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Abstract: Automatic brain tumor segmentation from multimodal MRI plays a significant role in
assisting the diagnosis, treatment, and surgery of glioblastoma and lower glade glioma. In this article,
we propose applying several deep learning techniques implemented in AWS SageMaker Frame-
work. The different CNN architectures are adapted and fine-tuned for our purpose of brain tumor
segmentation.The experiments are evaluated and analyzed in order to obtain the best parameters
as possible for the models created. The selected architectures are trained on the publicly available
BraTS 2017–2020 dataset. The segmentation distinguishes the background, healthy tissue, whole
tumor, edema, enhanced tumor, and necrosis. Further, a random search for parameter optimization is
presented to additionally improve the architectures obtained. Lastly, we also compute the detection
results of the ensemble model created from the weighted average of the six models described. The
goal of the ensemble is to improve the segmentation at the tumor tissue boundaries. Our results are
compared to the BraTS 2020 competition and leaderboard and are among the first 25% considering
the ranking of Dice scores.

Keywords: brain tumor segmentation; MRI; deep learning; CNN; AWS Sagemaker

1. Introduction

Image processing in combination with artificial intelligence and deep learning tech-
niques is a daily growing field of interest not only from the perspective of the IT industry
but also of its fusion with different domains due to its numerous applications.

Image analysis is considered a powerful tool in medical diagnosis mainly because of
the availability of different types of medical imaging devices, such as CT, PET, SPECT, and
MRI (1.5T, 3T, 5T, 7T).

The most important benefit of imaging techniques is the diagnostic non-invasiveness
that supports the recognition of diseases before they progress to a severe stage where
treatment is much more complicated and can be less effective or come too late.

Automated systems based on artificial intelligence cannot be a substitute for expert
diagnosis; they only provide a tool for better and quicker diagnosis. Medical staff should
never fully rely on a solution provided by a machine. The findings from an automated
system should always be subject to interpretation by a professional and weighed against
other decisions based on medical experience.

In this article, we deal with MRI brain imaging and provide an automated system that
segments parts of tumors in 3D MRI brain images.
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Gliomas are the primary types of brain tumors. They come from the astrocytes of the
central nervous system. Primary brain tumors are classified according to the WHO (World
Health Organization) [1] from grade I to grade IV. Grades I and II are considered low-grade
tumors (LGG—low-grade glioma), while grades III and IV are highly malignant and called
high-grade glioma (HGG). LGG are harder to detect in automated AI systems. LGG type
I is generally benign and tends to remain unobservable and untreated in time. However,
LGG type II presents the risk of recurring as a HGG [2], which is a much more severe and
advanced phase of the cancer. Rarely, especially if not discovered in time, they can form
extracranial metastases. The prognosis of patients with HGG is very poor. Even after a
surgery, they tend to reoccur. The overall survival time can be enlarged by one or even two
gross-total or sub-total resection surgeries [3].

The databases of MRI images used for brain tumor segmentation usually contain four
modalities. The T1 image shows the longitudinal relaxation, while T1c does the same
but with a contrast agent. In many cases, the most visible areas of the affected tissue show
up on this image. T2 is the transverse relaxation time, and FLAIR fluid-attenuated inversion
recovery suppresses the effects of cerebrospinal fluid on the MRI image.

Brain tumor segmentation means a frame-by-frame analysis of a 3D MRI image and
the classification of every pixel in 2D or voxel in 3D into a class or tumor type category.
The different classes to be distinguished are background and brain tissues (considered
as non-tumor parts) and tumor tissues, such as edema, enhancing tumor, non-enhancing
tumor core, or necrotic tumor.

Difficulties influencing stable and rigid segmentation via an automated system are the
variety of MRI acquisition protocols and the unstandardized and unnormalized images that
are not co-registered, the image intensities present inhomogeneity, and different variations
of contrast and other lightning conditions. The resolution and quality of the images also
have a great impact on the success of an AI system. In addition, the gliomas can vary in
size, location, appearance, and structure; they can appear anywhere in the brain. LGG
tumors are much blurrier and may contain only some incipient types of tumor tissue, not
showing the most visible tumor core at all.

The limited number of collected and annotated MRI images also presents an issue,
reducing generalization and limiting the convergence of the training process. Fortunately,
the problem of a publicly available dataset is solved by several universities and research
centers providing a very thoroughly annotated database collected and upgraded for the
BRATS competitions from 2012 until today [4–6]. The annotations of different tissues were
conducted by 3–5 experts.

The contributions made by this paper refer to the experiments carried out on the
Amazon Sagemaker via applying the implemented six deep learning convolutional neural
network architectures. We assess the advantages and disadvantages of these architectures
by applying them onto the BraTS 2020 Brain Tumor Segmentation Challenge Database.
We compare our results to the best results obtained at this competition. In addition to
the experimentally determined hyperparameter setup, we also apply the hyperparameter
optimization framework offered by the Sagemaker system to determine the adequate values
for the CNN hyperparameters.

The methods before the era of deep learning use several basic image processing tech-
niques that apply supervised, semi-supervised, or unsupervised methods. The main meth-
ods include thresholding-based methods, region-based methods, and pixel classification
methods [7]. Thresholding methods include global and local thresholding. Region-based
methods include region growing, watershed, fuzzy c-means clustering, active contour, and
so on. Pixel segmentation methods are generally model-based methods such as level set,
Markov random fields, self-organizing maps, model-based fuzzy classification, genetic al-
gorithms, support vector machines, artificial neural networks, and one of the best including
random forest [8–10].

The research field of deep learning algorithms began in recent years, starting in
2012–2013. Deep neural networks require many input images and a high computational
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capacity executed on the most up-to-date GPU cards. Training consists of an optimization
procedure that relies on a well-established deep neural network architecture, adequate
weight initialization, well-chosen hyperparameters such as optimization algorithm, loss
functions, learning rate, and so on. In the beginning, deep learning methods in the literature
were developed for object detection and image segmentation. Since 2015–2016, the deep
learning strategy has been applied in several medical applications: cell segmentation by
UNet [11], prostate segmentation by VNet [12], and 3D UNet [13] kidney segmentation in
volumetric data. The most recent MRI brain tumor segmentation methods were published
and summarized during the MICCAI BRATS Challenge [14]. Since 2016, almost every
paper published has been based on the deep learning strategy.

In the literature, deep learning methods are classified in the following three categories [15]:
convolutional neural networks, recurrent neural networks, and Generative Adversarial Net-
works, while a fourth category considers an ensemble or a combination of several architectures.

Convolutional neural networks are based on the convolution operation between layers
followed by pooling for halving the input dimension activation, layer and finally the fully
connected layer. These types of CNNs are divided into single-path and multi-path CNNs.
Single-path CNNs build only a single path from the input to the output [16,17]. The most
important disadvantage of single-path CNNs is the single scale, which is zoomed out
from layer to layer. The multi-path CNNs can extract different features from different
resolutions, considering multi-pathways of architecture. Multi-pathway CNNs consider
a local and global pathway. The local pathways consider small-size kernels, and the
global pathways take kernels of a larger size into account. Multi-pathway CNNs can also
be implemented through multiple input path size resolution [18,19]. Here, they include
the FCN—fully convolutional neural network—where the fully connected layers from the
CNNs are replaced by deconvolution layers. These layers can up-sample the down-sampled
innermost layer to a higher resolution by gradually doubling from layer to layer until the
original size is reached. The most important bottleneck of these encoder-decoder networks
is the lack of accurate boundary detection. In [20], a boundary-aware fully connected
CNN was proposed. The boundary is separately learned as a binary classification problem.
The introduction of the so-called skip-connection detects the boundary more accurately [21].

The recurrent neural network-based methods rely on LSTMs [22] and an advanced
form of Gated Recurrent Units. In [23], a Multi-Dimensional Recurrent Unit was proposed
for brain tumor segmentation. The RNN was combined with conditional random fields for
post-processing [24].

Generative adversarial networks run in the same manner as a min–max game. The gen-
erator network generates an artificial segmentation, while the discriminator network finds
its differences compared to the ground truth. If the generator is able to generate segmenta-
tion very close to the ground truth, the network-pair is considered trained [25]. Another
network based on the GA technique is the SegAN [26]. In this article, the segmentor
network is an FCN network. The discriminator is trained with a multiscale L1 loss function
by maximizing it, and the segmentor only uses the gradients of the critic.

The BraTS Challenge has been organized since 2012 and continues today [4–6]. Many
researchers in the field participated in different editions. In the first few years, i.e., 2012–
2014, generative, discriminative, or their combinations were proposed. The best methods
integrated a hierarchical random forest classifier [27] or context-sensitive feature extraction
with decision tree [28]. Until 2016, different versions of the random forest [9] classifier
were in the top three methods [29]. In the 2015 BraTS, the simple convolutional neural
networks appeared. In [30], a network similar to LeNet-5 for brain tumor segmentation
was proposed. However, their Dice scores on the whole tumor (WT = 0.81) was slightly
smaller than the leaders’ [31] using random forest classification (WT = 0.84). The best results
reported in 2016 were obtained by a 5-layered simple convnet reporting Dice scores of the
Whole Tumor−WT = 0.87, Tumor Core− TC = 0.81, and Enhanced Tumor− ET = 0.72 [32].
In 2017, Kamnitsas et al. [25] proposed an ensemble of multiple architectures known from
the literature and obtained the best results (WT = 0.90, TC = 0.82, ET = 0.79). The NVIDIA
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company was the winning team in 2018 using multiple Tesla V100 GPUs [33] and applying
an autoencoder-decoder CNN architecture (WT = 0.91, TC = 0.86, ET = 0.82). In 2019,
a variant of cascaded versions of UNet obtained the best results combining 12 different
CNNs into an ensemble model (WT = 0.89, TC = 0.83, ET = 0.83) [34]. The most up-to-date
and best brain tumor segmentation networks were presented recently at the 2020 edition
of the BRATS Challenge. Last year’s third place research team presented an encoder-
decoder architecture called SA-Net [35]. Wang et al. [36] and Jia et al. [37] both occupied
rank 2. In [36], the authors used a modality pairing procedure instead of using all four
modalities at the same time. The pairs of modalities fed into the two different branches
are T1 with T1c and T2 with FLAIR, respectively. The architecture is the same 3D UNet
presented in [13]. In the other paper, which ranked second [37], the authors propose a
Hybrid-High-Resolution and Non-local Feature network.

Isensee proposed in [38,39] the so-called nnUNET architecture—an autonomous sys-
tem that computes hyperparameters and ties three architectures (2D, 3D, 3Dcascade UNet)
based on the vanilla UNet using k-fold cross-validation deep supervision learning and
ensemble architecture. This application was put into practice and confirmed on several
challenges in the medical field last year. It is based on a dataset fingerprint and a pipeline
fingerprint. The dataset fingerprint determines the resampling, intensity normalization,
standardization, image sizes, cropping, and class ratio. The pipeline fingerprint is separated
into three groups: blueprint, inferred, and empirical. The inference is made via a sliding
window approach using half overlapping adjacent patches. The empirical parameters
refer to determining the best model out of the three models and the ensemble obtained
in five-fold cross-validation, post-processing extracting the largest connected component.
nnUNet is one of the best automatic approaches for medical image segmentation, but it
needs lot of GPU resources and has a quite large computational complexity. Papers [4–6]
are summarizing the results of all competitions.

The aim of this paper is to develop an end-to-end system for multi-modal brain tumor
segmentation that was implemented on AWS Amazon Sagemaker. The presented adapted
CNNs are available in the Sagemaker framework and can be deployed for other medical
image segmentation tasks in the same way as described for brain tumor segmentation.
The training process is fast. With our experiments, we demonstrate that it achieves fine
results even after a relatively small number of epochs. The adaptation of networks known
in the literature makes preloading ImageNet weights into these networks possible. The pre-
sented results and performances can be fine-tuned or retrained even on low-cost hardware
on AWS, permitting easy application in other tasks of medical image segmentation.

The paper is organized as follows: after the introduction and a short literature survey
of the best-performing methods, we describe the six CNN architectures adapted and fine-
tuned to our experiments. Section 3 describes our system and the results obtained. In the
last section, we draw some relevant conclusions and compare the results obtained.

2. Materials and Methods

The goal of this article is the experimental trial of Amazon Sagemaker and its built-in
architectures, such as FCN, PSPNet, and DeepLab, and the automatic model search in given
ranges using grid search for hyperparameter optimization.

2.1. The Adapted Architectures for Brain Tumor Segmentation

The architectures analyzed and fine-tuned were FCN (Fully Convolutional Network) [40],
PSPNet (Pyramid Scene Parsing Network) [41], and DeepLab [42,43]. For the weight initial-
ization of these encoder-decoder networks, ResNet50 and 101 are used. The ResNet (Deep
Residual Networks) architecture was presented in paper [44]. The authors solved the
problem of the vanishing gradient. Until this network was introduced, the number of layers
of a CNN was limited to below 20–30 convolutional layers. This residual module learns
the difference between the input and output of every convolutional layer. The gradient
at the output of a layer is equal to the gradient at the input plus the residual. Only the
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residual part passes through 2 or 3 other CNN layers. Thus, any further layer added does
not output worse than previous layers. The architectures created in this way were ResNets
18, 34, 50, 101, and 152. In our experiments, we applied ResNet50 and ResNet101. ResNet50
is based on ResNet34, but instead of 2, each residual block is built out of 3 layers. The first
layer is a 7× 7 convolutional layer of a depth of 64, obtaining half of the original image
size. After this first layer, the filter size is always 3× 3. Next are the 4 dimension-reduction
stages, each reducing into half the size of the previous stage, while at the same time, the
layer depth doubles (3 residual blocks 64 depth at size/2, 1 shortcut connection +3 residual
blocks depth 128, 1 + 5 depth 256, and 1 + 2 depth 512 at size/32). Instead of 1 + 5 residual
blocks between size/8 and size/16, ResNet101 uses 1 + 22 residual blocks. In our case,
the dimension of the full size is 240× 240, and the last size/16 is 15× 15 pixels.

The original FCN architecture [40] is the fully connected version of the VGG-16
network. The encoder-decoder network leaves the encoder part the same as it is in VGG-16,
and the fully connected layers of VGG are replaced by fully convolutional layers to form
the deconvolutional part of the architecture (Figure 1). The classification layer is substituted
by a bottleneck layer of 1× 1 kernel. Down-sampling is carried out by pooling layers and
up-sampling is performed by deconvolution layers. In total, there are 5 stages of halving
and a corresponding 5 stages of doubling the previous feature maps from the input size of
W × H and W/25 × H/25 downwards (encoding part) and vice versa in the decoding part
until the original size is reached. There are 2 convolutional layers in the full size followed
by 2 convolutional layers in the half-size W/2× H/2 and 3 convolutional layers in the
W/22 × H/22, W/23 × H/23, and W/24 × H/24 sizes. The up-sampling upconvolutional
layers follow the same pattern. The convolutional kernels are 3× 3 in each layer with
corresponding stride and padding to maintain the same output size for each conv-layer.

Figure 1. VGG-FCN Architecture: 15 convolution layers; 5 pooling layers; 5 deconvolution layers
(their input is the sum of previous layer and the output of the corresponding convolution layer).

In our experiments, the VGG encoder part is replaced by the ResNet50 and ResNet101
architectures that are incorporated into the FCN architecture (Figure 2).

Figure 2. ResNet-FCN Architecture: the first part is the encoder module (the ResNet50 or the
ResNet101 architectures) and the second part is the 5-times upconvolution.

PSPNet Spatial Pyramid Pooling Network [41] idea is combining global and local
features in different subregions. First, the image is fed into a convolutional network of



Appl. Sci. 2022, 12, 3620 6 of 24

ResNet-based FCN, and then the pyramid module is applied. Here, the features are com-
puted into 4 different scales: a global pooling that generates a single output. Moreover, 1× 1
the 2× 2, 3× 3, and 6× 6 subregions are obtained using the corresponding pooling kernel
sizes. Thus, different-sized feature maps are formed. The 2× 2 feature map is reduced by
1/2, the 3× 3 by 1/3, and the 6× 6 by 1/6 of the original input size. These reductions are
obtained through 1× 1 bottleneck convolution. The different-sized outputs are up-sampled
to the original size of the image. PSPNet uses dilated convolution and deep supervision
with a combination of loss functions. The loss is computed at the main branch after the
final layer and after the 4th layer. Both are softmax classifiers. The solution is computed via
the weighted balance of the two loss values. In our implementation, the first convolutional
network was ResNet50. The output feature of this CNN was 12× 12× 2048. The pooling
layer reduced the input to 1× 1 (red activation map), 2× 2 (orange activation map), 3× 3
(blue activation map), and 6× 6 (green activation map) (Figure 3). The convolution blocks
in each case contained 1 conv2D of kernel 3× 3, Batch Normalization, and ReLU activa-
tion. Before the concatenation of layers, the feature maps were not the same size. In the
original PSPNet, the same sizes were obtained via bilinear interpolation, whereas in our
implementation, we have used the transpose-convolutions of strides 8, 5, 3, and 2 and the
corresponding filter sizes 4, 2, 3, and 2, respectively, and paddings of 0 to return to the
12× 12 size. The last convolution part contains 2 conv-layers of kernel 3× 3 of width 512
and 512, respectively. The final output size was obtained by the corresponding transpose-
convolutional layers put in the encoder part.

Figure 3. Adapted PSPNet [45].

DeepLab architecture DeepLabv2 [42] is based on the up-sampled filters or atrous
convolution incorporated into a spatial pyramid pooling network. The deep convolutional
neural network (DCNN) removes the max pooling layers of the last few convolutions and
substitutes them by up-sampling the filters in the convolutional layers, thereby obtaining
feature maps at a higher sampling rate. The atrous convolution (dilated convolution) simply
inserts zeroes between non-zero filter values. The zeroes in atrous convolution are bilinearly
interpolated. In this manner, not only is the image reduced to half, but the feature map
obtained after convolution is also doubled. Thereby, the feature view is doubled, but the
number of parameters is maintained the same. The DCNNs are ResNet101 and VGG16,
adapted accordingly. This architecture utilizes special pyramid pooling in combination
with atrous convolution. These extract hyper-column features via skip-layers. The final
decision is made by fully connected conditional random fields in post-processing to capture
the fine details of the object. DeepLabv3 [43] combines the spatial pyramid pooling with an
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encoder-decoder structure. The latest DeepLabv3+ [46] version uses an encoder-decoder
structure and obtains multi-scale feature maps by applying atrous convolution at multiple
scales. The decoder combines the output of the DCNN and the combined feature map of
different multi-scale atrous convolution outputs.

In our experiments, we have used the DeepLabv3+ (Figure 4) architecture in an
encoder-decoder manner, using the ResNet50 and ResNet101 architectures as encoders.

Figure 4. Adapted DeepLabv3+ [47].

2.2. Database

The database is the BraTS 2017–2020 database [14] used in BraTS Challenges in recent
years. This database is considered the gold standard for the task of multi-modal brain
tumor segmentation. According to our knowledge, this is the only publicly available
database for researchers in the field. The dataset was expanded yearly from 35 training
images to 369—the number used at the 2020 BraTS competition. The images of resolution
240× 240× 155 pixels were manually annotated by 4 experts, i.e., radiologists following
a very strict annotation protocol described in [4]. An annotation was accepted if 50%
of the experts agreed on the corresponding label. During the annotation, a hierarchical
majority vote was considered to include prior knowledge about the structure of the tumor
and the ranking of the labels. Image datasets that can be used for training automatic
systems have to provide not only the original record but also a very accurately annotated
gold-standard segmentation label. The images are also aligned, registered to the same
template, and consider the same resolution of voxel/mm3. All these steps were conducted
according to a standardized protocol described in [4]. Only this type of image dataset can
be applied for supervised learning techniques, such as deep CNN-based segmentation.
In the absence of this annotation, the acquired medical image data are useless. This is
the main reason why there is only the above-mentioned database available for research
purposes. The total number of images were collected by 19 different clinical research
institutions worldwide participating in an acquisition and annotation project [48]. The
BraTS contains 3D MRI brain scans with tumoral and healthy brain tissues. The resolution
of the images is 240× 240× 155 pixels with a sample rate of 1 mm3/voxel. The images are
co-registered to the same template, interpolated to the mentioned resolution, and skull-
stripped. The images are multi-modality images. The 4 modalities are T1 (native), T2Gd
(post-contrast weighted using a gadolinium contrast agent), T2-weighted, and T2-FLAIR
(Fluid-Attenuated Inversion Recovery) images, along with the ground truth annotation
image from multiple experts. The total number of images have been acquired since 2012 and
available for research in TCIA (The Cancer Imaging Archive). The image dataset consists
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of 293 high-grade tumor images (HGG), also called glioblastoma (TCGA-GBM) [49], and
76 low-grade tumor images (TCGA-LGG) [50] included in the TCGA (The Cancer Genome
Atlas). The goal of the segmentations that use this database is to identify 5 types of classes
or in other words 3 types of tumors (Figure 5). The 5 classes are background (class 0)
brain (class 1), edema (class 3), necrosis and non-enhanced tumor (class 2/4 joined), and
enhanced tumor (class 5).

Figure 5. Tumor Classes: figurative representation of the tissue types in the brain, with different
tumor classes to illustrate the cardinality of the different classes.

3. Results

In this paper, we proposed performing certain experiments on the AWS Sagemaker
platform and adapting the predefined architectures for segmentation, with brain tumor
segmentation as our goal. We adapted and trained six different architectures, a variant
of the hyperparameter optimized model, and an ensemble of the models obtained. The
general component diagram of our system is shown in Figure 6.

Figure 6. Components of the System: database (BraTS 2020), pre-processing, training, validation,
testing, and post-processing.

The database used for training is the publicly available BraTS 2017–2020 dataset. There
are a total of 335 images, out of which 259 are glioblastoma (or high-grade tumor images)
and 76 low-grade tumor MRI scans. Every image is 3D at a resolution of 240× 240× 155
pixels, and there are four image modalities in total (T1, T1c, T2 and Flair), plus the ground
truth image labeled by multiple experts and included in the public dataset. Before the
training process, we randomly split this dataset into training, validation, and test sets in a
proportion of 60% (201 images), 20% (67 images), and 20% (67 images). Class imbalance
exerts a highly undesirable influence on the training process. The most frequent pixels are
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learned the best; these constitute the background (78–79% of the total image voxels) and the
healthy brain (20–21%). The least frequent by far are the tumor voxels, which represent a
total of about 1% of the whole image. The different tumor types are edema (ED) at around
0.7%, non-enhanced tumor (NET) at 0.07%, active tumor (AT) at 0.43%, and necrosis (NEC)
at 0.01% of the total number of voxels.

The implementation of the described algorithms was conducted via the Amazon
SageMaker. The definition of classes on the input images uses consecutive class numbering
from 0 to n (n = 5) in our case. There are however five classes because classes 2 and 4
are conjoined. Detection differentiates background and healthy regions much better than
between different tumor tissues, which is caused by the mentioned class imbalance.

The architectures adapted to brain tumor segmentation follow the encoder-decoder
architecture shown in Figure 7.

Figure 7. Encoder-Decoder Architecture: 2 variants of encoder architectures and 3 types of decoder
architecture, in total 6 CNN architectures.

The encoder is the well-known ResNet50 or ResNet101 CNN initialized with pre-
trained weights of the ImageNet. The preloaded ImageNet weights can detect 1000 different
objects from the ImageNet Challenge and are usually a good starting point for further
training. The decoder is the up-sampling part of the smallest feature map obtained during
encoding. The FCN up-sampling module is a three-layered upconvolution until the original
dimension is reached again (Figure 1). The next deconvolution architecture adapted for
our task of brain tumor segmentation was the PSP architecture via the combination of
feature maps of sub-blocks (Figure 3). The third version of upconvolution is the DeepLab3+
decoder variant combining multi-scale feature maps by applying atrous convolution.

Using this method, six different CNN architectures were implemented and adapted
for brain tumor segmentation. For all 6 architectures, the number of classes was 5, crop
size was 240× 240 pixels, the number of maximal epochs was 100, and the learning rate
was 0.001. We used a polynomial learning rate scheduler with a scheduler factor of 0.1.
The optimization method was SGD using a momentum value of 0.9 and an early stopping
patience of four epochs. During the training process, we used the advantages of transfer
learning. Transfer learning is a technique in machine learning that relies on knowledge
obtained from one task applied to another task. Transfer learning in the case of CNNs
can be used if the network architecture of the original and current networks is the same
until a given layer. The weights to that point can be loaded from the CNN, trained in other
purposes, into the current network. Thus, the training process starts considering those
initial weights. In our case, the ImageNet weights were the initial weights. The ImageNet
Challenge [51] differentiates 1000 usual objects, but has nothing to do with medical image
segmentation. Due to applying the transfer learning technique, we were able to obtain
better results with a smaller number of epochs than training the system without this
technique. Figure 8 depicts the training loss over the progress of epochs for the six CNNs
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presented. It is obvious that the larger encoder architectures using ResNet101 are steeper
and converge slightly faster in the training process.

Figure 8. Training Loss: the best losses are obtained by the 3 architectures based on the ResNet101 encoder.

Figure 9 and Table 1 show the overall validation accuracy for the networks presented.
From the perspective of the validation accuracy for all classes, the PSP-ResNet101 is the best,
followed by FCN-ResNet101 and DeepLab-ResNet101. The overall validation accuracy is
measured on the validation set and is obtained as the mean accuracy (Equation (2)) over all
four classes.

Accuracy =
Correct pixels inpredicted segmentation

Total pixels in segmentation
, (1)

meanAccuracy =
1

|Classes| ∑
c∈Classes

Correct pixels inpredicted segmentation o f class c
Total pixels in segmentation o f class c

, (2)

Figure 9. Validation Accuracy: the best architectures based on the validation accuracy are: PSP-
ResNet101 (accuracy of 0.9604), DeepLab-ResNet101 (accuracy of 0.9479), FCN-ResNet101 (accuracy
of 0.9576), and FCN-ResNet50 (accuracy of 0.9516).

It can be observed that the DeepLab-ResNet50 was stopped at epoch 49 because it had
the highest training loss and lowest validation accuracy from all the six architectures.The
best architecture from the perspective of overall accuracy are the DeepLab-ResNet101,
PSP-ResNet101, FCN-ResNet101, and FCN-ResNet50. The stopping condition of the final
epoch was set by considering the stopping patience of four epochs with non-decreasing
training loss, and the stopping tolerance was set to 0.001. This was the reason for different
stopping epochs of the networks (Table 1).
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Table 1. Validation Accuracy of the Training Processes.

Architecture Epoch Validation Mean Accuracy

FCN-RN50 86 0.9516
FCN-RN101 80 0.9576
PSP-RN50 100 0.9465
PSP-RN101 74 0.9604
DeepLab-RN50 49 0.9243
DeepL-RN101 66 0.9479

The quantitative evaluation of different architectures was conducted by computing the
Dice score on the test set. The Sørensen–Dice score measures the similarity of two samples;
in our case, the similarity between the ground truth (GT) and the segmentations obtained
(predicted segmentations). It is twice the overlap area over the cardinality of both sets
(Equation (3)). In the case of binary segmentation, it can be expressed by the 2 × TPR (true
positive rate) over the total number of pixels: 2 × TPR+FPR (false positive rate)+FNR (false
negative rate).

DiceScore =
2× |Pred ∩ GT|
|Pred|+ |GT| =

2× TPR
2× TPR + FPR + FNR

, (3)

In the case of multi-class classification, the Dice score is computed considering class i
and class non− i for all other pixels.

In the training process of the six different networks, we used the mIOU (Equation (9))
as the loss function of the optimization algorithm. The mean intersection over reunion is
a region-based loss function, also called the Jaccard loss. The Jaccard loss and the Dice
loss [52] are very similar losses, and they can be alternatively used in segmentation tasks.

Jaccardloss = 1− Jaccard = 1− Dice score
2− Dice score

, (4)

Diceloss = 1− Dice = 1− 2× Jaccard
1 + Jaccard

, (5)

The Tversky Distance [53] is a generalization of the Dice loss that considers the true
positive pixels over a weighted sum of true positives and false positives and false negatives.

Tverskyloss = 1− Tversky distance = 1− TP + ε

TP + α× FP + β× FN + ε
, (6)

We have considered this type of loss too, but it can improve the training loss if it is
considered on binary segmentation cases. In our case, the coefficients weighting the FP
and FN in the nominator have to be setup separately form one class to the other. This
can be completed if the five-class segmentation is divided into four times applied binary
segmentation (Background-Healthy; Healthy-Whole Tumor; Edema-Tumor Core; Enhanced
Tumor-Necrosis/Non-Enhanced Tumor). This multiple binary classification pipeline will
surely bring considerable improvement because the class imbalance is eliminated and,
the loss is computed not based on a mean loss of all the classes, but considering the two
relevant classes at each binary classification phase.

In Table 2, we measured the Dice scores for background voxels, healthy voxels, and
the Whole Tumor (classes 2/4 + 3 + 5). The detection of background and healthy voxels is
as expected. Background Dice is between 99.29 and 99.7%, and for healthy voxels, the Dice
is between 95.99 and 97.46%. The detection of tumor voxels is about 90% (88.89–90.66%),
which is a good result compared to the BraTS Challenge WT (Whole Tumor) average of
82.74%. The average WT Dice score of the BraTS Challenge is based on the validation table
results, namely, the Validation Leaderboard [14]. The best result on the leaderboard had a
Dice coefficient of 92.45%, and 80 participants out of a total of 291 are above 90%.
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Table 2. Dice for Background (BG), Healthy Tissue (HT), and Whole Tumor (WT).

Architecture Background Healthy Tissue Whole Tumor

FCN-ResNet50 0.9965 0.9730 0.9068
FCN-ResNet101 0.9969 0.9744 0.8980
PSP-ResNet50 0.9969 0.9746 0.9009
PSP-ResNet101 0.9961 0.9701 0.8911
DeepLab-RN50 0.9929 0.9599 0.8889
DeepL-ResNet101 0.9967 0.9726 0.9030

Table 3 shows the results of the six different architectures on the three types of tumor
tissue: edema (ED), active tumor (AT), and necrotic and non-enhanced tumor (NEC/NET).
Both the edema and active tumor were about 70%. The worst results of 38–47% were
obtained on the NEC/NET tissue type. In Tables 1 and 2, ResNet101 is slightly better than
the ResNet50 architecture. The best results were obtained by DeepLab-ResNet101 for AT
(73.7%) and NEC/NET (47.63%) and PSP-ResNet101 for ED (75.21%).

Table 3. Dice for Different Types of Tumor Tissues.

Architecture Edema Active Tumor Necrosis/
Non-Enhanced Tumor

FCN-ResNet50 0.6963 0.6970 0.4617
FCN-ResNet101 0.7150 0.7126 0.4435
PSP-ResNet50 0.6589 0.7121 0.4326
PSP-ResNet101 0.7521 0.6987 0.3949
DeepLab-ResNet50 0.6740 0.6780 0.3859
DeepL-ResNet101 0.6976 0.7370 0.4763

Figure 10 shows some segmentation results for the visual comparison of different
tumor types and the six architectures studied. On average, this barely visible difference is
around 1–2%. There is no quantitative evidence clearly showing that one architecture is
better than all the others. In different images, the other architecture outstrips the rest. This
led to the idea of combining them into an ensemble model.

The second group of experiments was related to hyperparameter optimization to
possibly extract the best architecture from it.

The training jobs and hyperparameter optimization setup that had to be defined in
the Amazon SageMaker framework were related to the six types of CNN networks, their
hyperparameters, and the input database type. The data were provided in pipe mode
stored in an S3-bucket. These data were accessed via an AugmentedManifestFile containing
the path to every image and to every corresponding annotation file along with the training
job name and other metadata. The validation and test data were provided in the same way.
The hyperparameter tuning job was run on an ml.p3.2xlarge system on three instances.
Every instance was set to run a maximum of five parallel training jobs. The maximum
duration per training job was set to 48 h.

SageMaker hyperparameter tuning uses Grid Search and Bayesian Search [54] to
obtain the best set of parameters. The tuning algorithm for SageMaker performs guesses as
to which sets of hyperparameters are likely to achieve better results and runs the training
jobs with those parameters.

The training job is abandoned before the preset number of epochs if another training
job had better results regarding the objective metric in the same iteration. The objective
metric was the mIOU (mean intersection over reunion). IOU computes the intersection over
reunion between the predicted segmentation and the ground truth for every image (Equa-
tion (7)). The meanIOU computes the average value of IOU for every image (Equation (8))
over each class c ∈ Classes Equation (9).
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IOU =
|Pred ∩ GT|
|Pred ∪ GT| , (7)

IOU I =
1
N ∑

i∈I

|Predi ∩ GTi|
|Predi ∪ GTi|

, (8)

mIOU =
1

|Classes| ∑
c∈Classes

IOU I
c =

1
|Classes| ·

1
N ∑

c∈Classes
∑
i∈I

|Predi ∩ GTi|
|Predi ∪ GTi|

, (9)

This metric is the same as the Jaccard index (Equation (10)).The Jaccard index can be
expressed not only by the IOU but also as a fraction of TPR over TPR + FPR + FNR.

Jaccard =
|Pred ∩ GT|
|Pred ∪ GT| =

TPR
TPR + FPR + FNR

, (10)

The optimization parameters [55] that had to be set up to give reasonable and quite
restricted intervals for them were the optimization function, learning rate, weight decay,
momentum, and minibatch-size.

Firstly, we set the mini-batch size between 16 and 64. The optimization functions added
in the optimization process were MB-SGD, SGD with momentum, AdaDelta, and Adagrad.
SGD for mini-batches takes the gradient step for a mini-batch with a regularization term
called weight decay (=0.0001) multiplied by the weight and added to the gradient. SGD with
momentum reduces the fluctuation towards the optimal value by adding the momentum
term. AdaGrad (Adapted Gradient Descent) modifies the learning rate in each iteration
biased towards the past gradient of that parameter. Instead of the past gradient in AdaGrad,
AdaDelta modifies the learning rate by the average over the past squared gradients of
a weight.

The learning rate scheduler controls the decrease in the initial learning rate over time
over the progress of the epochs. The learning rate is multiplied by a factor of 0.1 after a
given number of epochs (=10). The early stopping algorithm stops a training job if certain
stopping conditions are met. The minimum number of epochs was set to 5, early stopping
patience was 4, and early stopping tolerance was 0.001.

Hyperparameter optimization was conducted for only one architecture of the six
studied, namely, FCN-ResNet50. The best parameters obtained via hyperparameter opti-
mization were minibatch-size = 18, learning rate = 0.0009, weight decay = 0.0114, momen-
tum = 0.803, and the AdaGrad optimization method. Several training jobs with different
parameter setups stopped before the end of the job, recognizing at a very early epoch that
their process involving the optimization metric is smaller than the best thus far. The valida-
tion mIOU for the best hyperparameter setup was 0.7732. This mIOU is a value similar to
the one obtained for the first variant of FCN-ResNet50 without hyperparameter optimiza-
tion (mIOU = 0.7649).

We note that the hyperparameter optimization procedure provided by the SageMaker
framework did not lead to considerably better results for the following reasons: 42 different
parameter sets were tried, and out of these, only about 10 ran until the end, namely,
100 epochs, for about 48 h per training job of the 10 runs (200 h in total). In these 42
jobs, the batch size, learning rate, weight-decay, and momentum parameters were selected
according to a random grid search. Out of the optimization functions, only AdaGrad and
SGD were selected. The Sagemaker hyperparameter optimization process slightly modified
the numerical parameters for each run of a different training job. The only parameter that
was modified considerably on a logarithmic scale was the learning rate. The enormous
resource requirements coupled with the small improvement achieved made us decide
against running the hyperparameter optimization on the five other architectures studied.
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(a) Original Image (b) Annotation (Ground Truth)

(c) FCN ResNet50 (d) FCN ResNet101

(e) PSP ResNet50 (f) PSP ResNet101

(g) DeepLab ResNet50 (h) DeepLab ResNet101

Figure 10. Segmentation Results of the 6 Architectures: visually, the segmentations are similar, and
the difference on average for the whole dataset is about 1–3%.
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From Tables 4 and 5, we can see that the FCN with parameter optimization led to a
barely observable Dice score improvement of 0.8% on average for all classes.

Table 4. Dice for Background, Healthy Tissue, and Whole Tumor with Parameter Optimization.

Architecture Background Healthy Tissue Whole Tumor

FCN-ResNet50 0.9965 0.9730 0.9068
FCN-Parameter Optimization 0.9982 0.9790 0.9100

Table 5. Dice for Different Types of Tumor Tissues (Edema, Active Tumor, and Necrotic Tumor) with
Parameter Optimization.

Architecture Edema Active Tumor Necrosis/
Non-Enhanced Tumor

FCN-RN50 0.6963 0.6970 0.4617

FCN-Parameter Optimization 0.7046 0.7104 0.4740

Figure 11 shows a visual comparison of tumor tissue segmentation with and without
hyperparameter optimization on the FCN-ResNet50 architecture. On average, there is an
improvement of only about 1% to the detriment of the enormous computational complexity.

The last group of experiments that were carried out was related to the combina-
tion of all six segmentation models in an attempt to obtain a so-called ensemble model
from them. We obtained weighted segmentation maps from all six individual classifiers
presented above.

(a) Original image (b) Annotation (Ground Truth)

(c) Whole Tumor FCN-ResNet50 (d) Whole Tumor Parameter-Optimized

Figure 11. Comparison of FCN and Parameter-Optimized FCN: visually, the segmentations can
barely be distinguished.
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Comparing Tables 2, 4, and 6, we can draw the following conclusions: The Dice score
for the Whole Tumor is reduced by approximately 2–3% compared to the best method out
of the six. On the other hand, the Dice scores for different tumor tissues of the ensemble
model are better by about 4–10% (Tables 3, 5 and 7). This is a considerable improvement.

Table 6. Dice for Background, Healthy Tissue, and Whole Tumor obtained by the Ensemble Model.

Architecture Background Healthy Tissue Whole Tumor

Ensemble 0.9958 0.9585 0.8780

Table 7. Dice for Different Types of Tumor Tissues Obtained by the Ensemble Model.

Architecture Edema Active Tumor Necrosis/Non-Enhanced Tumor

Ensemble 0.8005 0.7671 0.5008

The segmentation maps obtained by the ensemble model are depicted in Figure 12. It
is obvious that the tissue contours and transitions from one tissue to the other are gradually
colored from turquoise to yellow, and there is a slight green ring at the transition. This
shows that the ensemble model obtains a probability map and does not make a final
decision favoring any class for uncertain tissue voxels on the contour. These voxels are,
in fact, the hard examples and are not clearly classifiable. The probabilistic heatmap of the
ensemble model solves this problem through probabilistic voting.

Overall, we propose the sequential application of the best DeepLabv3 model or the
parameter-optimized FCN ResNet50 for obtaining the tumoral region, and after that,
finetuning the results by obtaining the different tumor tissues through the use of the
ensemble model. Finally, to highlight our results, we compare them to the best results from
the BraTS Challenge 2020, published in 2021.

All our experiments were conducted on the p3.2xlarge AWS EC2 instance. That is
a Tesla V100 GPU with 16 GB memory. By running only on Spot instances instead of
on-demand usage, we could carry out our experiments on a very low cost of USD 200–300.

The most important advantage of our model is the relatively low number of epochs
(80–100) each CNN is trained for. Overall, the training process lasted under 12 h for each
of the presented models (Table 8). The more complex networks that achieve better results
have to be trained much more, even 4–5 days on multiple GPUs with larger computational
capacity and memory [39].

As can be seen, our results are comparable with the competition performances between
2017 and 2020. Our goal with this article was to create simple models available in the AWS
Sagemaker that can be easily combined into an ensemble model with good performances.
The Dice score of the tumor core is 0.8599 for our ensemble model, which is comparable to
the best results. The goal in our research was not to obtain the best results but to create a
rapidly trainable system that can be applied for other types of medical image segmentation
in a similar way. The performances of such a system can be considered quite competitive.
The Dice score differences of 1–5% out of the tumor tissue volume of every type comes
from the slightly inaccurate contour detection. A contour delimitation displaced with a
single voxel considerably influences the Dice score results, especially on small tumors of
a few voxels. The exact contours are always re-evaluated by the neurosurgeons during
preoperative planning before a gross-total resection.
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Table 8. Training Time of the 6 Networks.

Architecture No. of Epochs Training Time [h] GPU Mem.

FCN-ResNet50 86 7 16 GB
FCN-ResNet101 80 8.5 16 GB
PSP-ResNet50 100 8 16 GB
PSP-ResNet101 74 8 16 GB
DeepLab-ResNet50 49 7.5 16 GB
DeepL-ResNet101 66 10 16 GB

(a) (b)

(c) (d)

(e)

Figure 12. Segmentation Results of the Ensemble Model: (a) original image; (b) ground truth with
annotation contours; (c) ensemble segmentation; (d) ensemble segmentation with annotation contours;
(e) ensemble segmentation of ED (turquoise), AT (yellow), NEC (red), Annotation Contours (black).

4. Discussion

In the BraTS Challenge, the tumor tissue types are grouped into different tumor
regions. The NEC/NET results are not considered separately. The Leaderboard results
show the Enhancing Tumor (ET = class 5), the Whole Tumor (WT = classes 2/4 + 3 + 5),
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and Tumor Core (2/4 + 5 = NEC/NET + AT). The Leaderboard of the BraTS competition
shows the results of the various participating teams, measuring the Dice scores on the
so-called validation dataset. At the BraTS 2020 competition, there were 292 teams present
on the Leaderboard.

The statistics related to the average results are detailed in Table 9 and Figure 13.
The average is marked by X, the median is the center-line, and the Q1 and Q3 values are
the lower and upper margins of the box.

Table 9. Dice on the BraTS 2020 Leaderboard.

Statistic Enhanced Tumor Whole Tumor Tumor Core

Mean 0.6638 0.8275 0.7233
StdDev 0.1942 0.1859 0.2011
Median 0.7289 0.8882 0.7964
Q1 0.6664 0.8573 0.7168
Q3 0.7737 0.9016 0.8296
Max 0.8802 0.9246 0.9289
Min 0.1040 0.0000 0.0000

Figure 13. Leaderboard Dice Scores for ET, WT, and TC: the mean is denoted by X, the median is the
center-line of the box, and Q1 and Q3 are the top and bottom edges of the rectangles.

The mean and Q3–75% quartiles are relevant from our perspective. Our results
regarding ET, WT, and TC, as presented in Table 10, are far better than the average of the
Leaderboard and are comparable to the Q3 quartile results. This means that our results are
among the first 25% of the Leaderboard.

We compare our results obtained on the test set, which is 20% taken separately from the
BraTS dataset. The Leaderboard results are measured on a validation dataset not publicly
available. If we consider both datasets being sufficiently general, the results are comparable.
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Table 10. Dice for Different Tumor Regions.

Architecture Enhanced Tumor Whole Tumor Tumor Core

FCN-ResNet50 0.7989 0.9068 0.8413
FCN-ResNet101 0.7873 0.8980 0.8461
PSP-ResNet50 0.7800 0.9010 0.8355
PSP-ResNet101 0.7583 0.8911 0.8394
DeepL-ResNet50 0.799 0.8889 0.8277
DeepL-ResNet101 0.7879 0.9030 0.8490

Table 10 presents our results from the six different architectures and the BraTS tumor
regions. The three tumor regions are ET (Enhanced Tumor), Whole Tumor (WT), and TC
(Tumor Core). The best Dice scores we obtained are about 90% for WT, 84% for TC, and
78% for ET.

The best results obtained in the BraTS competition are presented in Table 11. These
are slightly worse than the Leaderboard maximums. The competition score is a result of a
one-time experiment, making the progressive architecture adjustments impossible, whereas
the leaderboard score is the best score achieved by a team. Therefore, the best results at
competitions are 7–8% worse than the best results on the leaderboard.

Table 11. Winning Teams’ Dice Scores.

Teams Enhanced Tumor Whole Tumor Tumor Core

Rank 1 [39] 0.8203 0.8895 0.8506
Rank 2 [37] 0.8900 0.8420 0.8160
Rank 2 [36] 0.8630 0.9240 0.8980
Rank 3 [35] 0.8828 0.8433 0.8177

Comparing the six different architectures (Table 9) with the ensemble model, we can
see a 2% decrease in the Dice score for WT but a 2% increase for ET and TC (Table 12).

Table 12. Dice for Different Tumor Regions of the Ensemble Model.

Architecture Enhanced Tumor Whole Tumor Tumor Core

Ensemble 0.8004 0.8780 0.8599

Overall, we obtained fairly good results that are comparable to the BraTS Leaderboard
results. We suggest applying the best model for WT (DeepLab-ResNet101), and after that,
finetuning the contour regions between different tumor tissues with the ensemble model.

However, our results are quite competitive, and they will be improved in several ways.
We propose some aspects for future improvement and further development.

The quality and resolution of the images is not standardized. In the image augmenta-
tion stage, we normalize the images to a mean of 0 and a standard deviation of 1, but the
inhomogeneity correction should also be applied before the training process.

Better results could be obtained if the five-class classification process were divided into
four binary classification steps. First, the tumor should be delimited from the background
(including healthy tissue). Next, the tumor types should be discovered according to the
anatomical structure depicted in Figure 5. Accordingly, the edema can be delimited next,
followed by the tumor core, and the very last should be the delimitation of the necrotic
tumor. This type of structure may be also discovered by wearing AR-based neuronavigators
that have a crucial importance in preoperative planning and a simulation of surgical
scenario [56,57]. Considering multiple binary classification steps and not a single five-class
classification, the tumor types with a considerably smaller number of representative voxels
in the database would be much better delimited. This issue can be eliminated through
the random sampling of the initial images at a smaller given patch size, with the goal of
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including the same number of healthy and tumoral tissue pixels in the database. The most
important bottleneck of the models obtained is the slightly inaccurate contour detection.
The cause of these less-precise boundary detections is the multi-class classification and
the class imbalance. This can be further corrected by introducing different architectures
specifically trained for boundary detection.

As a post-processing step, we propose the verification of tumor structure connected-
ness. The tumor is a connected region without any holes or gaps. In addition, the anatomical
structure of the tumor can be a posterior condition, knowing that some tissues should be
inside others: necrotic tumor ⊆ tumor core ⊆ edema. The improvements suggested should
furthermore improve the results obtained thus far.

The ensemble model based on the combined response of the six CNNs has similar
results for the tumor core as the results presented in the BraTS Challenge (Tables 11 and 12).

5. Conclusions

The results and experiments presented above describe an automatic brain tumor seg-
mentation approach based on the tools in AWS Sagemaker for building CNN networks
and hyperparameter optimization techniques. In our results, we compare three different
architectures: FCN, PSP, and DeepLab encoder-decoder networks, each with two encoder
versions (ResNet50 and ResNet101). For the encoder part, we loaded in the ImageNet
weights to use transfer learning. The encoders were subsequently trained, and the decoders
were trained from the beginning. In our paper, we fine-tuned the hyperparameters and
applied the advantages of transfer learning to obtain segmentation results on the BraTS
database with the purpose of brain tumor segmentation. The system can be a very helpful
tool for physicians and neurosurgeons. Brain MRI examination and a possible introduc-
tion of a regular MRI screening once every 2 years on the whole population or on the
risk-patients is becoming widespread. This automated system can give an 80–90% exact
segmentation response and can indicate to patients who really have suspicious cells on
their MRI record to consult a doctor. The tumor can be detected even in an incipient phase,
preventing HGG tumors if possible. This type of frequent examination would discover the
LGG tumors in initial phases. The results obtained are comparable to the BraTS Challenge
Leaderboard results and are among the first quartile in ranking. The best Dice scores we
have obtained for WT are about 90%, TC 84%, and ET 78%.

The purpose of this research was to create an end-to-end system suitable for multi-
modal brain tumor segmentation that is able to differentiate the whole tumor, tumor
core, healthy tissue, and background. We have adapted six different convolutional neural
networks known in the literature. In our experiments, we demonstrated that these simple
architectures with few parameters and a good hyperparameter setup can achieve similar
results to the best ones competing in BraTS Challenges. In these architectures, the transfer
learning techniques were used, and in this way, the CNNs have been trained with much
fewer epochs. The training and testing phases could be conducted in less time with a
smaller budget. This permits retaining and fine-tuning the current performances to include
different MRI multi-modal brain datasets acquired over time in clinical environments.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AT Active Tumor
BraTS Brain Tumor Segmentation Challenge
CNN Convolutional Neural Network
CT Computed Tomography
DCNN Deep Convolutional Neural Network
ED Edema
ET Enhanced Tumor
FCN Fully Convolutional Network
FPR False Positive Rate
FNR False Negative Rate
GBM Glioblastoma Multiforme
GT Ground Truth
HGG High-grade Glioma
IOU Intersection over Reunion
LGG Low-grade Glioma
MB-SGD mini-batch Stochastic Gradient Descent
MRI Magnetic Resonance Imaging
mIOU mean Intersection over Reunion
NEC Necrosis
NET Non-Enhanced Tumor
PET Positron Emission Tomography
Pred Prediction
PSPNet Pyramid Scene Parsing Network
ResNet Residual Network
SGD Stochastic Gradient Descent
SPECT Single-Photon Emission Computerized Tomography
T1 longitudinal relaxation time
T1Gd T1 Gadolinium contrast media
T1c longitudinal relaxation time with contrast
T2 transverse relaxation time
T2-FLAR T2-weighted-Fluid-Attenuated Inversion Recovery
TC Tumor Core
TCGA The Cancer Genome Atlas
TPR True Positive Rate
TNR Tue Negative Rate
WHO World Health Organization
WT Whole Tumor
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