena size (according to the circle
area A = πr2, as shown in Figure 3). These ratios were used in the experiments, regardless
of the position of the initial and goal zones. In contrast to [14], we assumed that the initial
zone had a circular shape, but still used the same ratio in the initial zone specifications.
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Figure 3. Arena specifications, including ratios.

Scaling up the arena requires more specification, in order to determine its size. Suppose
that each agent occupies a 1 m2 size of the arena; this allows the maximum required space
for an agent to be 50 × 50

20 = 125 m2 of the arena’s space. Therefore, using the proper
ratio to calculate the suitable space of the arena is achieved by multiplying the maximum
flock size by 125. In this work, we conducted experiments with flock sizes in the range
of 10–100 agents in steps of 10. To ensure the containment of agents and obstacles, and to
have a standard environment for comparison, the arena specifications for the maximum
flock size (100 agents) will be considered as follows: The arena size was 112× 112 m, the
radius of the initial zone was 13 m, and the goal zone’s radius was 22 m. The experimental
parameters are summarized in Table 2.

Table 2. Simulation parameter values.

Parameter Value

n 10–100 agents in steps of 10
Arena size 112× 112 m

Initiate zone radius 13 m
Goal zone radius 22 m

Patch size 5.5× 5.5 pixels, corresponding to 1 m2

dc 0.55 patch
step 1 s

Agent speed Random number ∈[0–0.5] Patch
∆r 1 patch
∆o 13 patch
∆a 1 patch

Priority weights w1 = 0.4, w2 = 0.075, w3 = 0.025

Tools known as agent-based modeling and simulation (ABMS) tools help researchers to
understand the desired model through the simulation of real-world scenarios [33,34]. These
tools use a shared environment, in which agents communicate and interact dynamically
with each other [34]. Different ABMS tools have been developed to serve different problem
fields. NetLogo [35] has an easy-to-use interface and is capable of simulating complex
phenomena [33]. We used NetLogo version 6.2.0 as a simulation tool, on a macOS machine
with 2 GHz and 16 GB RAM. NetLogo is based on two concepts representing the simulation
world: patch and turtle. The patch represents the world’s grid, as shown in Figure 4. On
the other hand, turtles are agents who move around the world. The world is split into a
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grid of patches, and is two-dimensional. Turtles may move across patches, described as
square pieces of “ground”. The patch size was set as 5.5× 5.5 pixels. Agents were set to
fit a single patch size. On the other hand, the size of obstacles varied between one to two
patches [23]. Obstacles were added manually, as adding obstacles randomly to the arena
may lead to scenarios where the flock never applies obstacle avoidance. Collisions were
considered to occur when the distance between two agents (or an agent and an obstacle)
was less than dc = 0.55.

Figure 4. Arena specifications ratio. The circle on the left displays an enlarged patch.

A time step does not directly map to real-world time (seconds). In our simulation, each
time step varied between 0.095 and 0.973 s, based on the step length taken by the simulation
code. Therefore, we suppose that the time step interval is 1 s. Each agent initially has a
random speed. This random speed is assumed to be a floating number between 0 and 0.5.
Hence, the movement of the agent could not exceed 0.5 patches ahead.

In contrast to [14], where various perception zones were used, we conducted multiple
tests to determine suitable common perception zones for all experimented flock sizes.
Several zone sizes (∆r, ∆o, and ∆a) were tested on flock sizes of 30, 50, and 100 agents.
Agent perception zone sizes were selected based on the results of these tests. The test
results considered goal zone localization time, the average distance to the center of mass,
collisions per member, and the applied times of flocking rules. According to [14], a smaller
value of ∆r, and larger values of ∆o and ∆a led to better flocking behavior. However, there
were no precise ratios or constraints on the total perception radii. Therefore, a number of
zone sizes were tested (e.g., ∆r = 2, ∆o = 6, and ∆a = 7 for 30 agents) where the flock
did not show stable flocking behavior. To the contrary, the flock kept avoiding collision
between its members and maintained cohesion simultaneously. Therefore, we eliminated
the sizes that caused a similar situation from the next test on bigger flock sizes (detailed
results provided in Appendix A). Experimentally, we found that smaller values of ∆r and
∆a, and larger values of ∆o led to better flocking behavior. The final selected zones were
the minimum common sizes among all flock sizes that provided stable flocking behavior
(∆r = 1, ∆o = 13, ∆a = 1). According to the arena specifications set earlier, the agent’s
perception area covered 5.5% of the arena’s size. The repulsion priority weights w1, w2,
and w3 (Equation (1)) were set according to reference [14] to allow for improved repulsion
behavior and to avoid having the desired position be too far from the agent, as follows:
w1 = 0.4, w2 = 0.075, and w3 = 0.025.

3.2. Experimental Results

Each experiment was simulated 20 times (for 400 experiments in total) using NetLogo,
and the obtained performance measures for each simulation were recorded. We report
the average values obtained for each of the performance metrics over the twenty runs.
Performance metric data for all simulations were analyzed using SPSS software [36].

Our aim is to explore the existence of an association between the change in flock size (as
an independent variable) and each of the performance measures (as dependent variables).
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• We use regression curves to approximate the function or curve that has the best fit to a
number of observed data points in our experiments [37–39].

• The correlation coefficient, r ∈ [−1, 1], describes the relationship and measures the
strength of the association between two variables, and is defined in Equation (20) [40],
where m is the sample size (i.e., the number of experiments), x is the value of the
independent variable (i.e., the flock size), and y is the value of the dependent variable
(i.e., the performance metric).

• The coefficient of determination, R2 ∈ [0, 1], explains the variations in the performance
measure accounted for by flock size. It is obtained by squaring the r value and is
normally expressed as a percentage in the interpretation of results. An R2 close to
0 reflects a model that does not explain the change in the performance measure around
its mean, while an R2 close to 1 reflects a model that explains all the variation of the
performance measure around its mean due to change in the flock size.

• The p-value tests the null hypothesis, which states that there is no association between
changes in the flock size and shifts in the performance measure. If the p-value is
less than the significance level α, then it indicates that the data from the experiments
provides enough evidence to reject the null hypothesis.

• The distribution of data points in the scatter plots shown in Figures 5 and 6 are ob-
tained from the experiments and are estimated for each of the six functions generated
by the SPSS statistical software (linear, inverse, logarithmic, quadratic, cubic, and
exponential). The R2 for each of these functions allows us to determine the association
between the flock size and each of the performance measures.

r =
m ∑ xy−∑ x ∑ y√

[m ∑ x2 − (∑ x)2
√

m ∑ y2 − (∑ y)2
, (20)

The remainder of this section is organized as follows: Section 3.2.1 reports the results
of experiments excluding obstacles. Next, Section 3.2.2 reports the results of experiments
including obstacles. All of the experiments used the settings and parameters described in
Table 2.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

(g) (h)

(i)

Figure 5. Relationship between the flock size and each of the performance metrics in an environment
without obstacles. (a) Flock size versus the goal localization time. (b) Flock size versus the distance to
the center of mass. (c) Flock size versus the average number of collisions per member. (d) Flock size
versus the average number of applied separation rules per member. (e) Flock size versus the average
number of applied alignment rules per member. (f) Flock size versus the average number of applied
cohesion rules per member. (g) Flock size versus the average time of task completion. (h) Flock size
versus the average speed matching time. (i) Flock size versus the average goal localization window.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6. Relationship between the flock size and each of the performance metrics in an environment
with obstacles. (a) Flock size versus the goal localization time. (b) Flock size versus the distance to the
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center of mass. (c) Flock size versus the average number of collisions per member. (d) Flock size
versus the average number of applied separation rules per member. (e) Flock size versus the average
number of applied alignment rules per member. (f) Flock size versus the average number of applied
cohesion rules per member. (g) Flock size versus the average time of task completion. (h) Flock size
versus the average speed matching time. (i) Flock size versus the average goal localization window.

3.2.1. Experimental Results in an Environment without Obstacles

First, we simulated the flocking behavior of 10–100 agents in steps of 10, in an en-
vironment without obstacles. In all experiments, the flock completed the flocking task
successfully by reaching the goal zone area. Recorded simulation outputs (performance
metrics) for each flock size, averaged over twenty runs of each experiment, are shown in
Table 3. The relationship is also illustrated in Figure 5. Each sub-figure shows the data
results over all experiments for the number of agents (at the x-axis) versus the respective
performance metric (at the y-axis) as points distributed on a plane. Moreover, the best-fit
curves for each of the nine flocking performance measures against the flock size, using six
functions (linear, inverse, logarithmic, quadratic, cubic, and exponential) are shown. The
detailed model summary and parameter estimates for the curve fitting obtained are found
in Appendix B.

Table 3. Performance metric results averaged over twenty simulations for flock sizes in 10–100, in an
environment without obstacles.

Flock Size

Performance Metric 10 20 30 40 50

Localization Time 673.20 594.96 673.19 564.29 661.26
Distance to center of mass 6.25 5.63 5.17 5.03 4.96
Collisions 0.00 0.00 0.01 0.01 0.03
Separations 1.85 6.98 12.58 18.46 34.80
Alignments 706.40 616.23 690.57 580.90 668.76
Cohesions 25.22 32.85 34.41 35.83 42.83
Task completion time 0.30 0.51 0.88 1.06 1.65
Speed matching time 82.30 68.6 33.00 54.85 34.50
Localization window 66.45 58.65 58.65 60.60 66.75

Flock Size

Performance Metric 60 70 80 90 100

Localization Time 627.81 615.74 688.05 654.63 800.21
Distance to center of mass 4.94 4.93 4.92 4.95 4.98
Collisions 0.07 0.10 0.12 0.40 0.68
Separations 53.55 77.70 122.61 175.68 293.34
Alignments 606.85 578.00 609.39 530.52 571.07
Cohesions 46.33 53.06 63.70 80.56 112.82
Task completion time 1.81 2.16 2.91 3.56 4.38
Speed matching time 30.75 38.25 43.80 39.90 33.00
Localization window 66.00 78.30 89.45 104.15 130.35

Localization time: Table 3 shows that the average goal zone localization time does not
exhibit any monotonic relation along with an increase in the flock size. The distribution of
data points in the scatter plot shown in Figure 5a supports this observation. Figure 5a also
shows curve estimates for each of the six functions (linear, inverse, logarithmic, quadratic,
cubic, and exponential) relating the flock size to the goal localization time. The p-value
obtained in each of these models was larger than α = 0.05 (Appendix B); thus, the null
hypothesis cannot be rejected, meaning that there exists no association between the changes
in flock size and shifts in goal localization time. An exception is the model associated
with the exponential function, in which the p-value detected was 0.011 < α; however, the
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associated R2 value indicates that the only 3.2% of the variation in the localization time is
explained by the flock size.

Distance to center of mass: The average distance to center of mass values tend to
decrease along with the increase in the flock size (Table 3 and Figure 5b). The flocking
behavior is exhibited here, where a larger flock size enables more members to be contained
in a flocking zone, allowing the average distance to the center of mass to be reduced.
Figure 5b also shows curve estimates for each of the six functions relating the flock size
to the distance to center of mass. The p-value obtained for each of these models was less
than 0.001, which means that the sample data provides enough evidence to reject the null
hypothesis, and that changes in the flock size are significantly associated with shifts in
the distance to center of mass, on the population level. The R2 value associated with the
inverse function for the distance to the center of mass indicates that 69.7% of the variation
in the distance to center of mass is explained by the flock size, while the R2 value associated
with the cube function was somewhat higher than that, at 71.1%.

Speed matching time: A similar observation of distance to center of mass can be drawn
for the speed matching time measure. Figure 5h shows curve estimates for each of the six
functions relating the flock size to the speed matching time. The p-value obtained for each
of these models was less than 0.001, which means that the sample data provides enough
evidence to reject the null hypothesis, and that changes in the flock size are significantly
associated with shifts in the speed matching time on the population level. For the speed
matching time, the highest R2 value is that associated with the inverse function and it
accounted for only 12.3% of the variation in speed matching time due to changes in the
flock size.

Collisions per member: The average collisions per member tend to increase along with
the increase in the flock size as shown in Table 3. The number of collision avoidance steps
needed for a larger flock size is larger than the number needed for a smaller flock size. The
scatter plot in Figure 5c also shows that the standard deviation is small (2.5 collisions). The
p-value obtained in each of the six curve estimation models was less than 0.001, which
means that the sample data provides enough evidence to reject the null hypothesis, and that
changes in the flock size are significantly associated with shifts in the number of collisions
on the population level. However, the R2 values associated with these models are a bit
lower than those obtained for the models of the distance to center of mass variable. The
R2 value associated with the quadratic function indicates that 31.5% of the variation in the
number of collisions is explained by the flock size, while the R2 value associated with the
cube function was closely higher than that at 33.7%.

Separations per member: Table 3 shows a steady increase in the average number
of applied separation steps along with the increase in the flock size. The scatter plot in
Figure 5d) clearly supports that. The shape of the scatter is close to a quadratic or a cubic
function. In fact, the p-value obtained in each of the six curve estimation models was less
than 0.001, which means that the sample data provides enough evidence to reject the null
hypothesis, and that changes in flock size are significantly associated with shifts in the
number of applied separation steps on the population level. The highest R2 value is that
associated with the cubic function (81.4%), closely followed by the R2 value associated with
the quadratic function at 79.5%.

Alignments per member: Similar to goal localization time, Table 3 shows that the
average number of alignment steps does not exhibit any monotonic relation along with
an increase in the flock size. The distribution of data points in the scatter plot shown in
Figure 5e supports this observation. It appears that the average number of alignment steps
per member is not affected by the flock size. The scatter of data points appears in every
flock size. Figure 5e also shows curve estimates for each of the six functions relating the
flock size to the average number of alignment steps per member. The p-value obtained
in each of these models was larger than α = 0.05 (Appendix B); thus, the null hypothesis
cannot be rejected, meaning that there exists no association between changes in flock size
and shifts in the number of alignment steps.
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Cohesions per member: The average cohesion steps per member monotonically in-
creases with the increase in the flock size as shown in Table 3, which is confirmed by
the scatter plot in Figure 5f. The distribution of data points in the scatter plot shown in
Figure 5f shows that the standard deviation of number of cohesion steps is similar for
each flock size; however, the average number of cohesion steps increases as the flock size
increases. The number of cohesion steps needed to keep a larger flock size in cohesion is
larger than the number needed for a smaller flock size. The p-value obtained in each of
the six curve estimation models was less than 0.001, which means that the sample data
provides enough evidence to reject the null hypothesis, and that changes in flock size are
significantly associated with shifts in the number of cohesion steps on the population level.
The highest R2 value is that associated with the cubic function and explains 87.2% of the
variation in the number of cohesion steps due to shifts in the flock size.

Task completion time and goal localization window: The time required to complete
the task in minutes (Figure 5g), as well as the goal localization window (Figure 5i) all
increased along with an increase in flock size, as supported by the average value readings
from Table 3. The p-value obtained in each of the six curve estimation models for both
of these metrics was less than 0.001, which means that the sample data provides enough
evidence to reject the null hypothesis and that changes in flock size are strongly associated
with shifts in each of these two performance measures. For the time required to complete
the task measure, the highest R2 value was associated with the exponential function and
accounted for 80.2% of the variation in time required to complete the flocking task due to
changes in the flock size. As for the goal localization window, the highest R2 value was
associated with the cubic function and indicates that 75.5% of the variation in the goal
localization window is explained by changes in the flock size, while the R2 value associated
with the quadratic function closely follows at 75.2%. These results are in line with the shape
of the points on the scatter plot in Figure 5i.

As previously mentioned, the flocking behavior became stable when the majority of
the flock members applied the alignment rule, rather than the attraction or separation rules.
Based on the obtained results, the larger the flock size, the larger the number of repulsion
and cohesion steps applied. The simulation outputs of two randomly selected experiments
with flock sizes of 30 and 100 are shown in Appendix C.

3.2.2. Experimental Results in an Environment with Obstacles

Next, experiments simulating the flocking behavior of 10–100 agents in steps of 10,
in an environment with obstacles are conducted. In all experiments, the flock was able
to complete the flocking task successfully by reaching the goal zone area. Recorded
simulation outputs (performance metrics) for each flock size, averaged over twenty runs of
each experiment, are shown in Table 4. The relationships are also illustrated in Figure 6.
Each sub-figure shows the data results over all experiments for the number of agents (on
the x-axis) versus the respective performance metric (on the y-axis) as points distributed on
a plane. Moreover, the best-fit curves for each of the nine flocking performance measures
against the flock size, using six functions (linear, inverse, logarithmic, quadratic, cubic, and
exponential) are shown. The detailed model summary and parameter estimates for the
curve fitting obtained are found in Appendix B.
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Table 4. Performance metric results averaged over twenty simulations for flock sizes in 10–100, in an
environment with obstacles.

Flock Size

Performance Metric 10 20 30 40 50

Localization Time 900.14 749.98 715.60 685.07 590.01
Distance to center of mass 6.15 5.46 5.15 4.95 4.94
Collisions 0.04 0.18 0.01 0.03 0.13
Separations 3.24 11.09 19.29 33.46 44.22
Alignments 934.81 767.37 729.91 684.20 580.33
Cohesions 28.64 33.57 42.15 42.39 63.13
Task completion time 0.45 0.74 1.01 1.42 1.47
Speed matching time 48.05 95.4 44.25 57.8 36.00
Localization window 73.25 58.1 64.9 65.2 66.5

Flock Size

Performance Metric 60 70 80 90 100

Localization Time 634.24 743.43 787.13 1126.95 1441.14
Distance to center of mass 4.94 4.92 4.92 4.97 4.96
Collisions 0.20 0.27 0.36 0.93 1.31
Separations 74.50 126.63 168.83 364.80 561.03
Alignments 595.10 658.57 665.22 821.15 947.17
Cohesions 55.24 66.48 76.03 125.26 159.10
Task completion time 1.91 2.53 3.20 5.34 7.39
Speed matching time 30.45 33.45 39.50 39.50 34.20
Localization window 71.5 83.55 94.7 119.85 135.9

From Table 4 and similar to the observation drawn from results of the experiments
without obstacles, no relationship can be easily drawn between the flock size and the goal
localization time. The scatter plot in (Figure 6a) shows that the lowest goal localization time
was obtained in experiments with 50 agents. Considering the significance of the obtained
function curves, interestingly, the p-value associated with each of the different functions
was smaller than alpha except that for the inverse function. The highest R2 value was that
for the cubic model (22.4%), closely followed by that for the quadratic model at 21.7%.

The average distance to center of mass tends to decrease along with an increase in flock
size as shown in Table 4. The pattern observed is similar to that illustrated by the results
in experiments without obstacles. The p-value associated with all the curve estimation
functions in (Figure 6b) supports rejecting the null hypothesis. The R2 value associated
with the inverse function was 57.8%, while that associated with the cube function was
found to be slightly higher at 58.7%.

Furthermore, similar to the observations drawn from the experiments without ob-
stacles, Table 4 displays a monotonic increase in the average value obtained for each of
the performance measures separations, cohesion, and task completion time along with
the increase in flock size. The table also shows a tendency of increase in the number of
collisions and localization window with the increase in flock size. The p-value obtained
for each of the curve estimates in each of (Figure 6c,d,f,g,i) provides strong evidence that
the null hypothesis should be rejected. The R2 value associated with the cubic function in
(Figure 6c) was 32.4% closely followed by that for the quadratic function (31.2%). Similarly,
The R2 value associated with the cubic function and the quadratic function in (Figure 6i)
was, equally, 72.8%. The highest R2 value for the models in each of (Figure 6d,f,g) was that
associated with the exponential function, having considerable values of 85%, 70.6%, and
78.7%, respectively.

In contrast, considering the number of alignment steps, the p-value obtained for each
of the curve estimation values in Figure 6e does not provide sufficient evidence to reject
the null hypothesis, except for the cubic and quadratic models. However, the R2 value
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associated with these models can only explain the variation in no more than 8.5% of the
number of alignment steps due to the change in flock size.

Finally, the average speed matching time values reported in Table 4 do not show a
clear relationship with the flock size. However, the p-value for all the curve estimation
functions in Figure 6h for this measure show strong evidence to reject the null hypothesis.
Notably, the highest R2 value obtained from these functions can explain no more than 6.5%
of the change in the speed matching time due to the change in flock size.

The environment had five obstacles, which were added manually to ensure they
were distributed along the route to the goal, with random sizes, as illustrated in Figure 7.
We applied the same methodology as in the simulation with no obstacles—3 randomly
selected experiments of 100, 50, and 30 agents simulation output are shown in Figure 7a–c,
respectively. In the upper right corner in these figures, we represent the different flock
behaviors: blue curve for number of applied alignment rules, black curve for the number
of applied separation rules, and red curve for the number of applied attraction rules. A
zoomed-out view of these parameters along with the number of collisions is made clear
in Figure 7d. The increase in flock size causes unstable flocking behavior, whereas the
flocking rules plot looks smooth in Figure 7a,b. In addition, there is a noticeable increase
in the application of the separation and attraction rules (black and red lines, respectively)
when the flock size is 100, as shown in Figure 7c. Moreover, whenever the flock does not
have stable flocking behavior, the collision between its members increases. In addition,
sensing the goal in presence of obstacles close to the goal led to a high possibility that the
flock members collide with these obstacles, as shown in Figure 7d.

(a) (b)

(c) (d)

Figure 7. Snapshots of simulation experiments with flock sizes of 30, 50, and 100, in an environment
with obstacles. (a) Experiment 1 with 30 agents. (b) Experiment with 50 agents. (c) Experiment with
100 agents. (d) Focus on the flocking rules and number of collisions for experiment with 100 agents.
(Figure 7c).
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The flock controller was capable of making the flock split and rejoin to avoid the
obstacles, similar to the results reported in [23]. Figure 8 illustrates examples of the splitting
(Figures 8a) and joining (Figures 8b) of the flock. This means that the flock was able to
split into smaller groups to avoid the obstacle, as long as the obstacle was smaller than the
orientation zone’s size.

(a) (b)

Figure 8. Illustration of flock splitting and rejoining. (a) Flock splitting. (b) Flock rejoin.

4. Discussion

The relationship between the flock size and its effect on the flocking system’s perfor-
mance was analyzed, as measured with respect to several factors, including the flexibility
towards reaching the goal (i.e., the time to reach the goal zone, the number of agents
within the goal area), the speed matching time, the number of the applied flocking rules
(collision avoidance, attraction, and alignment), the localization window, the number of
collisions that occurred, the flock’s average distance to the center of mass, and the goal
localization time.

Our experiments indicated that the flock was able to reach the goal zone, regardless of
the number of agents in the flock; however, the time needed to reach the goal increased as
the flock size increased, both in environments with and without obstacles. This was due to
the significant increase in applying the rules of separation and cohesion, rather than the
rule of alignment. This means that the flock was unable to reach stable flocking behavior
properly. Furthermore, as the flock did not possess stable flocking behavior, the chances of
collision between its members increased.

Although we did not study the effect of changing the perception zone size as a main
factor in this study, it served as a preprocessing step in designing the flock controller. The
flocking behavior is highly dependent on the perception zone’s size, as the flocking behavior
improves when the orientation zone’s size is large, and the repulsion and attraction zones
are small in size. These findings contradict reference [14] in that the zone of attraction is
large rather than small; however, the second paper had a smaller flock size, which might
affect the results.

Our experiments suggested that flocking behavior becomes more difficult as the flock
size increases. This issue is due to the average distance to the center of mass, which becomes
smaller with larger flock sizes, as the number of flock members increase in the flocking
zone. Moreover, it is related to the size of the perception zone chosen, which may be
unsuitable for large-scale flocks. The small average distance to the center of mass indicates
that the flock members were close to each other, such that they must keep separating to
avoid collisions, in contrast to smaller flock sizes, where the flock members have a high
probability of being detected in the orientation zone (alignment with each other), leading
to stable flocking behavior. On the other hand, having a larger flock indicates that more
agents have a high probability of being detected within the attraction zone (i.e., cohesion
with other members), such that the flock members will keep attracting farther members,
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according to their perception, while avoiding collisions with closer members within the
repulsion zone which, in turn, results in unstable flocking behavior.

As the flock size increases, so do the number of collisions, cohesion, and separations.
This is expected because of the increase in probability of these events as the number of
flock members increases. An increase in the scatter for larger flock sizes can be similarly
observed. The increase in flock size creates a more complex environment for the flock to
navigate, resulting in a larger variance of flock behavior.

Our findings indicated that the speed matching time slightly decreased along with an
increase in the number of agents in an environment without obstacles. On the other hand,
the speed matching time was slightly increased in the environments with obstacles. This
means that obstacles affect the time to reach the goal, as they hinder exploration. However,
the reach time was logically affected by the average speed of the flock. Speed matching
time has a larger scatter as the flock size decreases. This is because there are fewer flock
members overall within the attraction zone of each flock member, compared with larger
flock sizes. The results of reference [14] support our findings, in that each agent’s final
desired direction becomes more complicated and takes more time to determine as the
size increases.

From our findings we observed that as the flock size increases, the time required
to complete the task increases as well, which does not adhere to reference [14]. This
discordance is due to the fact that the flock sizes used in their work (with a maximum flock
size of 20) were much smaller than the flock sizes used in this work. Moreover, the increase
in the time required to complete the task is due to the formation maintenance and cohesion
of flock members, which prevents the flock from exploring the environment properly
(i.e., presenting stable flocking behavior). Interestingly, the average goal localization time
remained unaffected by the flock size, further supporting that an increase in flock size
requires higher formation maintenance behavior.

To summarize, flock size does not significantly affect localization time and the number
of alignments per flock member. Scatter is homogeneous for all flock sizes. An increase in
flock size is positively associated with the number of collisions, separations, and cohesions
per flock member. In addition, the localization window and task completion times both
increase as flock size increases, and and increase in variability or scatter is seen as well.
A decrease in flock size is associated with a larger distance to the center of mass of the
flock, as well as larger and more variable speed matching times. Scatter increases with the
decrease in flock size.

The results we obtained highlight the critical factors that are affected by changing the
flock size, and are expected to be helpful for future research in this field. The limitations
of this work lie in the small number of experiments conducted for each flock size due to
time constraints. In addition, a sample size of 20 makes it difficult to draw conclusions
regarding the apparent outliers in the data, as well as the standard deviation for each flock
size. The excessive runtime required for larger flock sizes further prohibits experiments
beyond 100 flock members. Furthermore, the controller used in this work may not be fully
generalizable to other flocking tasks.

5. Conclusions

In this paper, we studied the impact of changing the flock size on the performance of
the flock task. We developed a flock controller using a behavior-based swarm approach
and conducted experiments on the problem of reaching a goal zone. Our flock controller
depends on the behavior of a flock’s agents, with respect to their neighbors and to the
environment. Moreover, the flock controller also introduces the concept of sensing power
that replicates the phenomenon observed in nature where migrating birds have a sense of
where they need to head, even if they do not precisely know the target. The sensing power
provides better take-off results.

In this work, we studied the impact of flock size on flock formation and flock perfor-
mance through nine different parameters, including the goal zone localization time, the
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distance to the center of mass, the collisions per member, and the rate of application of the
flocking rules. These parameters were measured for ten flocks with increasing size. The
flocking behavior was simulated in two different environments, with and without obstacles.
The results demonstrated that the developed flock controller is able to deliver the flock
to the goal zone, regardless of its size. The experiments concluded that the time required
to complete the task in minutes, and the goal localization window increased along with
an increase in flock size. The same behavior was observed for the average collisions per
member, the average number of applied separations, and the average number of cohesion
steps. On the contrary, the results also concluded that the average distance to center of
mass, as well as the speed matching time, tend to decrease along with the increase in the
flock size. We also observed that the remaining analyzed parameters, namely the goal
localization time and the number of applied alignment steps, had no clear association with
the variations in the flock size. Overall, similar results were observed in both situations
with and without obstacles.

As mentioned above, spatial organization is an area where behavior-based swarm
approaches can be applied. This paper studied the impact of the number of agents on the
different parameters involved in moving individual robots to spatially organize themselves
in a specific region of the environment. As the number of collisions and separations tends
to increase with the number of involved agents and certainly impacts the time required
to complete the task, in future studies, we intend to work on minimizing the collisions
among agents in order to improve the task completion time. We will also study the impact
of using the sensing power continuously for motion coordination among the flock and to
improve the navigation process. Moreover, the flock controller may integrate other features
to memorize discovered areas, which could help reduce the time required to reach the goal.
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Appendix A

This appendix provides details on the tuning of the repulsion orientation and tests for
attraction zone radii for flocks with 30, 50, and 100 agents. Table A1 shows the legend used
in the results provided in Tables A2–A4. For each used combination of ∆r, ∆o, and ∆a, the
obtained objective functions f1, f2, and f3 are shown, along with the number of repulsion
operations (r1), the number of alignment operations (r2), and the number of cohesion
operations (r3) encountered. Combinations of ∆r, ∆o, and ∆a that resulted in unstable
flocking behavior for flocks of 30 agents were excluded from experiments considering
flocks of 50 agents. Similarly, combinations of ∆r, ∆o, and ∆a that resulted in unstable
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flocking behavior for flocks of 50 agents were excluded from experiments with flocks of
100 agents.

Table A1. Legend used for Tables A2–A4.

Notation Description

f1 localization time of the goal zone
f2 average distance to the center of mass
f3 collisions per member
r1 separation
r2 alignment
r3 cohesion

Table A2. Results of testing perception zones for flocks with 30 agents.

Zone Radii Objective Functions Flocking Rules

∆r ∆o ∆a f1 f2 f3 r1 r2 r3

1 9 1

612.90 3.61 0.20 46.97 585.03 43.53
2167.00 3.60 0.00 103.43 2090.57 75.40
953.17 3.58 0.00 59.67 922.33 63.23
1061.27 3.54 0.00 55.00 1031.00 52.20
477.63 3.67 0.07 31.30 468.70 41.57

Average 1054.39 3.60 0.05 59.27 1019.53 55.19

1 11 1

792.67 4.36 0.00 26.00 798.00 51.43
287.80 4.23 0.17 15.67 290.33 22.00
713.20 4.09 0.00 29.03 707.97 28.90
393.80 4.55 0.00 9.03 411.97 29.20
403.93 4.63 0.00 13.40 415.60 38.57

Average 518.28 4.38 0.03 18.63 524.77 34.02

1 13 1

386.90 5.28 0.00 7.90 415.10 25.13
1473.10 5.17 0.00 22.93 1482.07 32.07
369.33 4.82 0.00 7.70 389.30 24.33
563.30 5.05 0.00 9.05 583.5 19.33
419.37 5.29 0.00 12.17 441.83 30.40

Average 642.40 5.12 0.00 12.04 662.36 26.25

1 6 8

1785.57 2.62 0.13 587.63 1225.37 243.90
3047.83 2.61 2.27 1150.87 1923.13 423.60
982.50 2.66 1.83 377.07 632.93 185.37
1011.17 2.67 0.00 341.63 701.37 188.27
1465.73 2.69 6.47 609.47 888.53 307.40

Average 1658.56 2.65 2.14 613.33 1074.27 269.707

1 7 3

1547.20 2.95 0.43 307.47 1261.53 149.03
3014.27 2.90 1.67 596.73 2434.27 207.97
1339.83 2.96 0.03 183.03 1189.97 123.07
895.03 2.93 2.10 225.40 688.60 107.40
464.50 2.99 0.10 87.33 401.67 73.43

Average 1452.17 2.94 0.87 279.99 1195.21 132.18

1 6 4

1873.57 2.61 0.10 633.43 1263.57 233.37
2369.90 2.62 4.53 943.70 1450.30 354.30
3017.73 2.61 4.03 1176.40 1867.60 440.53
1566.63 2.63 4.00 656.90 940.10 269.80
4649.10 2.59 0.03 1551.17 3128.83 521.90

Average 2695.39 2.61 2.54 992.32 1730.08 363.98

1 7 2

1815.73 2.94 0.07 291.00 1547.00 141.50
665.00 2.98 0.00 103.40 588.60 76.33
1164.63 2.95 0.83 243.03 942.97 114.37
1656.70 2.95 0.50 311.13 1364.87 132.70
757.87 2.98 0.30 143.37 632.63 78.63

Average 1211.99 2.96 0.34 218.39 1015.21 108.71



Appl. Sci. 2022, 12, 3630 24 of 29

Table A3. Results of testing perception zones for flocks with 50 agents.

Zone Radii Objective Functions Flocking Rules

∆r ∆o ∆a f1 f2 f3 r1 r2 r3

1 9 1

700.52 3.64 0.00 173.28 568.72 99.84
588.50 3.72 0.12 148.58 477.42 93.98
1109.44 3.60 0.48 306.78 835.22 114.38
1726.34 3.61 0.16 416.32 1347.68 160.50
601.94 3.67 0.06 164.78 470.22 80.32

Average 945.35 3.65 0.17 241.95 739.85 109.80

1 11 1

1120.60 4.21 0.00 81.86 1073.14 61.46
669.76 4.25 0.26 75.76 623.24 49.36
428.02 4.32 0.02 42.36 418.64 53.30
504.90 4.30 0.01 55.84 481.16 51.94

1617.56 4.19 0.06 199.16 1452.84 83.64

Average 868.17 4.26 0.19 90.99 809.80 59.94

1 13 1

885.46 4.81 0.00 46.98 869.02 41.10
1000.60 4.91 0.32 71.00 963.00 76.90
404.00 4.92 0.00 28.48 410.52 40.90
784.64 4.79 0.52 87.70 726.30 60.28
1121.84 4.84 0.34 88.96 1074.04 75.66

Average 839.31 4.85 0.24 64.62 808.58 58.97

Table A4. Results of testing perception zones for flocks with 100 agents.

Zone Radii Objective Functions Flocking Rules

∆r ∆o ∆a f1 f2 f3 r1 r2 r3

1 13 1

446.18 5.04 0.98 185.83 326.17 95.23
624.69 4.99 0.58 227.78 455.22 104.96
496.11 5.06 1.15 205.68 353.32 105.11
500.01 4.992 0.28 195.63 368.37 95.67
527.34 4.99 0.46 198.48 383.52 86.95

Average 518.87 5.01 0.69 202.68 377.32 97.58

Appendix B

The detailed model summary and parameter estimates for the curve fitting obtained
for each of the nine flocking performance measures, using six functions (linear, inverse, loga-
rithmic, quadratic, cubic, and exponential), where the independent variable is the flock size
and the dependent variable is each performance measure, respectively. The model summary
and parameter estimates related to experiments without obstacles are provided in Table A5,
while Table A6 shows model summary and parameter estimates related to experiments
with obstacles. The values b1, b2, and b3 represent the regression parameters. For example,
a quadratic function will be dependantVar = const + (b1 × f lockSize) + (b2 × f lockSize2).
The p-value significance (Sig.) reflects whether the relationships observed in the data
are statistically significant. The standard significance level of α = 0.05 is used. If the
p-value < α, then the sample provides enough evidence to reject the null hypothesis; thus,
changes in the flock size are associated with changes in the performance measure at the
population level. The F-value is related to R2 and is an indicator of the overall significance
through comparing the obtained model against a model that does not contain the flock
size (the intercept model). It is used only when the p-value supports rejecting the null
hypothesis. The null hypothesis for the F-test states that the model with no flock size fits
the data as well as the model provided. The degrees of freedom d f1 and d f2 are used to
obtain the critical value for the F-test. If the F-value is larger than the critical value, then the
associated null hypothesis is rejected, meaning that the data provides enough evidence that
the model fits the data better than the intercept-only model. When the dependent variable
(performance measure) contains a zero value, the exponential model cannot be calculated
for this variable.
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Table A5. Model summary and parameter estimates for the curve fitting obtained in experiments
without obstacles for each of the nine flocking performance measures, showing five equations (linear,
inverse, logarithmic, quadratic, cubic, and exponential), where the independent variable is the flock
size and the dependent variable is each performance measure, respectively.

Localization Time

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.008 1.551 1 198 0.21 596.80 1.064
Logarithmic 0.003 0.621 1 198 0.432 549.036 27.878
Inverse 0.000 0.092 1 198 0.762 663.673 −284.653
Quadratic 0.018 1.819 2 197 0.165 703.633 −4.277 0.049 0.049
Cubic 0.019 1.257 3 196 0.290 657.206 −0.160 −0.041 0.001
Exponential 0.032 6.595 1 198 0.011 517.037 0.003

Distance to Center of Mass

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.404 134.127 1 198 <0.001 5.766 −0.011
Logarithmic 0.601 298.740 1 198 <0.001 7.239 −0.541
Inverse 0.697 455.018 1 198 <0.001 4.724 15.401
Quadratic 0.661 192.028 2 197 <0.001 6.511 −0.048 <0.000 <0.000
Cubic 0.711 160.586 3 196 <0.001 7.040 −0.095 0.001 −6.17× 106

Exponential 0.426 146.981 1 198 <0.001 5.733 −0.002

Collisions per Member

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.221 56.250 1 198 <0.001 −0.185 0.006
Logarithmic 0.140 32.215 1 198 <0.001 −0.603 0.195
Inverse 0.069 14.672 1 198 <0.001 0.248 −3.628
Quadratic 0.315 45.34 2 197 <0.001 0.152 −0.011 0.000
Cubic 0.337 33.213 3 196 <0.001 −0.110 0.012 0.000 3.054 × 106

Exponential

Separations per Member

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.650 368.184 1 198 <0.001 −71.942 2.758
Logarithmic 0.452 163.134 1 198 <0.001 −282.284 94.948
Inverse 0.246 64.762 1 198 <0.001 134.062 −1854.17
Quadratic 0.795 382.765 2 197 <0.001 41.334 −2.906 0.051
Cubic 0.814 286.573 3 196 <0.001 −24.798 2.960 −0.076 0.001
Exponential

Alignments per Member

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.015 3.001 1 197 0.085 692.039 −1.389
Logarithmic 0.015 2.954 1 197 0.087 832.665 −56.934
Inverse 0.013 2.507 1 197 0.115 574.867 1388.522
Quadratic 0.015 1.498 2 196 0.226 699.440 −1.760 0.003
Cubic 0.015 0.999 3 195 0.394 713.458 −3.003 0.030 0.00
Exponential 0.008 1.660 1 197 0.199 604.031 −0.001

Cohesions per Member

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.725 521.941 1 198 <0.0001 8.625 0.802
Logarithmic 0.536 228.370 1 198 <0.001 −55.871 28.490
Inverse 0.322 94.027 1 198 <0.001 69.866 −583.987
Quadratic 0.840 517.244 2 197 <0.001 36.426 −0.588 0.013
Cubic 0.872 443.766 3 196 <0.001 12.919 1.497 −0.033 0.000
Exponential 0.782 710.318 1 198 <0.001 20.278 0.015

Task Completion Time

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.649 365.944 1 198 <0.001 −0.466 0.043
Logarithmic 0.527 220.253 1 198 <0.001 −4.238 1.615
Inverse 0.340 102.141 1 198 <0.001 2.928 −34.333
Quadratic 0.674 203.970 2 197 <0.001 0.282 0.006 0.000
Cubic 0.677 136.692 3 196 <0.001 −0.077 0.038 0.000 4.19 × 106

Exponential 0.802 801.140 1 198 <0.001 0.275 0.029
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Table A5. Cont.

Speed Matching Time

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.076 16.190 1 198 <0.001 67.367 −0.390
Logarithmic 0.109 24.192 1 198 <0.001 119.687 −19.353
Inverse 0.123 27.703 1 198 <0.001 29.984 543.230
Quadratic 0.114 12.716 2 197 <0.001 91.675 −1.606 0.011
Cubic 0.130 9.748 3 196 <0.001 116.462 −3.804 0.059 0.000
Exponential 0.078 16.742 1 198 <0.001 50.279 −0.005

Localization Window

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.558 249.627 1 198 <0.001 41.270 0.667
Logarithmic 0.347 105.029 1 198 <0.001 −4.835 21.707
Inverse 0.154 36.052 1 198 <0.001 89.141 −382.579
Quadratic 0.752 298.578 2 197 <0.001 75.487 −1.044 0.016
Cubic 0.755 201.554 3 196 <0.001 68.335 −0.410 0.002 8.34 × 105

Exponential 0.591 286.485 1 198 <0.001 46.842 0.008

Table A6. Model summary and parameter estimates for the curve fitting obtained in experiments
with obstacles for each of the nine flocking performance measures, showing five equations (linear,
inverse, logarithmic, quadratic, cubic, and exponential) where the independent variable is the flock
size and the dependent variable is each performance measure, respectively.

Localization Time

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.074 15.81 1 198 <0.001 567.876 4.90
Logarithmic 0.025 5.126 1 198 0.025 386.60 118.218
Inverse 0.003 0.526 1 198 0.469 867.027 −1012.61
Quadratic 0.217 27.329 2 197 <0.001 1160.904 −24.752 0.270
Cubic 0.224 18.87 3 196 <0.001 950.885 −6.124 −0.134 0.002
Exponential 0.104 23.030 1 198 <0.001 529.631 0.006

Distance to Center of Mass

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.305 86.780 1 198 <0.001 5.647 −0.009
Logarithmic 0.476 179.559 1 198 <0.001 6.967 −0.481
Inverse 0.578 271.302 1 198 <0.001 4.724 14.011
Quadratic 0.529 110.645 2 197 <0.001 6.342 −0.044 0.000
Cubic 0.587 92.824 3 196 <0.001 6.911 −0.095 0.001 −6.64× 106

Exponential 0.332 98.279 1 198 <0.001 5.605 −0.002

Collisions per Member

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.223 56.737 1 198 <0.001 −0.296 0.012
Logarithmic 0.141 32.570 1 198 <0.001 −1.117 0.384
Inverse 0.071 15.029 1 198 <0.001 0.555 −7.166
Quadratic 0.312 44.759 2 197 <0.001 0.348 −0.021 0.000
Cubic 0.324 31.293 3 196 <0.001 −0.023 0.012 0.000 4.32 × 106

Exponential

Separations per Member

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.536 228.356 1 198 <0.001 −144.410 5.184
Logarithmic 0.357 109.964 1 198 <0.001 −525.907 174.826
Inverse 0.187 45.561 1 198 <0.001 238.693 −3345.39
Quadratic 0.700 229.466 2 197 <0.001 105.097 −7.291 0.113
Cubic 0.728 174.652 3 196 <0.001 −61.395 7.476 −0.207 0.002
Exponential 0.850 1124.172 1 198 <0.001 2.364 0.055
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Table A6. Cont.

Alignments per Member

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.000 0.004 1 198 0.952 734.974 0.062
Logarithmic 0.006 1.174 1 198 0.280 912.056 −45.548
Inverse 0.019 3.784 1 198 0.053 675.481 2147.55
Quadratic 0.084 9.036 2 197 <0.001 1096.958 −18.037 0.165
Cubic 0.085 6.031 3 196 <0.001 1052.835 −14.124 0.080 0.001
Exponential 0.004 0.772 1 198 0.381 627.165 0.001

Cohesions per Member

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.478 181.215 1 198 <0.001 0.872 1.242
Logarithmic 0.351 107.215 1 198 <0.001 −98.547 43.993
Inverse 0.208 52.058 1 198 <0.001 95.423 −895.367
Quadratic 0.556 123.582 2 197 <0.001 44.686 −0.948 0.020
Cubic 0.581 90.509 3 196 <0.001 5.402 2.536 −0.056 0.000
Exponential 0.706 474.853 1 198 <0.001 21.105 0.018

Task Completion Time

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.559 250.817 1 198 <0.001 −1.099 0.066
Logarithmic 0.403 133.767 1 198 <0.001 −6.319 2.325
Inverse 0.234 60.336 1 198 <0.001 3.916 −46.781
Quadratic 0.662 192.746 2 197 <0.001 1.375 −0.057 0.001
Cubic 0.684 141.351 3 196 <0.001 −0.473 0.106 −0.002 2.15 × 105

Exponential 0.787 730.194 1 198 <0.001 0.333 0.029
Speed Matching Time

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.057 12.077 1 198 <0.001 65.663 −0.349
Logarithmic 0.055 11.597 1 198 <0.001 100.397 −14.144
Inverse 0.031 6.309 1 198 0.013 38.283 279.349
Quadratic 0.068 7.131 2 197 0.001 78.338 −0.983 0.006
Cubic 0.076 5.346 3 196 0.001 59.940 0.649 −0.030 0.000
Exponential 0.065 13.792 1 198 <0.001 49.904 −0.004

Localization Window

Equation R2 Model Summary Parameter Estimates

F d f1 d f2 Sig Constant b1 b2 b3

Linear 0.538 230.721 1 198 <0.001 43.173 0.730
Logarithmic 0.329 96.863 1 198 <0.001 −6.528 23.570
Inverse 0.138 31.807 1 198 <0.001 95.192 −404.476
Quadratic 0.728 263.916 2 197 <0.001 80.919 −1.157 0.017
Cubic 0.728 175.165 3 196 <0.001 79.337 −1.017 0.014 1.84 × 105

Exponential 0.570 262.120 1 198 <0.001 50.049 0.008

Appendix C

The simulation outputs of two randomly selected experiments with flock sizes of 30
and 100 are shown in Figure A1a and Figure A1b, respectively. In the upper right corner in
these figures, we represent the different flock behaviors: blue curve for number of applied
alignment rules, black curve for the number of applied separation rules, and red curve for
the number of applied attraction rules. Increases in the flock size caused unstable flocking
behavior, as the application of the flocking rules shows, where the blue line looks smooth in
Figure A1a. There was also a noticeable increase with the application of the separation and
attraction rules (black and red lines, respectively) when the flock size was 100, as shown in
Figure A1b.
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(a) Experiment with 30 agents. (b) Experiment with 100 agents.

Figure A1. Snapshots of simulation experiments with flock sizes of 30 and 100, in an environment
without obstacles.
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