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Abstract: Engineered cementitious composite (ECC) is a unique material, which can significantly
contribute to self-healing based on ongoing hydration. However, it is difficult to model and predict
the self-healing performance of ECC. Although different machine learning (ML) algorithms have been
utilized to predict several properties of concrete, the application of ML on self-healing prediction is
considerably rare. This paper aims to provide a comparative analysis on the performance of various
machine learning models in predicting the self-healing capability of ECC. These models include four
individual methods, linear regression (LR), back-propagation neural network (BPNN), classification
and regression tree (CART), and support vector regression (SVR). To improve prediction accuracy,
three ensemble methods, namely bagging, AdaBoost, and stacking, were also studied. A series of
experimental works on the self-healing performance of ECC samples was conducted, and the results
were used to develop and compare the accuracy among the ML models. The comparison results
showed that the Stack_LR model had the best predictive performance, showing the highest coefficient
of determination (R2), the lowest root-mean-squared error (RMSE), and the smallest prediction error
(MAE). Among all individual models studies, the BPNN model performed the best in terms of the
RMSE and R2, while SVR performed the best in terms of the MAE. Furthermore, SVR had the smallest
prediction error (MAE) for crack widths less than 60 µm or greater than 100 µm, while CART had the
smallest prediction error (MAE) for crack widths between 60 µm and 100 µm. The study concluded
that the individual and ensemble methods can be used to predict the self-healing of ECC. Ensemble
models were able to improve the accuracy of prediction compared to the individual model used as
their base learner, i.e., a 2.3% to 4.9% reduction in MAE. However, selecting an appropriate individual
and ensemble method is critical. To improve the performance accuracy, researchers should employ
different ensemble methods to compare their effectiveness with different ML models.

Keywords: engineering cementitious composites; self-healing; machine learning; ensemble method

1. Introduction

Currently, the issues associated with cracking in concrete experienced by clients,
design team members, and contractors were more than any other problems according to
Materials for Life (M4L) [1]. Moreover, cracks are primarily responsible for the reduction
of the strength and stiffness of concrete. In European countries, the annual cost spent on
maintenance, refurbishment, and repair of concrete cracks in extending the service life of
infrastructure is estimated to be around 50% of their annual construction budget [2]. It
has been suggested by M4L that self-healing materials have great potential to address the
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problems associated with concrete cracking and thereby reducing the maintenance costs
over a structure’s lifetime [1].

The inspiration of self-healing comes from the biomimicry concept and the healing
process in living nature [3]. For example, the skin of humans or animals can biologically
repair itself from simple injuries. In cement-based materials, the process of crack self-
healing can be categorized into two major mechanisms, i.e., autogenous healing and
autonomous healing [4]. The former indicates the self-healing ability results from the
physical and/or chemical composition of the cementitious matrix, whereas the self-healing
mechanism of the latter is triggered by some biological agents, such as bacteria that are
deliberately introduced into the cementitious matrix.

Generally, the autogenous self-healing of concrete is mainly controlled by two mech-
anisms including (1) further hydration of cement particles and/or swelling of calcium
silicate hydrate and (2) calcium hydroxide carbonation [5,6]. It has been reported that crack
widths of 10 µm [7], 100 µm [8], 200 µm [9], 205 µm [5], and 300 µm [10] of engineered
cementitious composite (ECC) can be self-healed completely [11].

ECC is a high-performance fiber-reinforced cementitious composite, and its matrix de-
sign is strongly associated with the autogenous self-healing mechanism [12]. ECC features
high tensile ductility with a typical fiber volume fraction of 2% [13,14] to promote the self-
healing ability [4]. However, the intrinsic self-healing ability of ECC is complex and difficult
to predict because of different mineral admixture types, interactivity between different com-
posites in the cementitious matrix and its interaction with the exposed environment [15],
and unpredictable crack location, orientation, and width [16]. Previous studies have ex-
plored the influence of several factors such as limestone powders (LPs) [17,18], fly ash
(FA) [19,20], hydrated lime [21], the water/binder ratio [22], water permeation [23], and
different curing conditions (air, carbon dioxide, wet/dry, and water) [24] on the self-healing
behavior of ECC. However, these studies did not predict the self-healing efficiency of ECC
by modeling their experimental data. In fact, the relationship between multiple factors is
complex and non-linear, so it is difficult to predict the self-healing of ECC mathematically
based on the available data. Moreover, mathematical models based on empirical data are
generally in regression forms, which cannot be used when the problem (e.g., prediction of
the self-healing potential of ECC) contains too many independent variables and requires
more assumptions to be made [25].

To account for the drawbacks of using mathematical models, machine learning (ML)
techniques have been used for solving many civil engineering problems with multiple
variables [26]. They are model-free approaches that do not rely on predefined models [27].
Many research works have been conducted using ML algorithms for the prediction of vari-
ous properties of concrete [28,29]. Gilan et al. [30] developed a hybrid support vector regres-
sion (SVR)–particle swarm optimization (PSO) algorithm model to predict the compressive
strength and chloride ion penetrability of concretes containing metakaolin. Yan et al. [31]
predicted the bond strength of a glass-fiber-reinforced polymer bar in concrete by an artifi-
cial neural network (ANN) with the genetic algorithm (GA). Yaseen et al. [32] proposed an
ML method called extreme learning machine (ELM) to predict the compressive strength of
lightweight foamed concrete.

In the literature, the performance of various ML algorithms in predicting concrete prop-
erties have been evaluated and compared. Yan and Shi [33] reported that SVR is better than
other individual methods in predicting the elastic modulus of normal and high-strength
concrete. Chou [34] compared the performance of several individual and ensemble methods
for predicting the mechanical properties of high-performance concrete. The results revealed
that ensemble learning strategies outperform individual learning techniques in predict-
ing the compressive strength of high-performance concrete. Reuter et al. [27] employed
three different individual approaches for modeling concrete failure surfaces. They found
that all three individual approaches are able to fit the experimental data with low error.
Sobhani et al. [35] suggested that their proposed fuzzy inference system and ANN
are more reliable than traditional regression models in predicting no-slump concrete.
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Omran et al. [36] predicted the compressive strengths of an environmentally friendly con-
crete by using three individual methods, two ensemble methods, and four regression tree
models. Their results showed that the individual Gaussian process regression model and
its ensemble models outperformed other models.

Although different ML algorithms have been utilized to predict several properties of
concrete, the application of ML on self-healing prediction is considerably rare. Recently,
Mauludin and Oucif [37] reviewed the common methods used for modeling autogenous
self-healing of concrete and stated that the methods can be classified into two categories:
(1) numerical simulation and (2) ML. However, the only ML model reviewed in their
study was the GA–ANN method proposed by Ramadan et al. [3]. They predicted the
self-healing ability of cement-based materials using a dataset collected from the literature.
The results showed that the GA–ANN model was capable of capturing the complex effects
of various self-healing agents (e.g., biochemical material, silica-based additive, expansive
and crystalline components) on the self-healing performance of cement-based materials.

Chaitanya et al. [38] used an ANN model to predict the self-healing property of
concrete containing ground granulated blast furnace slag in terms of compressive strength
recovery based on 51 samples collected from their experimental studies. Generally, the
predicted results by the ANN model were in good agreement with the experimental values.
Zhuang and Zhou [39] conducted a comparative study on six ML algorithms including
SVR, decision tree regression (DTR), gradient boosting regression (GBR), ANN, Bayesian
ridge regression (BRR), and kernel ridge regression (KRR) for the crack-repairing ability of
the bacteria-based self-healing concrete. The results showed that GBR performed much
better than other models with R2 values of 0.93 and 0.74 for the training set and testing set,
respectively. However, the R2 values of most models were less than 0.7 on both the training
and testing sets. Although extensive experiments with different combinations of influencing
variables were utilized to generate the empirical dataset, their study only selected three
variables including the number of bacteria, the healing time, and the initial crack width
to predict the crack closure percentage as the output. Huang et al. [40] used six types of
machine learning algorithms to predict the healing performance of self-healing concrete.
The data were taken from the open literature; however, different studies used different
self-healing indicators (e.g., crack width, permeability, or mechanical properties) to assess
self-healing; therefore, their study lacks a specific analysis and discussion on the efficiency
of the models for predicting a specific indicator. Ahmad et al. [41] explored several ML
algorithms, including support vector machine (SVM), random forest (RF), AdaBoost, and
k-nearest neighbor (KNN) for predicting the shear strength of rockfill materials. The results
demonstrated that the SVM achieved the best prediction performance.

To the best of our knowledge, there has been no study to date to predict the self-healing
of ECC using the ML approach. It is worthwhile to understand and evaluate the prediction
capability of various ML models for the self-healing of ECC. Furthermore, conducting
experiments is usually expensive and time consuming; therefore, it is necessary to develop
accurate and reliable prediction models for the self-healing ability of ECC. In addition, it
is critical to choose an appropriate ML method as each algorithm has a significant effect
on the accuracy of the results [42]. Therefore, this study aims to provide a comparative
analysis on the performance of various ML models in predicting the self-healing capability
of ECC. The ML model with the best performance can be used as a baseline prediction
model for developing advanced models in the future.

In this paper, four ML individual methods including linear regression (LR), SVR, back-
propagation neural network (BPNN), and classification and regression tree (CART) were
proposed to predict the self-healing capability of ECC. To improve the prediction accuracy,
three ensemble methods, namely bagging, AdaBoost, and stacking, were used to construct
ensemble models using the individual models as the base learners. A series of experimental
works on the self-healing performance of ECC samples was conducted, and the results
were used to develop and compare the accuracy among the ML models. Experimental data
collected from the experiments were first preprocessed and then divided into a 10-fold
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cross-validation algorithm (for the details, refer to Section 4.1) to avoid overfitting. Figure 1
summarizes the steps that were performed when predicting the self-healing of ECC.

Preprocessing

Experimental
Data
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10-fold cross-validation
Individual models

LR

SVR

BPNN

CART

Bagging
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resultsInput data

Input data

Output results

Output 
results

Figure 1. Flowchart of implementing prediction models for the self-healing capability of ECC.

This paper is organized as follows. Section 2 presents the experimental program
detailing the materials used for ECC specimen preparation and the test setup for crack data
measurement. The concepts and formulations of individual and ensemble models used for
predicting the self-healing of ECC are presented in Section 3, whereas the validation and
evaluation methods are described in Section 4. In Section 5, the computational results are
presented and compared, and the model with the best prediction performance is identified.
Finally, Section 6 draws the major conclusions from this work and suggests some directions
for future research.

2. Experimental Program
2.1. Materials and Mixture Proportion

In the experimental part, samples of ECC with different mineral admixtures were
prepared. The materials including general-purpose cement (GPC), fly ash (FA), silica fume
(SF), hydrated lime powder (LP), fine sand, polyvinyl alcohol (PVA) fibers, as well as water
and high-range water-reducing admixture (HRWR) were used. The HRWR complies with
AS1478.1-2000 and was added at the recommended dosages to achieve 80 ± 20 mm slump
(medium degree of workability). GPC and FA were supplied by Boral in accordance with
Australian Standard AS 3972-2010 [43], while LP was the Adelaide Brighton Hydrated
Lime with a specific gravity of 2.2–2.3 and a typical fineness of 0.1% retained on a 75 µm
sieve and less than 0.05% on a 250 µm sieve. The physical and chemical properties of
the cementitious materials are shown in Table 1. Fine sand with an average grain size of
150 µm and a fineness modulus of 2.01 was used. Figure 2 shows the particle distribution
of the fine sand. The PVA fibers were supplied by Domocrete, and their mechanical and
geometrical properties are described in Table 2.

All ECC mixtures were prepared with a constant water-to-cementitious-material
(W/CM) ratio of 0.29 and a constant sand to CM (PC + FA + LP+SF) ratio of 0.36. All fine
aggregates were in saturated surface- dried condition prior to mixing. The abbreviations
for labeling specimens were adopted in such a way that the letters FA, SF, and LP stand
for samples with fly ash, silica fume, and limestone as the binder materials, respectively.
The number after the letters shows the percentage of materials in the binder system. For
example, the FA70 mixture is related to an ECC sample with binder containing 70% FA by
weight, whereas FA60-SF10 is the mixture with 60% FA and 10% SF. A total of nine ECC
mixtures were prepared, and the details of the mix proportion are shown in Table 3.
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Figure 2. Particle size distribution of fine sand.

Table 1. Physical and chemical properties of cementitious materials.

Chemical Composition (%) GPC FA LP SF

Silica (SiO2) 19.8 65.90 1.8 95.10
Alumina (Al2O3) 5.3 24.0 0.5 0.21
Iron oxide (Fe2O3) 3.0 2.87 0.6 0.29
Calcium oxide (CaO) 64.2 1.59 72.0 -
Magnesia (MgO) 1.3 0.42 1.0 -
R2O 0.6 1.93 - -
Sulfur trioxide (SO3) 2.7 - - -
Titanium oxide (TiO2) 0.28 0.91 - -
Manganic oxide (Mn2O3) 0.22 - - -
Zirconia (ZrO2) + Hafnium (HfO2) - - - 3.46

Loss on ignition (%) 2.8 1.53 24.0 1.4
Density (g/cm3) 3.08 2.43 2.25 2.26
Specific surface area (m2/kg) - 655 460 1.5× 104

Table 2. Properties of PVA.

Length Length/ Young’s Modulus Elongation Tensile Strength Density
(mm) Diameter Ratio (MPa) (%) (MPa) (g/cm3)

8 200 42,000 7 1600 1.3
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Table 3. Mix proportion of all ECC mixtures.

Mix Water/cm Sand Water Fiber (V) GPC Fly Ash SF LP HRWR

FA70 0.29 419.67 338.07 26 349.73 816.03 0.00 - 5.13
FA65-SF5 0.29 419.67 338.07 26 349.73 757.74 58.29 - 5.13
FA60-SF10 0.29 419.67 338.07 26 349.73 699.45 116.58 - 5.13
FA55-SF15 0.29 419.67 338.07 26 349.73 641.16 174.86 - 5.13
FA65-LP5 0.29 419.67 338.07 26 349.73 757.74 - 58.29 5.13
FA60-LP10 0.29 419.67 338.07 26 349.73 699.45 - 116.58 5.13
FA55-LP15 0.29 419.67 338.07 26 349.73 641.16 - 174.86 5.13
FA55-SF5-LP10 0.29 419.67 338.07 26 349.73 641.16 58.29 116.58 5.13
FA55-SF10-LP5 0.29 419.67 338.07 26 349.73 641.16 116.58 58.29 5.13

2.2. Sample Preparation and Crack Measurement

A planetary-type mixer of 50 L capacity was used to produce the ECC specimens.
During the mixing process, the solid ingredients including cement, mineral admixtures,
and sand were initially placed into the mixer and dry mixed for 30 s. Then, the water
with HRWR was added, and the mixture was mixed for 2 min. After that, the PVA fibers
were slowly added, and mixing was continued until a uniform distribution of fibers in
the mix. After mixing, ECC pastes were cast into standard molds with dimension of
100 mm × 200 mm. The specimens were demolded 24 h after casting and stored in a curing
room with a temperature of 23± 2 ◦C and a relative humidity (RH) of 90± 5% for 28 dd.
To prepare the self-healing test samples, the cylinder specimens were cut into 50 mm-thick
slice samples using a diamond blade saw.

A newly developed splitting tensile test apparatus was used to generate micro-cracks,
as shown in Figure 3a. It consisted of a steel frame, top and bottom members, and pre-
stressed loading steel plates (5 mm thick) on both sides with loading nuts and wire springs,
as shown in Figure 3b. Both steel plates were connected to the steel frame by nuts and
wire springs. The specimen was placed inside the steel frame and then pre-stressed by the
steel plates from both sides, limiting the propagation and size of cracks and preventing
excessive crack growth.

Micro-cracks less than 150 µm were produced by pre-loading the ECC samples up to
70% of their maximum splitting strength. A digital microscope was used to measure the
crack width on the surface of the specimens, as shown in Figure 3c. After the pre-loading,
the cracked specimens were subjected to wet–dry (W/D) cycles to promote self-healing.
Each W/D cycle included 24 h of wetting followed by 24 h of drying in laboratory conditions
at 23± 2 ◦C and an RH of 50± 5%. After 10 W/D cycles, the cracks were measured again
by the digital microscope to examine the extent of crack recovery. Figure 4 illustrates the
self-healing of cracks of an ECC specimen before and after 10 W/D cycles.

2.3. Data Collection

Experimental data for prediction were gathered with four features, including the
crack width before self-healing (representing the influencing factor of self-healing) and
the mineral contents of FA, SF, and LP. It is noteworthy that the factors such as GPC,
sand, W/CM, and healing time were kept constant, and hence, they were excluded in
the prediction modeling. For each ECC mixture, there were 6 identical test specimens.
After pre-loading, the crack widths of the specimens were measured using the digital
microscope before and after the self-healing. Four horizontal lines were drawn on the
surface of each specimen along the direction of vertical force, which divided the specimen
into five observation areas, as shown in Figure 5. With the newly developed splitting tensile
test, the crack propagation for all samples was generally consistent and visually straight, as
shown in Figure 4. The cracks observed in the observation zone were used to manifest the
self-healing capability of individual samples in this study. The schematic diagram of the
measurement is shown in Figure 5. In each observation area, only one crack datum was
recorded if the crack width showed little or no change along the vertical force; otherwise,
multiple crack data would be collected. For example, more crack data were collected for
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FA65-LP5 as more cracks were recorded in the observation zone compared to the other
samples, as indicated in Table 4. In total, 617 crack data samples were collected from
9 mixtures to construct the ML training–testing dataset [44]. In previous ML studies on
predicting the mechanical [35,45–48] and permeability [49] properties of concrete through
machine learning methods, the number of samples is usually less than 600, so the number
of samples in the study was considered as sufficient. To assist researchers and engineers
who are interested in re-implementing or improving the algorithms and exploring the
application of ML in ECC self-healing prediction, the codes developed in this study are
published as open-source codes. The raw crack data and full code [44] are available from
our open-source project GitHub repository [50]. Table 4 shows the number of collected
samples and range of cracks on each sample before and after self-healing.

(a) (b)

(c)
Figure 3. Splitting tensile test apparatus and microscope used in the experiment for creating and
measuring ECC cracks. (a) Splitting tensile test apparatus; (b) schematic diagram of the apparatus;
(c) crack width measurement.
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100μm

(a) Crack before self-healing

100μm

(b) Crack after self-healing

Figure 4. Surface images of cracked ECC specimens: (a) before and (b) after self-healing.
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Figure 5. Schematic diagram of measuring observation areas on the surface of ECC mixture specimens.
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Table 4. Number of crack samples and range of the crack width before and after self-healing collected
from the ECC mixes.

Mix Number of Cracks
Crack Width before Self-Healing Crack Width after Self-Healing

Min (µm) Max (µm) Min (µm) Max (µm)

FA70 87 3.28 134.69 0 121.37
FA65-SF5 77 4.37 135.47 0 124.01
FA60-SF10 88 5.18 121.78 0 113.11
FA55-SF15 88 3.45 115.8 0 109.53
FA65-LP5 112 7.65 119.45 0 105.65
FA60-LP10 37 5.62 126.82 0 110.97
FA55-LP15 61 6.42 132.65 0 115.95
FA55-SF5-LP10 34 8.74 123.09 0 110.78
FA55-SF10-LP5 33 4.64 131.57 0 119.79

2.4. Preprocessing of Data

Since the input and output data of different features vary in range and units, the
features with a bigger number would steer the model performance. As shown in Table 3,
the range of FA varied from 641.16 kg to 816.03 kg, but the range of SF varied from 0 kg
to 174.86 kg. Similarly, the range of the crack width varied from 0 µm to 135.47 µm, as
shown in Table 4. To eliminate this potential bias, the experimental data were preprocessed
through min–max normalization in order to scale the range of all features into [0, 1] with
the following equation:

x′ =
x− xmin

xmax − xmin
(1)

where x′ is the scaled value of variable x. xmax and xmin are the maximum and minimum
values of variable x, respectively.

3. Proposed Machine Learning Models

To predict the self-healing capability of ECC, four individual ML models including
LR, SVR, BPNN, and CART and three ensemble methods including bagging, AdaBoost,
and stacking were proposed. Ensemble models were constructed using individual models
as the base estimators. To establish a baseline for comparison, the modeling parameters
were set to be the same in both individual models and ensemble models. The main reason
for choosing these techniques was due to their popularity, and some of them are even
recognized as the top data mining algorithms in related fields of concrete [34]. The proposed
individual and ensemble techniques are described in the following subsections.

3.1. Linear Regression

LR attempts to determine the relationship between a dependent variable (response
variable) and one or more independent variables (explanatory variables) by fitting a linear
regression equation [51]. Given our dataset, T = {(xi, yi), i = 1, 2, · · · , n}, where n = 617 is
the size of the sample dataset, xi ∈ Rn are the independent variables representing a
sample of selected features from the FA, SF, LP, and crack width before self-healing, Rn is
n-dimensional space, and yi ∈ R1 is the target output (crack width after self-healing) that
corresponds to xi. Let d = 4 denote the number of an independent variable of a random
vector x = {x1; x2; · · · ; xd} and y be the corresponding output (dependent variable). The
general formula of LR for predicting the self-healing capability of ECC can be expressed as
follows [51]:

y = w1x1 + w2x2 + · · · · · ·+ wdxd + b (2)

where wi, (i = 1, 2, · · · , d) is the regression coefficient, while b is an error term. The
prediction performance of LR was used as a benchmark to compare the performance of
other individual and ensemble models in this study.
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3.2. Support Vector Regression

Support vector machine (SVM) is a supervised machine learning method first intro-
duced by Vapnik [52,53] based on the statistical learning theory [54]. Since then, it has
gained popularity due to its attractive features and promising empirical performance [55].
SVM includes two main categories: support vector classification (SVC) and SVR. For
classification purposes, SVMs often use a kernel function to map the input data as vec-
tors to a high-dimensional feature space so that an optimal separating hyperplane can be
constructed [56].

For regression purposes, the basic idea is to provide a nonlinear function by mapping
input data into a high-dimensional feature space, where a special type of hyperplane is
constructed. After that, a regression model is established in the hyperplane [57].

Given our dataset, T = {(xi, yi), i = 1, 2, · · · , n}, where n = 617 is the size of the
sample dataset, xi ∈ Rn is the input vector representing the selected features of a sample,
including the FA, SF, LP, and crack width before self-healing, Rn is the n-dimensional vector
space, and yi ∈ R1 is the target output indicating the crack width after self-healing that
corresponds to xi. The SVR aims to seek an optimum regression function f (x) with minimal
empirical risk, which can be expressed as follows [53]:

f (x) = 〈w, x〉+ b with w ∈ T, b ∈ R (3)

where 〈·, ·〉 is denoted as the dot product in T and w and b are the weight vector and bias
value, which are estimated by minimizing the empirical risk, that is the distance between
the predicted crack width and the target crack width after self-healing.

SVR adopts an ε-insensitive loss function, penalizing predictions that have a distance
between the predicted crack width and the target crack width when the self-healing is
greater than ε. Therefore, the problem of finding w and b to reduce the empirical risk with
respect to an ε-insensitive loss function is equivalent to the convex optimization problem
that minimizes the margin (w) with the full prediction error within the range of ε. Then,
this problem can be expressed as [53]:

minimize
1
2
||w||2

subject to
{

yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉+ b− yi ≤ ε

(4)

By introducing slack variables ξ and ξ∗i to allow some errors to cope with infeasible
solutions of the optimization problem, the formulation can be generated as [53]:

minimize
1
2
||w||2 + C

n

∑
i=1

(ξ + ξ∗i )

subject to


yi − 〈w, xi〉 − b ≤ ε + ξi
〈w, xi〉+ b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(5)

The constant C is the penalty value imposed on predictions that lies outside the ε
margin. Lagrange multipliers are included to solve this problem. By constructing the
objective function and all constraints, a dual set of variables is introduced as follows [58]:
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LP =
1
2
||w||2 + C

n

∑
i=1

(ξi + ξ∗i )−
n

∑
i=1

(ηiξi + η∗i ξ∗i )

−
n

∑
i=1

αi(ε + ξi − yi + 〈w, xi〉+ b)

−
n

∑
i=1

α∗i (ε + ξ∗i + yi − 〈w, xi〉 − b)

s.t. αi, α∗i , ηi, η∗i ≥ 0

. (6)

where LP is the Lagrangian and αi, α∗i , ηi, η∗i are Lagrange multipliers.
The optimality can be achieved by the partial derivatives of LP with respect to the pri-

mal variables following the saddle point condition. Then, the function of SVR is expressed
as [58]:

f (x) =
n

∑
i=1

(αi − α∗i )〈xi, x〉+ b (7)

As for the nonlinear regression, the input data have to be mapped into a high-
dimensional feature space, in which the dot product can be replaced by a kernel function
k(xi, xj) = φ(xi)

Tφ(xj), and the function (7) can be written as [59]:

f (x) =
n

∑
i=1

(αi − α∗i )k(xi, x) + b (8)

Different SVM algorithms use different kinds of kernel functions such as linear, poly-
nomial, radial basis function, and sigmoid kernel. In this work, the Gaussian radial basis
function (RBF) was chosen, which is defined as [59]:

k(xi, xj) = exp(−
||xi − xj||2

2σ2 ) (9)

3.3. Artificial Neural Network

The artificial neural network (ANN), also called a neural network, originated from
simulating biological neural networks. Generally, it consists of many neurons in layers
including one input layer, one or several hidden layers, and an output layer [60]. The neu-
rons are fully interconnected between the neighboring layers by the weight, and typically,
there are no inter-connections between neurons within the same layer [61].

There are many possible network structures available. BPNN was utilized in this
study because the back-propagation (BP) algorithms are the most widely used and effective
learning algorithms for training an ANN. A preliminary architecture of the BPNN was
determined to be 4-n-1, where 4 input neurons represent the input features standing for
FA, LP, SF, and crack width before self-healing, n = 5 indicates the number of neurons
in the hidden layer, with 1 target neuron in the output layer for the predicted crack
width after self-healing. This is a three-layer network with one hidden layer capable of
approximating most continuous functions, of which the complex nonlinear relationship
could be approximated in accuracy [31]. The architecture of the BPNN model for predicting
self-healing is demonstrated in Figure 6.
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Figure 6. Schematic diagram of the BPNN model for predicting the self-healing of ECC.

Given a set of inputs {x1, x2, x3, · · · , xn}, while information is passed through the input
layer to the hidden layer, each neuron in the input layer is multiplied by the respective
weights added by a bias and summed together. After that, an activation function f is
applied to form the output z, which can be expressed in the following equation [25]:

z = f (
n

∑
i=1

wijxi + bj) (10)

where wij is the connection weights between the ith neuron of the input and the jth neuron
of the hidden layer and bj is the bias of the jth neuron. The sigmoid function was applied as
the activation function between the input, hidden, and output neurons to form the output.

f (x) =
1

1 + e−x (11)

The goal of training a neural network is to determine the values of the connection
weights and the biases of the neurons. The back-propagation indicates an iterated method
to adjust the weights from the output layer to the input layer. At first, the outputs were
calculated in a feed-forward from the input layer via the hidden layer to the output layer.
Then, an error was generated by comparing the output with the target output. After
that, the error was back-propagated to the hidden layer and input layer. By adjusting the
connection weights and biases, the error was further reduced. The process was repeated
until the error was minimized or reaching the termination to avoid over-fitting [62].

3.4. Classification and Regression Tree

CART [63] is a tree decision algorithm that splits data into mutually exclusive sub-
groups based on a recursive binary partitioning procedure. It develops the relationship
between the target variables (the crack width after the self-healing of ECC) and the inde-
pendent variables (the input features of FA, SF, LP, and crack width before the self-healing
of ECC) to create decision rules to form subgroups as branches and leaves, as shown in
Figure 7. The process of CART starts from the root node, which contains the entire dataset
to construct two sub-nodes representing two categories. Then, this recursion process is
applied to each sub-node until all divided sub-nodes are leaf nodes. CART’s tree can be
either a classification tree [64] or a regression tree [65] depending on the type of target and
independent variables, which may be categorical or numerical.
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Figure 7. Structure of the classification and regression tree [65].

The key idea of constructing a CART tree is achieved by selecting a variable at each
node that best splits the empirical data. To locate the splits, the Gini index was used
to measure the impurity of the two child nodes containing subsets of data that were as
homogeneous as possible with respect to the target variable.

Given a dataset has K classes and the probability of a record in the dataset that belongs
to class i is pi, i ∈ {1, 2, 3, ..., K}, the Gini impurity can be expressed as [63]:

G(p) =
K

∑
i=1

pi(1− pi) = 1−
K

∑
i=1

p2
i (12)

3.5. Ensemble Methods

In contrast to many ML approaches such as SVM and CART (which develop a single
learner from training data), ensemble methods train multiple base learners and combine
them [34] to improve the generalizability over a single estimator. Therefore, weak learners
(base learners) can be boosted to become strong learners [66] in an ensemble method. The
base learners in an ensemble are developed from an individual learning algorithm such
as decision tree, SVM, or other kinds of learning algorithms. Breiman [67] showed that
ensemble methods are usually more accurate than individual learning methods.

The input features of FA, SF, LP, and crack width before the self-healing of ECC were
considered as the d-dimensional predictor variable X, whereas the crack widths after the
self-healing of ECC were the one-dimensional output Y. Each estimator used an individual
algorithm to provide one estimated function g(·). The output presented by ensemble-based
function gen(·) was obtained by a linear combination of individual functions. This ensemble
approach can be expressed mathematically as [34]:

gen(·) =
N

∑
j=1

cj ∗ g(·) (13)

where cj expresses the combination coefficients, dependent on the ensemble models used.
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3.5.1. Bagging

Bagging method (bootstrap aggregating) can generate multiple versions of a predictor
to obtain an aggregated predictor [68]. It generates multiple models independently of
different versions of the datasets via random bootstrapping of the original training set.
In other words, several training examples could repeatedly appear in different bootstrap
replicates. Then, the individual predictions are aggregated through a combination method
(either voting or averaging) to form the final prediction. The bagging method can be
used to reduce the variance of a base estimator (e.g., a regression tree), by introducing
randomization into its construction procedure and making an ensemble out of it. This study
used four individual models to build bagging ensemble models including an LR bagging
ensemble model (abbreviated as Bag_LR), an SVR bagging ensemble model (abbreviated
as Bag_SVR), a BPNN bagging ensemble model (abbreviated as Bag_BPNN), and a CART
bagging ensemble model (abbreviated as Bag_CART).

3.5.2. AdaBoost

Similar to bagging, the AdaBoost method [69] manipulates the training examples
to generate multiple predictions to form the final prediction. The main difference with
bagging is that AdaBoost applies a weight to each of the training examples. In each
iteration, the weights are individually updated to minimize the weighted error on the
training set. For example, the weights on those training examples incorrectly predicted
in previous iteration increase, whereas the weights of the correctly predicted training
examples decrease. Therefore, AdaBoost tends to construct progressively more difficult
learning problems in subsequent iterations. Once the training process has finished, the
predictions are combined through a weighted majority vote (or sum) to produce the final
prediction. Therefore, the final classifier usually can achieve a high degree of accuracy in
the test set.

By combining four individual models as base estimators in AdaBoost, this study
obtained four AdaBoost ensemble models. They were an LR AdaBoost ensemble model
(abbreviated as Ada_LR), an SVR AdaBoost ensemble model (abbreviated as Ada_SVR),
a BPNN AdaBoost ensemble model (abbreviated as Ada_BPNN), and a CART AdaBoost
ensemble model (abbreviated as Ada_CART).

3.5.3. Stacking

Stacking regression combines multiple regression models via a meta-regressor, using
the out-of-fold prediction concept [70]. The stacking method used in this work splits the
dataset into k folds, in which the k-1 folds are used to train the first-level regressors in k
successive rounds. In each round, the first-level regressors are used to predict based on
the remaining 1 subset. After that, the prediction results are used and stacked as the input
data to the second-level regressors to form a final set of predictions [71]. The schematic
diagram of the stacking model is shown in Figure 8. In this study, one stacking-based
ensemble model (abbreviated as Stack_LR) was proposed based on the two-level scheme.
SVR, BPNN, and CART were used as regression models in the first level to obtain the
prediction results, and LR was used as the meta-regressor in the second level to combine
and generate the final prediction results.
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Figure 8. Schematic diagram of the stacking model [72].

4. Validation and Evaluation
4.1. Cross-Validation Method

Generally, a dataset is split to generate a training subset and a validation subset keep-
ing the properties of the original dataset as much as possible to avoid misleading estimates.
To minimize the bias of random data splitting, the K-fold cross-validation is commonly
used as it can yield optimal computational time and reliable variance [34,73]. In this study,
a ten-fold cross-validation approach was applied to assess the model performance, as
shown in Figure 9. The dataset was split randomly into 10 equal-sized subsets with a
similar distribution. In each validation process, nine of the subsets were used for training
and the rest for testing. The process was repeated 10 times [74]. The average accuracy after
10-times validation is reported as the model accuracy.

4.2. Performance Evaluation

To show and validate the accuracy of the proposed ML models, three statistical indices,
namely mean absolute error (MAE), root-mean-squared error (RMSE), and the coefficient
of determination R2, were used and expressed in Equations (14)–(16), respectively. The
average deviation of the performance of an individual model or an ensemble model from
a benchmark model in terms of the three statistical measures (MAE, RMSE, and R2) was
calculated using Equation (17).

• Mean absolute error (MAE).

MAE =
1
n

n

∑
i=1
|yi − y

′
i| (14)
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• Root-mean-squared error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(yi − y′i)
2 (15)

• Coefficient of determination (R2)

R2 = 1− ∑n
i=1(yi − y

′
i)

2

∑n
i=1(yi − y)2 (16)

• Deviation (Dev)

Dev(%) =
Pi − Pj

Pj
∗ 100 (17)

where yi is the target output, y
′
i is the predicted output, n is the number of samples, and y

is the mean of the target output. Dev indicates the statistical performance improvement
compared with a benchmark model. Pi is the statistical performance (MAE, RMSE, or R2)
of an individual or ensemble method. Pj is the corresponding performance of a benchmark
model, LR, or an individual method used in the ensemble method as the base learner.
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Figure 9. Ten-fold cross-validation approach.

It should be noted that the MAE and RMSE are commonly used indicators in ML
to measure the error. Small values of the MAE and RMSE indicate less error, meaning
better predictive models have been achieved. In this study [75], the MAE statistic is a
measure of errors between the predicted values (the estimated value of crack width of ECC
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after self-healing) with the target values (the observed value of the crack width of ECC
after self-healing in empirical data). The RMSE statistic computes the square root of the
average residual error between the predicted values and the target values. R2 measures the
strength of association between the predicted values and the target values, based on the
proportion of the total variation of the outcomes. A greater value close to 1 represents a better
prediction performance that commendably replicates the observed crack width of ECC after
self-healing. The deviation statistic indicates the improvement of the prediction performance
of an individual or an ensemble model from a benchmark model, which can be the LR model
or the individual model used as base learners in the corresponding ensemble model.

5. Results and Discussion

In this section, the prediction performance of individual and ensemble methods are
examined by the MAE, RMSE, and R2 according to the ten-fold cross-validation. The
abbreviations for labeling models were adopted in such a way that the letters Bag, Ada,
and Stack stand for the ensemble methods of bagging, AdaBoost, and stacking, respectively.
The letters LR, SVR, BPNN, and CART stand for the base estimators. However, Stack_LR
refers to the model combining the base methods including SVR, BPNN, and CART in the
first level and using LR as a meta-regressor in the second level.

5.1. Prediction Performance of the Proposed Models

Table 5 shows the ten-fold cross-validation results (MAE, RMSE, and R2) for both individ-
ual and ensemble models and their deviation with respect to the results of the LR model.

Table 5. Average performances of machine learning models for the self-healing prediction of ECC.

Models MAE Dev (%) RMSE Dev (%) R2 Dev (%)

Individual
models

LR 5.012 - 7.680 - 0.860 -
BPNN 4.329 −13.6 6.515 −15.2 0.899 4.5
CART 4.305 −14.1 6.811 −11.3 0.887 3.1
SVR 4.296 −14.3 6.826 −11.1 0.883 2.7

Ensemble
models

Ada_LR 4.784 −4.6 7.400 −3.6 0.867 0.8
Ada_BPNN 4.226 −15.7 6.435 −16.2 0.900 4.7
Ada_CART 4.207 −16.1 6.455 −15.9 0.898 4.4
Ada_SVR 4.145 −17.3 6.577 −14.4 0.893 3.8
Bag_LR 5.014 0.0 7.689 0.1 0.860 0.0
Bag_BPNN 4.143 −17.3 6.341 −17.4 0.901 4.8
Bag_CART 4.093 −18.3 6.358 −17.2 0.901 4.8
Bag_SVR 4.302 −14.2 6.820 −11.2 0.883 2.7
Stack_LR 3.934 −21.5 6.118 −20.3 0.904 5.1

Generally, most of the proposed models were able to learn and predict the empirical
data with an acceptable degree of precision. Based on the results, the Stack_LR model
showed the best prediction performance as it had the highest R2 value and the lowest MAE
and RMSE values. Among the individual models, SVR performed the best in terms of the
MAE (4.296), whereas BPNN had the lowest RMSE value (6.515) and the highest R2 of 0.899.
Among the individual models boosted by either AdaBoost or bagging, Bag_CART gave the
best performance in terms of the MAE (4.093), while Bag_BPNN performed better on the
RMSE value (6.341). In terms of R2, the Bag_CART and Bag_BPNN models showed the
same performance (0.901) and were better than other ensemble methods, except Stack_LR.
The performances of all ML models described in Table 5 are depicted in Figure 10a–c in
terms of the MAE, RMSE, and R2, respectively.
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(a) (b)

(c)

Figure 10. Average prediction performance of 10-fold cross-validation on all ML models for predicting
the self-healing ability of ECC. (a) MAE; (b) RMSE; (c) R2.

Overall, all models could reduce the error values and increase the prediction accuracy
compared with LR, except Bag_LR. Among the models boosted by AdaBoost, Ada_SVR
performed the best with the lowest MAE value, whereas Ada_BPNN performed the best
on the RMSE value, showing the highest R2 value. In the case of bagging, both Bag_CART
and Bag_BPNN performed better in terms the MAE, RMSE and R2 than those of the corre-
sponding models boosted by AdaBoost. However, Bag_LR showed a poor performance
compared to LR on the MAE and RMSE values. For a better comparison among the en-
semble methods used, the performance results between the ensemble models and their
corresponding individual (or benchmark) models are indicated in Table 6. The results
indicate that most ensemble methods improved the performance of individual models.
For example, the MAE and RMSE values of the BPNN after bagging reduced by 4.3% and
2.7%, respectively, and its R2 was much higher than that of the individual BPNN model.
Among all the ensemble methods studied, stacking showed the best improvement on all
performance measures.

However, the results showed that the effectiveness of the ensemble methods on the
individual models varied. For instance, the bagging method enhanced the performance of
the BPNN and CART substantially, but not for both LR and SVR models. On the other hand,
the AdaBoost method brought a considerable improvement for the LR and SVR models. To
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improve the performance accuracy, researchers should employ different ensemble methods
and compare their effectiveness on different ML models.

Table 6. Performance deviation of ensemble models from benchmark models on the self-healing of ECC.

Benchmark Model
MAE RMSE R2

Benchmark Model
MAE RMSE R2

Dev (%) Dev (%)

LR Ada_LR −4.6 −3.6 0.8 LR Bag_LR 0.0 0.1 0.0
BPNN Ada_BPNN −2.4 −1.2 0.1 BPNN Bag_BPNN −4.3 −2.7 0.2
CART Ada_CART −2.3 −5.2 1.2 CART Bag_CART −4.9 −6.6 1.6
SVR Ada_SVR −3.5 −3.6 1.1 SVR Bag_SVR 0.1 −0.1 0.0

Ada_LR Stack_LR −17.8 −17.3 4.3 Bag_LR Stack_LR −21.5 −20.4 5.1

5.2. Prediction Performance Comparison
5.2.1. Comparison of the MAE

To reveal the accuracy of the proposed ML models in self-healing prediction, the
comparison of the observed crack widths of ECC after self-healing with predicted crack
widths are shown in Figures 11–14. Figure 11a shows the observed crack widths compared
with the crack widths predicted by different individual ML models. Figure 11b–e shows
the variations between the observed and the crack widths predicted by each individual ML
model corresponding to their initial crack widths before self-healing. In other words, the
prediction performance of the models in a particular range of crack widths can be revealed.
It should be noted that the horizontal line located at the vertical coordinate of zero (y = 0)
is considered as the target line [25,31]. Generally, the smaller the variation (i.e., closer to
the target line), the better the self-healing prediction was, which means smaller or even no
variation between the observed and the predicted crack widths after self-healing.

As shown in Figure 11, the SVR model generally exhibited better prediction results
than other individual models, while the LR model was the worst, showing substantial
deviation from the target line (denoting relatively large differences between the observed
and the predicted crack widths). For the initial crack widths less than 20 µm and over
100 µm before self-healing, the variations between the observed and the ones predicted by
the SVR model were smaller than other individual ML models. The corresponding MAE
values were 1.358 and 2.724. However, for the crack widths between 20 µm and 60 µm, the
CART model performed the best with the lowest MAE of 5.045, while the BPNN model
had the lowest MAE of 9.565 for the crack widths between 60 µm and 100 µm. It seems
that the choice of ML models may depend on the initial crack widths. However, in terms
of overall accuracy among the individual models, SVR performed the best, followed by
CART, the BPNN, and LR. This is consistent with the results shown in Table 5.

The performance of ensemble methods using AdaBoost and bagging is shown in
Figures 12 and 13. In general, the ensemble models Ada_CART and bag_CART exhibited
lower variations in the self-healing results compared to the other ensemble models. In
particular, the MAE values of Ada_CART and bag_CART for crack widths between 20 self
heal and 60 µm were 5.037 and 5.000, respectively. These values were smaller than that
of CART (5.045), as shown in Figure 11e. However, the variations among the BPNN,
Ada_BPNN, and bag_BPNN were not significant. Similar variations can be found when
comparing SVR with Ada_SVR and bag_SVR.

After stacking, the error variations shown in Figure 14 were much reduced when
compared to those shown in Figures 11–13. More specifically, the MAE of stack_LR for
crack widths less than 20 µm, between 20 µm and 60 µm, between 60 µm and 100 µm, and
over 100 µm were 1.361, 4.931, 9.789, and 3.177, respectively. These MAE values were the
lowest among all the ML models studied. Based on the results, it can be concluded that the
stack_LR model performed the best.
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Figure 11. Comparison of the observed crack widths of ECC after self-healing with the crack widths
predicted by the individual models.

Figure 12. Cont.
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Figure 12. Comparison of the observed crack widths of ECC after self-healing with the crack widths
predicted by the AdaBoost ensemble models.

It is known that a smaller crack width is favorable for autogenous healing in
concrete [76,77] as small cracks consume less repair products to complete self-healing [78].
However, a larger crack width will not heal completely or just heal partially. As shown in
Figures 11b, 12b, 13b and 14b, the variations between the observed and predicted results for
the LR, bag_LR, and Ada_LR models increased with the increase of the crack width. For a
crack width below 20 µm, the MAE values were less than 1.5, which was much lower than
those for crack widths between 20 µm and 60 µm (i.e., 6.23) and between 60 µm and 100 µm
(around 10). Similar trends were observed in other models, but with smaller variations.
Specifically, for a crack width over 100 µm, the LR, bag_LR, and Ada_LR models showed
much higher variations. Their MAE values were over 20 and higher than other ML models
with the MAE less than 10.

5.2.2. Comparison of the RMSE

A box plot, as shown in Figure 15, was created to show the distribution of the RMSE
results of each ML model based on the ten-fold cross-validation. The RMSE values were
calculated based on the differences between the predicted and observed crack widths. The
box plot is a statistical tool that is used to depict numerical data through their quartiles
including the maximum, minimum, and median values of a dataset [79,80]. The medium
value is shown as the red line within the box. The interquartile range (IQR) in each box
covers 50% (the lower 25% to the upper 75% quartiles) of the RMSE data point, while the
whiskers drawn up and down to the maximum and minimum values represent 1.5-times
the IQR from the RMSE data. All other points out of the whiskers range are outliers and
shown as red dots. A mean value of the RMSE equal to zero would indicate that the
predictions perfectly fit the observed data. However, this is almost never achieved in
practice [81]. In general, the lower the RMSE value, the better the prediction performance
of a model is.

Assessment of the box plot revealed that the stack_LR model outperformed all other
models because of its shortest IQR length and smallest RMSE values, as shown in Figure 5.
In contrast, the LR and bag_LR models had the longest IQR length and largest RMSE
values, thereby suggesting that the LR model and its ensemble methods have low accuracy.
Among the individual models, the BPNN had the lowest RMSE, while SVR had the shortest
IQR length, but with three outliers (out of ten data points). In general, the BPNN gave the
most stable performance, showing reasonable low RMSE values with a short IQR length.



Appl. Sci. 2022, 12, 3605 22 of 27

Figure 13. Comparison of the observed crack widths of ECC after self-healing with the crack widths
predicted by the bagging ensemble models.

Figure 14. Comparison of the observed crack widths of ECC after self-healing with the crack widths
predicted by the stacking ensemble models.
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Figure 15. Ten-fold cross-validation of the RMSE by the proposed ML models in the prediction of the
self-healing ability of ECC.

5.3. Limitations of Application

Although the present study provided evidence indicating that ML models can be used
to predict the self-healing of ECC, there are some challenges that need to be considered. For
example, the prolonged time required to optimize and tune the parameters and the high
dependence on engineering datasets are the major concerns. The former can be addressed
by using an optimization algorithm or developing a hybrid model to automatically adjust
the parameters. In addition, high-performance computing (HPC) [82] can also be used to
achieve parallel data processing so as to improve the computing performance and save
time. In terms of the engineering dataset, it can be improved by experimental design and
experimental process control [75].

Besides, it is worth noting that the ML models in this study mainly focused on the
internal factors (features) such as materials and mix composition; other external environ-
mental factors such as W/D cycles and healing time should also be considered. More
research is required to explore the potential benefits and challenges of using ML models to
predict the self-healing of cement-based composites.

6. Conclusions

In this study, four individual (LR, SVR, BPNN, and CART) and three ensemble (bag-
ging, AdaBoost, and stacking) ML models were proposed to predict the self-healing of
ECC. All the models were trained, validated, and tested based on the experimental results
from nine ECC mixtures. Their prediction performances were analyzed and compared in
terms of the MAE, RMSE, and R2. Based on the comparison of the results, the following
conclusions can be drawn:

1. Among all individual ML models, the BPNN model performed the best in terms of
the RMSE and R2, while the SVR model had the best performance in terms of the
MAE;

2. All ensemble methods can generally improve the prediction accuracy of individual
methods; however, the improvement varies. It was found that the bagging method
mainly enhanced the performance of the BPNN and CART, whereas the AdaBoost
method brought a considerable improvement for the LR and SVR models;

3. Among all the ML models studied, the Stack_LR model demonstrated great prediction
on the self-healing of ECC and performed the best on the MAE, RMSE, and R2. The
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assessment of the box plot also revealed that the stackLR model outperformed all
other models because of its shortest IQR length and smallest RMSE values;

4. For the initial crack widths less than 60 µm, the variations shown in the SVR model
were smaller than those presented in other models. However, the CART model
showed smaller variations for the crack widths between 60 µm and 100 µm compared
to the SVR and BPNN models. For crack widths larger than 100 µm, the SVR model
performed the best, showing the smallest variations;

5. The computational results indicated that the individual and ensemble methods could
be used to predict the self-healing ability of ECC. However, how to choose an ap-
propriate base learner and ensemble method is critical. To improve the performance
accuracy, researchers should employ different ensemble methods to compare their
effectiveness with different ML models.

Although the proposed ML models can be used to predict the self-healing of ECC,
there are some challenges such as time consumption and the quality of the dataset that
need to be addressed. Future investigation and experimentation should be carried out
to extend the training dataset to include various crack width distributions and diverse
influencing factors such as W/D cycles, healing time, etc. In addition, more research should
be undertaken to optimize the parameters in ML models and develop hybrid ML models
to improve the prediction accuracy.
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