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Abstract: Microbubbles have been widely used in many research fields due to their outstanding
physicochemical properties and unique structural characteristics, especially as ultrasonic contrast
agents and drug delivery carriers. However, the stability of conventional microbubbles is generally
poor, which limits the development of their applications. Loading nanoparticle to microbubbles has
great potential in enhancing the stability of microbubbles. This paper reports for the first time the fea-
sibility of one-step preparation of nanoparticle-loaded microbubbles by coaxial electrohydrodynamic
atomization. Bovine serum albumin (BSA) was used as the model material of the bubble shell layer
to study the effect of the loading of nanoparticles on the stability of microbubbles. The results show
that the concentration of nanoparticles has a significant impact on the stability of microbubbles, and
loading an appropriate amount of nanoparticles is helpful in improving the stability of microbubbles.
The results also show that nanoparticle-loaded microbubbles with a size distribution in the range of
120–200 µm can be prepared under optimal conditions.

Keywords: microbubbles; electrohydrodynamic; coaxial spraying; nanoparticle loading; stability

1. Introduction

Micron-sized bubbles, also known as microbubbles, are widely used in micro reactor
engineering [1], sewage treatment [2], food processing [3] and many other fields due to their
superior ultrasonic response performance and efficient gas-liquid interface mass transfer.
Since the discovery of microbubbles with good acoustic properties and encapsulation
ability, microbubbles have shown ideal application prospects in the research fields of
ultrasound contrast agents, drugs and gene delivery carriers [4–10]. Microbubbles are
further developed towards the integration of diagnosis and treatment from drug loading to
drug delivery system with targeted functions [7,11–13]. Due to the excellent performance
of nanoparticles in the biomedical field [14–16], microbubbles loaded with nanoparticles
have become the focus of attention in the microbubble research field [17–21].

Conventional preparation methods of microbubbles include mechanical vibration/stirring,
ultrasonication, a freeze-drying method, and an adsorption method, among others [22]. How-
ever, the defects of these methods in precise control of the bubble size and the complexity
of the operating procedure limit their applications and further development [23]. In recent
years, newly developed technologies for the preparation of microbubble, such as a microfluidic
method [21,24–26] and an electrohydrodynamic atomization method [27], have attracted in-
creasing attention. The microfluidic method has great potentials in precise control of bubble
size, while the production rate and channel blockage issues still need to be addressed, espe-
cially for highly viscous fluids and solid particle contained flows. The electrohydrodynamic
atomization method as an extension of electrospraying [28] uses an electric field to intensify the
microbubble formation process. The microbubble size range can be controlled by adjusting the
applied voltage and flow rate. This can overcome the drawbacks of the microfluidic method,
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which usually adjusts the bubble size by changing the microchannel size, which is costly and
associated with the channel blockage issue when small microbubbles are desired and a complex
shell layer of the microbubble is required [29,30]. Farook et al. [27,31] first studied the prepara-
tion of microbubbles using electrohydrodynamic atomization technology. Parhizkar et al. [32]
took this as an example to prepare microbubbles with better monodispersity by varying coaxial
nozzle configurations. However, only conventional microbubbles, simply consisting of a shell
layer and a gas core, were produced. It is still unclear whether microbubbles with functional
substances can be formed by the electrohydrodynamic atomization method.

On the other hand, due to the poor mechanical properties of the shell layer and the
fast diffusion rate of the gas core of conventional microbubbles, microbubble stability
is usually low, which limits the practical applications of microbubbles [29,33,34]. It has
been reported that loading nanoparticles into the microbubbles will not only increase
the mechanical strength of the shell layer but also prevent gas diffusion from the core
region of microbubble [18,19]. Therefore, it is of great significance to produce nanoparticle-
loaded microbubbles. Unfortunately, no study on the preparation of nanoparticle-loaded
microbubble via electrohydrodynamic atomization method has been reported to date.

In this study, the electrohydrodynamic atomization technology was first used to pre-
pare nanoparticle-loaded microbubbles. Bovine serum albumin (BSA) and air was selected
as the template material for the shell layer and the gas core of the microbubbles. Silica
(SiO2) nanoparticles were used as the template nanoparticles. The effects of nanoparticle
loading on microbubble stability were studied in terms of bubble size and number variation.
Key parameters affecting the preparation of nanoparticle-loaded microbubbles such as
the concentration of nanoparticles, gas to liquid flow rate ratio and applied voltage were
also explored.

2. Materials and Methods
2.1. Materials

Glycerol (g116203, AR, 99%) and bovine serum albumin (BSA, na8692) were purchased
from Aladdin reagent (Shanghai, China) Co., Ltd. (No. 196, Xinjinqiao Road, Pudong,
Shanghai). Phosphate buffer granules (PBS, instant granules, pH7.4 ± 0.2) were purchased
from Sinopharm Chemical Reagent Co., Ltd. (No. 123, Fuzhou Road, Shanghai, China)
Silica nanoparticles (SiO2, 20 ± 5 nm) were purchased from Shanghai McLean Biochemical
Technology Co., Ltd. (5th Floor, Building 10, Peninsula Science and Technology Park, No.
88 Darwin Road, Shanghai, China).

2.2. Experimental Setup

A schematic diagram of the experimental setup for preparing nanoparticle-loaded
microbubbles is shown in Figure 1. The setup is mainly composed of five parts. Part 1 and
part 2 are syringe pumps, which are used to transport gas core and shell layer material
respectively. Part 3 is the key component of the whole device, namely, the coaxial needle.
This is composed of an inner needle and an outer needle. Detailed information for the
coaxial needle configuration can be seen in the enlarged schematic diagram on the left.
Generally, the bottom end of the outer needle is slightly longer, which is conducive to the
formation of a shell layer-wrapped gas core structure. Part 4 is the collection tray with
the corresponding collection medium. In this experiment, PBS solution was used as the
collection medium and a slide of aluminum foil paper was immersed in the collection
medium and connected to a ground electrode (as an unnecessary setting, it is indicated in
Figure 1). Part 5 is a high-voltage power generator, which was used to provide high-voltage
on the coaxial needle and to form a corresponding electric field between the coaxial needle
and the collection tray.
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Figure 1. Schematic diagram of the experimental setup.

2.3. Preparation of Shell Layer Solutions and Collecting Medium

Preparation of shell layer solution without nanoparticles. A volume of 10 mL glycerol
was mixed with distilled water in a 50 mL beaker and then transferred into a 100 mL to
form a 10% vol glycerol solution. Then, a 5 mg/mL BSA-glycerol solution was prepared by
adding 0.5 g BSA to 100 mL beaker and topping up to 100 mL with 10% vol glycerol solution.

Preparation of the shell layer solution with nanoparticles. A volume of 20 mL of BSA-
glycerol suspensions was add into each of three 50 mL beakers. SiO2 nanoparticles (0.01,
0.02 and 0.04 g) were weighed added, respectively. After magnetic stirring for 30 min and
ultrasonication for 5 min, the desired nanoparticle-BSA-glycerol suspension with different
nanoparticle concentrations was obtained.

Preparation of collecting medium. PBS solution with a volume fraction of 10% was
prepared for the collection of microbubbles. A quantity of 1 g of PBS particles was weighed
into a 50 mL beaker using an analytical balance. Distilled water was added and stirred
with a magnetic stirrer until the particles were completely dissolved.

2.4. Preparation of Microbubbles

As shown in Figure 1, the shell layer solution was introduced into the outer needle by
syringe pump 2 and the core gas was introduced into the inner needle by syringe pump 1.
The connection section was sealed with parafilm to avoid leakage of liquid or A volume of
1 mL of PBS solution was placed in the collection tray. Syringe pumps were activated and
high voltage generator adjusted to yield microbubbles.

2.5. Characterization

The morphology and size of microbubbles at different time points were observed by
optical microscopy using a real-time photography function. Various photos were taken with
the microscope, and Nano Measurer software was used to analyze the size of microbubbles
from the photos. Origin 9.0 software was used for data processing. The average size of
microbubbles in this paper was determined by:

X = (∑Xi)/n (1)
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where X is the average diameter of the microbubbles, xi is the diameter of a single bubble
and n is the bubble number.

3. Results and Discussion
3.1. Microbubbles with and without Nanoparticles Loaded

Figures 2 and 3 show the representative optical micrographs of the produced mi-
crobubbles with nanoparticles loaded and without nanoparticles loaded at different time
points. The operating conditions were as follows: flow rate of liquid (Ql) 10 mL/h, flow
rate of gas (Qg) 50 mL/h, and applied voltage 12 kV. As shown in Figures 2 and 3, both
microbubbles with and without nanoparticles loaded could be obtained successfully by
coaxial electrohydrodynamic atomization. However, less microbubbles were produced
under the same conditions when loading nanoparticles into microbubbles, indicating that
the optimal operating conditions for obtaining microbubbles with and without nanopar-
ticles were different. It can also be observed that smaller bubbles tended to disappear
more easily for both types of microbubbles. This may be caused by the Oswald ripening
effect [35,36], in which small-sized microbubbles dissolve into the surrounding larger sized
microbubbles. Figure 4 shows the dimensionless bubble number varying with time for
cases with nanoparticles loaded and without nanoparticles loaded. It is obvious that with
the loading of nanoparticles, the reduction trend of microbubble number becomes less,
suggesting that the microbubbles loaded with nanoparticles have better stability and longer
survival time.
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3.2. Effect of Nanoparticle Concentrations on the Microbubbles

To further evaluate the effect of nanoparticle loading on the microbubbles, stability
analysis of microbubbles loaded with different concentrations of silica nanoparticles were
carried out. Figure 5 shows representative optical micrographs of microbubbles loaded



Appl. Sci. 2022, 12, 3621 6 of 13

with various concentrations of nanoparticles. The operating conditions were as follows:
flow rate of liquid (Ql), 10 mL/h; flow rate of gas (Qg), 60 mL/h, and applied voltage 11 kV.
As shown in Figure 5, with the increasing nanoparticle concentration, the microbubbles
become more uniform. More microbubbles were produced when CNP = 2 mg/mL. However,
as shown in Figure 6, when the nanoparticle concentration increased from 0.5 mg/mL to
1 mg/mL, the reduction rate of bubble number tended to slow down. Further increasing
the nanoparticle concentration to 2 mg/mL resulted in an intensification of bubble number
reduction. This indicates that the concentration of nanoparticles has a significant impact
on the stability of microbubbles, and loading an appropriate amount of nanoparticles is
helpful in improving the stability of microbubbles.
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Figure 7 shows the effect of nanoparticle concentration on the average diameter of mi-
crobubbles. It can be clearly observed that when nanoparticles are loaded in the shell layer,
the average size of microbubbles decreases. When the concentration of silica nanoparticles
was 0.5 mg/mL, the average size of microbubbles was 100.32 ± 5.49 µm. With the increase
of silica concentration, the average size of microbubbles increased gradually. When the
concentration of silica nanoparticles was 1 mg/mL, the average size of microbubbles was
131.43 ± 5.28 µm. After increasing the concentration of silica nanoparticles to 2 mg/mL,
the average size of microbubbles increased slightly (135.66 ± 5.57 µm). The average size
of microbubbles without loading nanoparticles was 196.83 ± 13.14 µm under the same
operating conditions. In addition, the size of microbubbles without loading nanoparticles
increased gradually at the first 10 min. However, the size of microbubbles loaded with
nanoparticles seemed more stable.
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concentrations were as follows: 175.19 ± 14.59 µm (0 mg/mL), 98.41 ± 5.57 µm (0.5 mg/mL),
127.23 ± 5.45 µm (1 mg/mL), 137.98 ± 5.28 µm (2 mg/mL).



Appl. Sci. 2022, 12, 3621 8 of 13

When nanoparticles are introduced into the shell layer of microbubbles under the
electric field, the introduction of nanoparticles may induce the accumulation of charge
on the microbubbles. It is generally accepted that the charge on the surface makes the
bubble more stable due to a repulsion force [37,38]. The high-density charge makes the
microbubbles easier to break into finer particles under the condition of the electric field [39],
which may be one of the reasons for the reduction of microbubbles size. At the same time,
we speculate that the existence of nanoparticles limits the Oswaldo ripening effect in the
microbubble environment to a certain extent, which is also the reason why the size of
microbubbles does not increase or fall sharply after the introduction of nanoparticles.

We analyzed the size distribution of microbubbles prepared by introducing nanopar-
ticles with different concentrations. The results are shown in Figure 8. As can be seen
from Figure 8a, when nanoparticles were not loaded, the size of BSA microbubbles was
between 40 and 160 µm. It is also worth noting that more than 40% of the microbubbles
were larger than 200 µm. When silica nanoparticles were added into the shell layer, the
size distribution of the microbubbles was significantly narrowed. The proportion of mi-
crobubbles with sizes greater than 200 µm decreased sharply. When the concentration of
silica nanoparticles was 0.5 mg/mL, microbubbles showed an ideal size distribution. More
than 60% of microbubbles were distributed in the 120~160 µm size range (see Figure 8b). It
can be seen from Figure 8c that when the concentration of silica nanoparticles increased to
1 mg/mL, more than 35% of microbubbles were distributed in the 40~80 µm size range.
The microbubbles ranging from 120~200 µm accounted for more than 50% of the total,
while the microbubbles with sizes greater than 200 µm accounted for ~8%. As can be seen
from Figure 8d, when the concentration of silica nanoparticles increased to 2 mg/mL, the
proportion of microbubbles ranging in size from 40~160 µm was more than 95%.

Basically, the breakage and dissolution behavior of microbubbles is the result of
the coordinated influence of interfacial tension and size. The classical Laplace equation
(∆P = 2 σ/R) suggests that the microbubble surface pressure difference is inversely propor-
tional to the microbubble radius R and directly proportional to the microbubble surface
interfacial tension. The smaller the microbubble, the greater the pressure difference be-
tween the inside and outside, which means that the microbubble is easier to break. This is
consistent with the findings shown in Figures 2 and 3. When the size change of microbub-
bles is negligible (i.e., assuming that R is constant), the smaller interfacial tension leads
to the smaller pressure difference. As a result, more stable microbubbles can be achieved.
According to the experiment results, we can preliminarily deduce that the introduction
of nanoparticles has an impact on the interfacial tension of the surface of microbubbles.
The introduction of nanoparticles may reduce the interfacial tension at the interfaces of
microbubbles, which improves the stability of microbubbles and prolongs the survival time.
In addition, it also worth noting that the stability of the nanoparticle-loaded microbubbles
may not simply be dominated by size and surface tension. Other parameters, such as the
mechanical strength of the shell layer, may also be key factors affecting the stability of the
microbubbles, and need to be further studied.
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3.3. Effect of Gas to Liquid Flow Rate Ratio on the Microbubbles

It was found that when nanoparticle-loaded microbubbles were prepared by electro-
hydrodynamic atomization, gas injection flow had a significant effect on the successful
preparation of microbubbles. Therefore, the effect of gas to liquid flow rate ratio on the
stability of microbubbles was studied and analyzed under the conditions a voltage of 12 kV
and a nanoparticle concentration CNP = 1 mg/mL. Figure 9 shows the variations of normal-
ized microbubble number with time at different gas/liquid flow rates. With the increase of
gas/liquid flow rate from 40/10 to 50/10 (mL/h/mL/h), the stability of microbubbles in-
creased. Further increasing the gas flow rate to 60 mL/h did not enhance stability. Note that
beyond these gas/liquid flow rates, the production process of microbubbles was unstable.

Figure 10 depicts the size distributions of microbubbles at different gas/liquid flow
rates. It can be seen that with the increase of gas/liquid flow rate ratio, the average size of
microbubbles became larger, while the size distributions became broader. About 68% of
microbubbles obtained at a gas flow rate ratio of 50/10 (mL/h/mL/h) were distributed
in the 120~200 µm size range. As with the analysis and discussion in previous sections,
microbubbles under this condition showed relatively ideal stability. To sum up, the results
show that with a voltage at of 12 kV and a nanoparticle concentration CNP = 1 mg/mL, the
best gas/liquid flow rate ratio for the preparation of microbubbles with good stability is
50/10 (mL/h/mL/h).
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3.4. Effect of Applied Voltage on the Microbubbles

Voltage is an important factor affecting the preparation of microbubbles by electrohy-
drodynamic atomization. The effects of applied voltage were studied and analyzed, and
the results are shown in Figure 11. During the experiment, we found that microbubbles
could not be observed in the collection medium when the voltage was less than 8 kV. With
an increase of voltage, a few microbubbles could be gradually observed. When the voltage
rose to 11 kV, microbubbles were be prepared stably. Figure 11a shows the variations of the
average size of microbubbles with voltage. With increasing of voltage, the size of microbub-
bles decreased first and then increased. When the voltage reached 12.5 kV, the average
diameter of the microbubbles reached 243.19 ± 12.53 µm. According to the theoretical
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knowledge of droplet atomization and fragmentation behavior under the condition of
electric field polarization, at greater electric field intensity the droplet breaks into smaller
droplets. However, there is a polarization threshold in this process. When the electric field
intensity exceeds this threshold, the process of breaking into smaller droplets is affected
and larger droplets may appear. A voltage of 11~12 kV is suggested as the ideal range
under the experimental conditions of Ql = 10 mL/h, Qg = 50 mL/h, and CNP = 1 mg/mL.
The polarization threshold of the electric field under the above experimental conditions
can be calculated by the formula E0 = V/H, where E0 is the polarization threshold of
electric field intensity, V is the voltage applied, and H is the working distance of the nozzle
(H = 10 cm in this experimental condition). Under these experimental conditions, we found
that the average size of microbubbles was 138.76 ± 9.76 µm when the voltage was 11 kV,
while it was140.45 ± 9.98 µm when the voltage was12 kV. When the voltage reached 12 kV,
the size of microbubbles started to increase. When it reached 12.5 kV, the average size of
microbubbles shot up to 243.19 ± 12.53 µm. This indicates that the electric field polarization
threshold under this experimental condition is in the range of 1.1~1.2 kV/cm. When the
electric field intensity is greater than the polarization threshold, the size of microbubbles
may increase significantly with increasing voltage. This suggests that it is not advisable
to produce smaller microbubbles simply by increasing the voltage when the polarization
threshold is reached. The variation of microbubble number with time at different voltages
is shown in Figure 11b. The results show that the stability of microbubbles prepared at
11 kV was better than that at 12 kV and 12.5 kV.
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4. Conclusions

In this study, nanoparticle-loaded microbubbles were prepared by coaxial electrohy-
drodynamic atomization technology for the first time. The results show that the loading
of nanoparticles has great impact on the stability of microbubbles. A proper quantity of
nanoparticles increases the stability and reduces the size of microbubbles. A nanoparticle
concentration of 1 mg/mL is suggested to produce microbubbles with the best performance
in terms of size and stability. Investigations on the effects of gas/liquid flow rate ratios
and applied voltages suggest that a 50/10 gas flow rate ratio and 11 kV are the optimal
conditions to produce the most stable and uniform microbubbles. Under these conditions,
the size of nanoparticle-loaded microbubbles ranged from 120–200 µm.
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