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Abstract: Aerial object detection acts a pivotal role in searching and tracking applications. However,
the large model, limited memory, and computing power of embedded devices restrict aerial pedestrian
detection algorithms’ deployment on the UAV (unmanned aerial vehicle) platform. In this paper, an
innovative method of aerial infrared YOLO (AIR-YOLOv3) is proposed, which combines network
pruning and the YOLOv3 method. Firstly, to achieve a more appropriate number and size of the
prior boxes, the prior boxes are reclustered. Then, to accelerate the inference speed on the premise of
ensuring the detection accuracy, we introduced Smooth-L1 regularization on channel scale factors, and
we pruned the channels and layers with less feature information to obtain a pruned YOLOv3 model.
Meanwhile, we proposed the self-built aerial infrared dataset and designed ablation experiments
to perform model evaluation well. Experimental results show that the AP (average precision) of
AIR-YOLOv3 is 91.5% and the model size is 10.7 MB (megabyte). Compared to the original YOLOv3,
its model volume compressed by 228.7 MB, nearly 95.5 %, while the model AP decreased by only
1.7%. The calculation amount is reduced by about 2/3, and the inference speed on the airborne TX2
has been increased from 3.7 FPS (frames per second) to 8 FPS.

Keywords: infrared imaging; aerial object detection; human detection; prune; YOLO

1. Introduction

Pedestrian detection in infrared (IR) aerial night vision has gradually become an
important research direction in recent years, and is critically applied in the fields of object
search, person re-identification [1], marine trash detection [2], intelligent driving [3], and
so on [4].

In recent years, the rapid development of deep learning (DL) [5] has injected new
blood into object detection. Thus, the deep-learning-based object detection method has
become the mainstream [6]. Although various detection algorithms have been proposed
successively, the unstructured scenarios are still the main challenge to these detection
algorithms, such as rigid target deformation, rapid target movement, obstacle occlusion,
and drastic light changes in real applications [7].

Specifically, for infrared aerial photography scenarios [8], due to the long detection
distance for the ground and the uncertainty of imaging perspective, the target is severely
deformed. Moreover, the size of the imageable area for a person is small in the aerial image.
Thirdly, compared with visible light images, the object lacks rich structural and texture
features, and the target scale is uncertain. The environment, such as buildings, trees, and
other obstacles, can submerge the target in the background. It causes a severe reduction
in the object’s signal-to-noise ratio, and increases the difficulty of separating foreground
and background. Finally, real-time performance is one of the primary considerations in the
reality application, and it requires the designed algorithm to run in real time on a mobile
platform with small volume, low power consumption, and limited computing resources.

Appl. Sci. 2022, 12, 3627. https://doi.org/10.3390/app12073627 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073627
https://doi.org/10.3390/app12073627
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9454-7442
https://doi.org/10.3390/app12073627
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073627?type=check_update&version=1


Appl. Sci. 2022, 12, 3627 2 of 17

In this paper, an improved aerial infrared aerial YOLOv3 (AIR-YOLOv3) is proposed
based on model pruning. The overall block diagram of the system is shown in Figure 1.
Aerial infrared pedestrian data were collected through self-built tracking drones and were
manually cleaned and marked. According to aerial data characteristics, the prior boxes of
object are reclustered, and a more appropriate number and size of prior boxes are reselected.
Based on the YOLOv3 model [9], we introduced the Smooth-L1 regularization on scale
factor γ to sparse the model, and pruned channels and layers with small scale factor γ. The
model is deployed on the airborne NVIDIA Jetson TX2.
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Figure 1. Overview of AIR-YOLOv3: (a) UAV system; (b) dataset construction; (c) fine-tuned YOLOv3
for aerial infrared pedestrian detection; (d) channel pruning; (e) layer pruning; and (f) test results.

Contributions and innovations of this paper are summarized as follows:

• An improved YOLOv3, AIR-YOLOv3, is proposed, which learns a more compact
network structure by pruning [7], and it achieves a good trade-off between detection
accuracy and inference speed.

• Since few published infrared-based aerial pedestrian datasets could be accessed, we
constructed a new infrared aerial dataset, named the AIR-pedestrian dataset, that
includes sample images in different scenarios.

• A UAV system was designed, and all the algorithms were implemented on the onboard
Jetson TX2. The experimental results show that our proposed method can detect
infrared pedestrians in public areas effectively.

The rest of this paper is organized as follows. This paper discusses related work in
Section 2 below. Our proposed AIR-YOLOv3 method will be fully introduced in Section 3.
Section 4 describes the experimental details. Finally, a short conclusion and discussion of
this work are summarized in Section 5.

2. Related Work

In this section, we briefly survey relevant works, including common object detection,
YOLO object detection methods, infrared and aerial object detection, and pruning.

2.1. Common Object Detection

Object detection is a long-standing, primary, and challenging problem in computer
vision [10]. The goal of object detection is to determine in the image whether there are any
object instances of given classes (such as humans, cars, dogs, or bottles), and if so, to return
the spatial position and range of each object instance through a bounding box [11,12].
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Since deep learning entered the field, there have appeared some milestone approaches,
which are divided into two main categories: two-stage and one-stage [13]. Two-stage
detectors usually have high localization and object recognition accuracy, while the one-
stage detectors can achieve high inference speed [6]. For example, for the same graphics
card, the FPS of YOLOv3 is generally four times that of faster R-CNN [14,15].

Two-stage detectors split the detection task into two stages, proposal generation and
making predictions for these proposals. R-CNN series [16] are the landmark works of
the two-stage method. They proposed RPN (region proposal network) to complete the
detection task by an end-to-end neural network. A typical algorithm is mask R-CNN [16],
which is an extended version of faster R-CNN and is an approach for object detection as
well for instance segmentation.

One-stage detection algorithms can directly generate the class probability and the
location of the object through one overall stage [13]. Typical algorithms are YOLO [17],
SSD [18], and RetinaNet [19].

2.2. YOLO

YOLOv1 [17] uses one CNN (convolutional neural network) model to achieve end-to-
end object detection.

The most important improvement of YOLOv2 [20] is that the anchor mechanism is
introduced to make object locating more precise and using a new backbone: darknet19. In
darknet19, BN [21] (batch normalization) layers are added after convolution layers.

YOLOv3 [9] makes the network structure deeper by using the residual structure of
ResNet [22]. In YOLOv3, there are three anchor boxes for each detect head. Moreover,
there do not exist pooling layers and fully connected layers. YOLOv3 adopts FPN (feature
pyramid networks) to achieve multi-scale detection, and it has three scale outputs, which
are 52× 52, 26× 26, and 13× 13, respectively.

With the aid of CSPDarknet53 [23], YOLOV4 achieves a significant improvement
of YOLOV3 [9], and it has state-of-the-art accuracy while maintaining a high processing
speed [14]. More importantly, it has also been improved to make the detector more suitable
for training on a single GPU.

YOLOv5 [24] is a newly improved implementation of YOLO. However, many of its
functions are still in the experimental stage and are in rapid iteration, and there are few
academic reports based on YOLOV5. Therefore, YOLOv3 still is the mainstream version of
the current practical application [6].

2.3. Infrared Pedestrian Detection

With the development of deep learning, deep learning-based methods currently oc-
cupy the mainstream for infrared pedestrian detection [25].

In [25], the SSD algorithm was used for detecting pedestrians in infrared images, and
embedded the SENet attention module into the network to reassign the weight of each
feature channel to improve the network’s detection performance. Ref. [26] proposed a
multi-spectral pedestrian detector to study the better fusion stages of the two-branch CNN,
which combines visual–optical (VIS) image with infrared (IR) image, and makes it more
adaptable to around-the-clock applications.

Dai et al. [27] firstly used a self-learning softmax with a nine-layer CNN model to
identify near-infrared nighttime pedestrians. Testing results indicated that the optimized
CNN model using self-learning softmax had a competitive accuracy and potential in
real-time pedestrian recognition.

In [28], YOLO was used for person detection in thermal videos, and the performance
of the standard YOLOv3 model is compared with a custom-trained model on a dataset of
thermal images, which are extracted from videos recorded at night in clear weather, rain,
and fog, and at different ranges with different types of movement: running, walking, and
sneaking. Experimental results show that in all test scenarios, the average precision (AP)
has excellent performance, and in thermal imaging with a modest training set, there is a
significant improvement in person detection performance.
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2.4. Network Pruning

Network pruning is widely used for reducing the heavy inference cost of deep models
in low-resource settings, such as UAVs and other edge computing equipment [29]. A
typical pruning process is a three-stage pipeline, i.e., training (a large model), pruning, and
fine-tuning [30,31].

In early research, Gong et al. [32] showed that network pruning and quantization
could effectively reduce network complexity. In [33], a simple magnitude-based three-step
method was presented, including pruning, quantization, and Huffman coding, to remove
the unimportant connections. Guo et al. [34] introduced dynamic network surgery to
iteratively reduce the network’s complexity by pruning and splicing. In structured pruning,
it prunes a complete structure, such as channels, filters, and layers. Li et al. [35] proposed
the pruning of convolutional layer filters, which rank the filters according to their L1-norm
and prune the low-ranking filters from each layer. Liu et al. [30] proposed a simple and
effective method to prune channels, called network slimming. It directly adopted the
BN layer scale factor as a pruning indicator and introduced L1 regularization to obtain a
channel-wise sparsity model.

The network pruning is different from the compact network design and scale network
in reducing the model. Compact network design is a method of choosing a small and
compact network at the initial stage of model construction [30]. The most representative
method is the MobileNet series [36]. Tiny-YOLOv3 is a designed compact network version
of the original YOLOv3. Compared with other networks, these networks are smaller,
faster, and less computational. However, considering the characteristics of infrared aerial
photography data and the deployment of algorithms on mobile platforms, the algorithm’s
robustness and its effective applications need further research. [29] implies that the pruned
architecture itself, rather than a set of inherited ”important” weights, is more crucial to
the efficiency of the final model. ”Lottery ticket hypothesis” [37,38] shows that finding
effective subnetworks is significant for model compression. Facing a specific scene with
limited data, it is quite difficult to design an effective network directly.

In scale networks [22,39–41], the higher accuracy is obtained by repeating feature
networks [41]. When reducing these networks, this usually will reduce the effectiveness of
the model. The pruned network after fine-tuning does not greatly reduce the accuracy and
usually can achieve comparable detection accuracy to the original model.

In this paper, inspired by network slimming [30], which is proven to be an effective
method to channel-wise prune [7,42], we use Smooth-L1 instead of L1 regularization to
avoid using sub-gradient [30] and adopt the scale factor to evaluate the convolutional
channels to prune.

3. AIR-YOLOv3

In terms of the limited computing capacity of the UAV, it is vital to balance model
performance and high computation overhead.

We propose an improved YOLOv3, AIR-YOLOv3, which learns a more compact
network structure by pruning to detect pedestrians in infrared images, as shown in Figure 1.
Firstly, aerial infrared pedestrian data was captured through the self-built UAV, and it
was manually cleaned and marked, as shown in Figure 1a,b. Secondly, according to aerial
data characteristics, the object’s anchor boxes are reclustered, and a more appropriate
number and size of anchor boxes are reselected. Third, we fine-tuned YOLOv3 on the
self-build dataset, as shown in Figure 1c. Fourth, we imposed channel-wise sparsity by
introducing Smooth-L1 regularization on scale factors and pruning the channels with less
feature information, as shown in Figure 1d. After channel pruning, the layer pruning, as
shown in Figure 1e, was carried out to further compress the model. Figure 1d,e show the
processes of pruning optimization. Finally, the model is deployed on the airborne NVIDIA
Jetson TX2.

The main optimization process of AIR-YOLOv3 is shown in Algorithm 1. The whole
process is divided into three modules: (a) routine training, corresponding to steps 1 to 4;
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(b) sparse training, corresponding to steps 5 to 8; (c) channel pruning and layer pruning,
corresponding to steps 9 to 13.

Algorithm 1 Procedure of AIR-YOLOv3.
Input: the training set Dtrain and the validation set Dval

Output: the pruned model

1: Initialization by loading the pre-trained model

2: while not converge do

3: Sample data from Dtrain and optimize the weights to minimize the Lossyolov3.

4: end while

5: while not converge do

6: Add Smooth-L1 regularization on scale factors γ for channel-wise sparsity

7: sample data from Dtrain and optimize the weights to minimize the Losstotal .

8: end while

9: calculate π: the minimum value within the maximum γ of every BN layer

10: Use the local threshold π and pruning ratio η to determine the channels that need to be

pruned.

11: Prune the channels of the corresponding convolutional layer.

12: calculate γ̄i of the BN layer before the 23 Res-units of the pruned channel model,

Sort{γ̄1, γ̄2, . . . , γ̄22, γ̄23}
13: Remove the connection of res-units with small γ̄ according to the given pruned layers

number.

14: Fine-tune model

3.1. YOLOv3
3.1.1. Backbone

YOLOv3 utilizes a deeper network, DarkNet53, as the backbone to extract features,
as shown in Figure 1c. DarkNet53 makes an incremental improvement to the previous
backbone. It adds a BN layer behind each convolutional layer and upgrades the pooling
layer. The residual structure is introduced to solve the problems, i.e., the deepened network
is challenging to train, the network is difficult to converge, and the gradient explosion is to
be prevented [22].

3.1.2. Logistic Classifier

Using the logistic classifier instead of the softmax loss function in YOLOv3 improves
the single-label classification to multi-label classification. At the same time, the binary
cross-entropy is used as the object confidence and class loss function, which can handle the
multi-label classification well.

3.1.3. Multi-Scale Detection

The anchor boxes design still adopts the clustering algorithm, which is divided into
three scales according to the labeled ground truth boxes. YOLOv3 utilizes the upsample
and concat to achieve multi-scale feature fusion, and takes the three scales of feature map,
which are 13× 13, 26× 26, and 52× 52, respectively, to predict different scale objects.

The network structure of YOLOv3 is shown in Figure 1c. It contains the backbone
network DarkNet53 and three detection headers. Furthermore, the composition and
functions of the main modules are as follows:

• DBL (Darknetconv2D-BN-Leaky) modules are the main components of the network.
They contain a convolutional layer, a batch normalization layer, and an activating
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layer. The convolutional layer and activating layer are connected by the BN layer in
the whole network except the last convolutional layer in front of the detection header.

• Res-unit module is composed of two DBL modules and a residuals structure, which
can effectively increase the network depth.

• ResN module is made up of N Res-units and a DBL module.
• Concat is tensor splicing. Unlike adding residual, it links the middle layer of darknet

and the later upsample layer, which will change the output feature map’s dimension.

3.2. Bounding Box Clustering

YOLOv3 is the quintessence of the YOLO series. The input image is divided into
many grids, and every grid corresponds to predict three boxes. The prediction box of each
object is deformed from the anchor box, which is clustered from the ground truth box of the
Dtrain. Specifically, during the model training, if the center of the prediction box is located
in one grid cell, that grid cell is responsible for predicting. The box with the largest IOU
(intersection over union) in the proposal boxes is used for predicting it. Furthermore, the
final object bounding boxes are obtained by NMS (non-maximum suppression).

The prediction box is shown in Figure 2. tx, ty are the predicted offsets. tw, th are the
predicted scale parameters. The width and height of the bounding box prior are pw, ph,
and the coordinates of the upper left corner of the grid cell are cx, cy.

σ(tx)

σ(ty)

pw

ph bh

bw

bw=pwe
bh=phe

cx

cy

bx=σ(tx)+cx
by=σ(ty)+cy

tw

th

Figure 2. Bounding boxes with dimension priors and location prediction.

This anchor-based method can effectively constrain the prediction box’s spatial scope,
and add the prior knowledge to predict the box, which is conducive to converging the
model. In origin YOLOv3, the K-means algorithm clusters nine anchor boxes through VOC
and COCO image samples. These image samples contain multi-scale objects, which are
not suitable for infrared aerial pedestrian data. Therefore, we clustered anchor boxes again
according to the self-built aerial dataset to improve the matching degree between the prior
boxes and pedestrian objects.

3.3. Network Pruning

The computing platform of UAVs always limits the performance of CNN-based object
detection algorithms. In order to accelerate the inference on the premise of ensuring the
model accuracy, we optimize the model by pruning channels and layers.

3.3.1. The Principle of Pruning

In darknet53, except for the three convolutions subsequently link to the YOLO de-
tection header, each convolutional layer is followed by a BN layer to enable the model to
converge quickly and prevent gradient explosion disappearance. The BN layer introduces
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a pair of parameters, γ and β, which scale and shift the normalized input of the BN layer.
Furthermore, the BN transformation is defined as

yi = γx̂i + β = BNγ,β(xi), x̂i =
xi − µB√

σ2
B + ε

(1)

where yi is the BN layer output and γ and β are scale factor and shift factor, respectively.
BNγ,β(xi) means that when inputting mini-batch xi, we can obtain the result of the BN
transform [21], which has two parameters γ and β. x̂i is the result of the normalization of a
mini-batch. xi is the current mini-batch input. µB and δ2

B represent the mean and variance
of the current mini-batch, respectively. ε is a constant added to variance for enhancing
numerical stability.

It can be seen that the output of the BN layer is related to γ and β, which are learned
along with the original model parameters. γ provides a measurement for CNN channels
from Equation (1). Therefore, we can directly utilize the γ in BN layers as the scale factors
to prune channels. We prune the CNN channels with the scale factor γ of the previous BN
layer closer to zero. Moreover, we prune the layers based on the pruning channel to further
obtain a smaller model. Specifically, we use the mean value of γ of the previous BN layer
to measure the importance of the Res-unit and prune the Res-units.

3.3.2. γ Regularization and Sparse Training

In routine training, the values of γ close to zero occupy a minority ratio in the whole
model, so it cannot obtain the high model compressing rate by pruning. Therefore, we
introduce the regularization term to the original loss function to make some restrictions on
the parameters with high complexity. This regularization term is introduced as the penalty
of the γ, which pushes the γ of the unimportant channels toward zero.

Common regularization functions include L1 regularization function, known as the
lasso regression: L1 = |x|. L2 regularization function, known as the ridge regression, is
L2 = x2, and Smooth-L1 regularization function is:

SmoothL1(x)=
{

0.5x2 |x| < 1
|x| − 0.5 |x| ≥ 1

(2)

The derivative of L1 regularization function is a constant in the later period of training,
leading to the training loss fluctuating around a stable value and difficulty to achieve higher
accuracy. The derivative of L2 regularization function increases with x, resulting in the
loss in the early period of training having a big gradient. The Smooth-L1 function has a
smaller gradient when x is small. The upper gradient limit of Smooth-L1 is 1, making the
training process more stable. Smooth-L1 regularization function is smooth at point zero. It
can avoid the use of sub-gradient to solve extreme values at the non-smooth points and
reduce the complexity of the model.

Regularization of the γ parameter by introducing the Smooth-L1 function can reduce
the complexity of γ. Meanwhile, it pushes the γ factor value with less feature information
toward zero. After introducing the Smooth-L1 regularization on γ, the network loss
function during sparse training can be designed as follows:

Losstotal = LossYOLOv3 + λ ∑
γ∈Γ

SmoothL1(γ) (3)

where Lossyolov3 is the loss function of the original YOLOv3 [9]. λ ∑
γ∈Γ

SmoothL1(γ) is the

regularization term on γ, where λ is a constant. It is the penalty of Smooth-L1 and a balance
parameter between the original loss function and the introduced regularization term.

After sparse training, it can obtain the model with more scale factors γ closer to zero.
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3.3.3. Channel Pruning and Layer Pruning

In the YOLOv3 network, there exist a total of 75 convolution layers. Except for the
three convolutional layers in the front of the detection head and the two convolutional
layers directly connected to the upsample layer, all the convolutional layers connect with
the BN layer. Therefore, there exist 70 convolutional layers that can be pruned.

We arrange the γ of all the BN layers in order as γ1, γ2, . . . , γn. γ̂ is a global threshold,
which is obtained through the pruning ratio multiplied by the sorting result. At the same
time, we give a local threshold π in every convolution layer to prevent overpruning, and
the π is the minimum value within the maximum γ of every BN layer. The channels with
scale factors smaller than π and γ̂ will be pruned.

There are five residual modules in YOLOv3, including 1, 2, 8, 8, 4 residual structures,
respectively, and 23 residual structures in total. There exists a BN layer before every Res-
unit. The average value of γ factor in this BN layer, γ̄, is used for evaluating the importance
of the following residual network. As shown in Figure 3, we calculate γ̄1, γ̄2, . . . , γ̄22, γ̄23
and rank them. The residual structures with smaller γ̄ will be pruned.

Figure 3. Schematic diagram of channel pruning.

By pruning, we can obtain a more compact model with fewer parameters and less
memory for running and inferencing. In the process of pruning channels, the pruning
threshold will affect the compression ratio and generalization accuracy of the network
model. Therefore, it is necessary to search for the most appropriate pruning threshold
parameters through experiments. The high pruning ratio will decrease the detection
accuracy of the compressed network, so we must fine-tune the compression model. Given
the high similarity in the structure between the original model and the pruned model, we
decided to use the transfer learning method to fine-tune the pruned model.

In real applications, the steps of the sparse train, prune, and fine-tune would be repeated
until a prune model with suitable accuracy and desired compression ratio is obtained.

4. Experiment
4.1. Infrared Aerial Dataset

At present, most public datasets, such as ImageNet [12], VOC, and COCO, are not
suitable for the application scene requirements of infrared aerial pedestrian detection.
Therefore, we built an infrared aerial dataset, named the AIR-pedestrian. The class of the
target is person.

An infrared camera is mounted on the four-rotor drone to capture pedestrian images
in different scenes. The acquisition device is FLIR’s Vue Pro 336, which takes pictures of
pedestrians at 5, 6, and 7 m at different flight altitudes to obtain infrared thermal images of
different scales of pedestrians. The frame rate of captured video is 25 FPS, saved in AVI
format. The resolution of a single frame is 336× 256. Due to the high frame rate, images
are obtained every five frames to contribute to the dataset.

Furthermore, in order to expand data and increase the diversity of data samples, some
samples were introduced from the famous OTCBVS Benchmark Dataset via http://vcipl-
okstate.org/pbvs/bench/ (accessed: 24 July 2021), without any other data augmentation. In
addition to directly augmenting the dataset, transfer learning and pretraining weights can
also be used, which can be understood as a form of indirectly augmenting the data [5,43].

http://vcipl-okstate.org/pbvs/bench/
http://vcipl-okstate.org/pbvs/bench/
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The AIR-pedestrian dataset includes different ages and gender of pedestrians, different
numbers of pedestrians, and different occlusion degrees of pedestrians in different scenes,
as shown in Figure 4.

Figure 4. The instance pictures of the AIR-pedestrian dataset. Each row from top to bottom represents
the scene of daytime, woods, buildings, gardens, and roads, respectively.

The infrared dataset contains 2500 infrared aerial images and is divided into the
training set Dtrain and validation set Dval . Dtrain is used for the training detection model,
Dval is used for evaluating the model during training, and they do not intersect with each
other. In the AIR-pedestrian dataset, 2000 images are used as Dtrain, and 500 images are
used as Dval . Table 1 shows the scene distribution of the infrared aerial dataset.

Table 1. The distribution of Dtrain scene.

Scene Dtrain Dval

Daytime 180 50
Woods 300 80

Buildings 550 150
Garden 300 70
Road 670 150

4.2. Implementation Details

In our implementation, the penalty term λ is set to 0.001. The initial learning rate is
set to 0.001. In the model training stage, we only used the data enhancement technology
in literature [9]. The experimental hardware platform includes PC and Jetson TX2. The
CPU of the PC is Intel i7-9750h, GPU is 6GB GTX1660Ti, and uses PyTorch 1.2.0, OpenCV
3.4.3, and CUDA 10.0 without tensorRT. The Jetson TX2 uses Ubuntu 18.04, equipped with
PyTorch 1.2.0 without tensorRT.
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4.3. Sparse Training

As shown in Figure 5, the vertical axis represents the total number of iterations of the
samples, the horizontal axis is the value of the γ factor, and the graph height indicates the
number of γ distribution in the corresponding value. In Figure 5a, γ is mostly distributed
around 1 after routine training. The pruning cannot be carried out directly, so we introduce
the regularization term.
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Figure 5. Distribution of γ factor in the BN layer: (a) routine training and (b) sparse training.

Compared with [7] and [30], we introduce Smooth-L1 regularization instead of L1
because it can avoid using sub-gradient at non-smooth points. The experimental results
show that Smooth-L1 regularization makes the scale factors γ decay more dramatically
with the same training parameters. It may be possible to reduce the time consumption in
a sparse training phase. In sparse training, the weight obtained from routine training is
used as the pretraining model. After sparse training, the γ factor in the BN layer is pushed
toward zero, and the distribution of the γ is shown in Figure 5.

4.4. Ablation Experiment
4.4.1. Anchor Boxes Reclustering

In order to determine the optimal number of anchor box K for infrared aerial data,
we evaluate the optimal K according to the accuracy obtained by the K-means algorithm.
The accuracy is the IOU between the candidate anchor boxes and the ground truth boxes.
By setting different K, we compared the accuracy to determine the best number and the
optimal size of anchor boxes.
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As shown in Table 2, when K is set to 9, the IOU is 81.31%. This K is consistent with
the anchor box of the original YOLOv3 algorithm, and the values are more suitable for
infrared aerial pedestrian detection, which gives the model strong robustness.

Table 2. The accuracy analysis with different K values.

k Accuracy (%) Anchors

6 78.27 (13,21), (21,49), (30,68),
(44,101), (9,20), (16,34)

7 79.47 (25,66), (16,34), (11,22)
(20,48), (53,113), (32,57), (36,83)

8 79.86 (44,101), (21,51), (19,20), (11,24)
(9,19), (30,68), (17,36), (14,30)

9 81.31 (16,35), (54,114), (38,86), (31,65)
(20,46), (13,28), (19,20), (10,21), (23,59)

4.4.2. Channel Pruning

After the sparse training, the value of the γ is pushed toward zero. The pruning ratio
determines the number of pruned channels. η is the channel pruning ratio and is defined as

η = TP/TC× 100% (4)

where TP represents the number of pruned channels, and TC is the number of sparse model
channels.

In order to find the optimal pruning ratio, we set different pruning ratios in the
experiments. The trend of the model’s AP, inference time, model volume, and the number
of remaining channels are shown in Figure 6.

Figure 6. Influence of channel prune ratio: (a) AP curve, (b) inference time, (c) model size and (d) the
number of channels.

In the experiment, we set the η to 0%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,
90%, 97%, 98%, and 99% to compare the model’s AP, inference time, model volume,
and the number of pruned channels, respectively. Figure 6a shows that the model’s AP
declined with the channel pruning ratio. Before the pruning ratio is set to 90%, the AP
decreases slowly, basically remaining above 92%. When the pruning ratio exceeds 93%,
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the AP decreases rapidly. Figure 6b shows that the inference time fluctuates around 27 ms,
regardless of the channel pruning ratio. Relatively speaking, the depth of the model has a
greater effect on inference time [30].

From Figure 6c, it is obvious that with the channel pruning ratio increased, model size
basically linearly declines.

Figure 6d is a bar chart of the number of remaining channels with different channel
pruning ratios. Before the pruning ratio is set as 90%, the remaining channel is basically
equal to the total number of channels (25,920) multiplied by the pruning ratio. After that,
the channel number had little change due to the limitation of the local threshold π, which is
the minimum value within the maximum γ of every BN layer.

Through the above experiments, it can be determined that when the channel pruning
ratio is about 90%, we can obtain a large compression rate with a small decrease in accuracy.
Specifically, the compressed model size is 27.1 MB, and the size of the original model is
238.9. The model size decreased by 88.6%, while the accuracy is just reduced by 0.9%.

4.4.3. Layer Pruning

After channel pruning, the model size has been greatly compressed. However, the
inference time of the model did not change significantly. After determining the optimal
channel pruning ratio, we devote ourselves to finding the most suitable residual structure
reduction quantity based on the optimal channel pruning ratio. We set five different
numbers of pruned layers, which are 4, 8, 12, 16, and 20, respectively, to test the impact of
different numbers of residual structures on AP and inference time.

Figure 7a is a line chart of the AP after pruning the residual structure. The horizontal
axis represents the number of pruned residual structures and the vertical axis represents
the AP of the model. With the increase in the number of pruned residual structures, the AP
curve decreases smoothly. After the pruned number of residual structures exceeds 16, the
AP curve decreases dramatically. In detail, when the quantity of pruned residual structures
is 12, the detection accuracy decreases by 0.6%, and the inference time decreases by 8.6 ms.
When the pruned residual quantity is 16, the AP decreases by 3.6%, and the inference time
decreases by 11.1 ms. According to the application requirements, 12 is the best pruning
residual structure number. Figure 7b is the curve of inference time. It can be seen that the
model’s inference speed increases gradually with the increase of pruning layers. Through
the above experiments, it can be found that layer pruning has a great influence on the
model inference time, and the optimal number of pruning residual structures is 12.

Figure 7. Influence of the number of the pruned residual structure: (a) AP curve and (b) inference
time.

Figure 8 compares the effect of setting different channel pruning ratios when there is
layer pruning and when there is no layer pruning. As shown in Figure 8a, the AP curve
with layer pruning is consistent with the curve of only channel pruning. The channel
pruning ratio of 90% is the inflection point of two curves, so the optimal pruning ratio is
still 90%. Figure 8b is a change of inference time. After the channel pruning ratio exceeds
90%, the compression effect of the two models is similar, because the high pruning ratio
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means that the channels of convolution layers in the residual structure almost all become
pruned, which is almost consistent with the layer pruning. The experimental results further
indicate that the chosen parameters are optimal.

Figure 8. Influence of layer pruning and channel pruning: (a) AP curve, (b) inference time and (c)
model size.

4.5. Model Test on PC and TX2

Experimental results show that the channel pruning ratio affects the compression rate
significantly and the number of the pruned residual structures affects the inference time
significantly. When the channel pruning ratio is 90% and the number of residual structures
pruning is 12, we obtain the optimal model.

The quantitative comparison of mask R-CNN, YOLOv3, AIR-YOLOv3, and Tiny-
YOLOv3 is shown in Table 3. The detection models were transplanted to the Jetson TX2,
which is the most widely used embedded platform on UAVs because of its portability and
low power consumption [44].
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Table 3. Comparison of the AIR-YOLOv3 model on PC and TX2.

Model AP (%) Inference Time (FPS) Model Size
PC(GTX1660Ti) TX2 (MB)

Mask R-CNN [16] 95.5 7.9 0.7 351.0
YOLOv3 [9] 93.2 35.6 3.7 238.9

Tiny-YOLOv3 [9] 73.4 136.9 28.8 28.1
AIR-YOLOv3 91.5 51.5 8 10.7

As shown in Table 3, the input size of the model is set to 416 × 416, which achieves the
balance of detection speed and accuracy [9]. On the airborne TX2 compared with original
YOLOv3 [9], the inference speed has been increased by nearly two times from 3.7 FPS to
8 FPS, and the model size is compressed by 228.2 MB, while the AP of the AIR-YOLOv3 is
just 1.7% lower.

Compared with the well-known two-stage detection algorithm mask R-CNN [16],
the inference speed on the airborne TX2 has been increased by nearly 11.4 times from
0.7 FPS to 8 FPS, while the AP of the AIR-YOLOv3 is just 4.0% lower. Compared with
the Tiny-YOLOv3, which is the mobile version of YOLOv3, the AIR-YOLOv3 offers 18.1%
higher AP, and 17.4 MB smaller model size.

The AIR-YOLOv3 model runs on the Jetson TX2 to detect infrared pedestrian objects,
and it can accurately predict the location of the object in the image, as shown in Figure 9.

In a word, AIR-YOLOv3 makes a good compromise for the detection accuracy and
inference speed. At the same time, it has a smaller model size, which is conducive to the
deployment on the mobile airborne computing platform.

Figure 9. AIR-YOLOv3 test on TX2.The class of the target is person.

5. Conclusions

Large models, limited memory, and computing power of embedded devices restrict
the deployment of aerial pedestrian detection algorithms on the UAV platform. Therefore,
an improved infrared aerial YOLOv3 (AIR-YOLOv3) is proposed. Firstly, given the aerial
pedestrian dataset, the more suitable prior boxes are reclustered. Secondly, we impose the
channel-wise sparsity on trained YOLOv3 model by introducing Smooth-L1 regularization
on scale factors. Third, channel pruning was performed on the sparse model. Fourth,
based on the channel pruned model, pruning layers were implemented to further compress
the model. Finally, the compressed model was deployed on the airborne platform with
NVIDIA Jetson TX2. Experiments have proved that the AIR-YOLOv3 achieves a great
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balance of system detection accuracy and speed, and the model is conducive to deployment
on airborne mobile computing platforms.

Network pruning is an effective technique to deploy the large model on mobile devices.
It is of great significance to the actual deployment of artificial intelligence algorithms.
Choosing a better basic algorithm or a better pruning technique is an important research
direction in the future. In addition, future work may be dedicated to pruning the network
in a simpler and more flexible way and further exploring the CNN model acceleration
technology on specific processor platforms.
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